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I Introduction

In 2023, the corporate income tax (CIT) accounted for 12 percent of total tax revenue on average

across OECD countries (OECD, 2025). From a redistributive perspective, the CIT represents almost

half of the total tax liability of the richest Americans (Balkir et al., 2025) and constitutes virtually the

only significant tax paid by their European counterparts (Bach et al., 2025; Bruil et al., 2025).1 Both

the revenue importance and the redistributive role of the CIT hinge on its capacity to tax undistributed

profits.2 While some of these profits are eventually distributed to shareholders, retained earnings can also

be used to avoid personal income taxation.3 Although governments can limit some of these strategies,4

such avoidance opportunities are likely to persist. In this paper, we revisit the debate on the optimal

combination of corporate and dividend taxation when retained earnings are used to fund investment but

also to escape personal income taxation. We show that the mere existence of such avoidance is sufficient

to call into question the use of dividend taxation, i.e taxes levied solely on distributed profits, as a tool

for maximizing social welfare.

We begin our analysis with a simple model, where an entrepreneur owns a representative firm em-

ploying hand-to-mouth workers with inelastic labor supply. The government sets linear corporate and

dividend taxes to maximize the disposable income of workers. After paying the CIT, the entrepreneur

can consume remaining profits either by distributing dividends and paying the dividend tax, or by using

tax shelters to avoid the dividend tax, albeit at some utility cost. Although labor supply is fixed, we

assume a constant returns to scale production function, implying that wages are endogenous. Hence

this simple model captures the trade-off between raising tax revenue for redistribution to workers and

limiting distortions to investment that would otherwise reduce wages.

We first use this simple model to derive conditions for the desirability of corporate and dividend

taxation, expressed in terms of empirically meaningful sufficient statistics. The strong sensitivity of div-

idends to their tax rates, documented by Chetty and Saez (2005), Jacob and Michaely (2017), Bach et al.

(2024) or Bilicka et al. (2025), is sufficient for the model to favor positive corporate income taxation. By

contrast, the weaker response of investment to dividend taxation, obtained by Yagan (2015), Alstadsæter

et al. (2017) or Bach et al. (2024), is not sufficient to justify dividend taxation. Once avoidance is taken

into account, the elasticity of investment with respect to dividend taxation must be weighted by the share

of profits distributed as taxable dividends when compared to its corporate income tax counterpart. At
1Bach et al. (2025) documents the near absence of other taxes for France, while Bruil et al. (2025) does so for the Nether-

lands. The prevalence of S corporations largely explains why the CIT accounts for only 46% of total tax liability at the very top
in the US (Balkir et al., 2025).

2At the top, retained earnings represent more than 95% of comprehensive income in both France (Bach et al., 2025) and the
Netherlands (Bruil et al., 2025).

3Holding companies, capital gains deferral or stepped-up basis at inheritance are typical mechanisms used to avoid personal
taxes on undistributed profits.

4Bach et al. (2025) and Bruil et al. (2025) argue that stricter regulation of holding companies in the United States helps
explain why billionaires there pay personal income taxes, unlike in Europe.
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the optimum, dividends should be taxed or subsidized depending on whether this weighted elasticity is

lower or higher than the elasticity of investment with respect to corporate income taxation.

Second, we show that minimal structural assumptions on entrepreneurs’ preferences are sufficient

to unambiguously pin down the optimal policy mix, thereby resolving the ambiguity highlighted by the

sufficient-statistics analysis. In particular, when preferences over legal and sheltered consumption are

homothetic and separable from preferences for capital, dividend taxation should be eliminated at the op-

timum. Under these assumptions, differences in the responses of capital supply to dividend and corporate

income taxation arise solely from avoidance behavior. As a result, dividend taxes are as distortive as the

CIT on the portion of profits that actually bears the tax, while additionally distorting the choice between

legal and sheltered consumption.Eliminating this additional distortion allows the government to raise the

CIT while keeping investment unchanged, thereby generating a net revenue gain that can be redistributed

to workers.5 In a numerical exercise calibrated to the current tax systems of France and the US, we show

that this gain can be substantial, amounting to 0.1–0.4% of GDP, depending on the elasticity of dividend

payouts with respect to the dividend net-of-tax rate.

In the remainder of the paper, we develop an infinite-horizon model to assess the robustness of our

findings when retained earnings not only generate avoidance but also finance future investment. Work-

ers optimize labor supply given their productivity, as in Mirrlees (1971), but do not save, as in Judd

(1985). In addition to linear corporate and dividend taxes, the government can use a nonlinear labor

income tax to maximize a weighted utilitarian social welfare function. To prevent capital supply from

becoming infinitely inelastic in the long run, we assume that capital enters directly into the entrepreneur’s

instantaneous utility. We remain agnostic about whether utility is increasing in the capital stock, as in

wealth-in-the-utility models (Piketty and Saez, 2013; Saez and Stantcheva, 2018), or decreasing, reflect-

ing the costs of managing large investments. As long as preferences over capital are separable from

preferences over legal and sheltered consumption, we show that dividend taxation should be eliminated

in every period. Even when retained earnings finance future investment, dividend taxation continues

to distort the choice between legal and sheltered consumption in each period. Echoing Atkinson and

Stiglitz (1972), such distortions waste resources needed to deliver a given level of individual utility for

both workers and entrepreneurs.

While our main result concerns the undesirability of dividend taxation, we also characterize the

optimal CIT. In the simple model, we show that the optimal CIT follows a standard inverse elasticity

rule (Ramsey, 1927). In particular, it does not depend on parameters of the production function, in line

with the production efficiency theorem (Diamond and Mirrlees, 1971). In the infinite-horizon model,

we recover this inverse elasticity rule in the steady state when the planner disregards the entrepreneur’s
5The intuition is analogous to the arguments in Laroque (2005) and Kaplow (2006) for uniform commodity taxation (Atkin-

son and Stiglitz, 1972, 1976).
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utility and the discount factor converges to one. Using numerical simulations, we show that the presence

of consumption smoothing justifies a steady-state CIT above the level implied by the inverse elasticity

rule. We also show that the transition to the steady state is smooth, as the optimal CIT rapidly converges

to its long-run level.

Related literature. We contribute primarily to the literature comparing the merits of corporate and

dividend taxation. As noted by Poterba and Summers (1984), this debate is moot in a neoclassical

framework in which both taxes are equivalent ways of taxing the return on equity. For the question we

study to be meaningful, the literature has therefore developed several arguments challenging this “old

view.”

A first argument is grounded in empirical evidence on firms’ responses to dividend and corporate

income tax reforms. There is direct evidence that CIT reforms affect not only investment (Hassett and

Hubbard, 2002; Chodorow-Reich et al., 2024), but also wages (Suárez Serrato and Zidar, 2016; Fuest

et al., 2018) and employment (Giroud and Rauh, 2019; Garrett et al., 2020). By contrast, dividend tax

reforms appear to primarily affect payout decisions, with limited effects on investment (Yagan, 2015;

Alstadsæter et al., 2017; Bach et al., 2024). “New view” models (King, 1977; Auerbach, 1979; Brad-

ford, 1981) have been used to explain this discrepancy, as dividend taxes become nondistortionary when

investment is financed out of retained earnings. Exploiting the contrast between cash-rich “new view”

firms and cash-poor “old view” firms, Orihuela and Cubillos (2025) documents an elasticity of profits

with respect to dividend taxation that is three times smaller than its CIT counterpart. However, as empha-

sized by Poterba and Summers (1984), the new view relies on the assumption of “trapped equity”, under

which dividend taxation can be postponed but not avoided. While suitable for describing some mature

firms, this framework neglects the role of initial equity issuance. Once this initial capital supply decision

is taken into account, dividend taxation becomes distortionary even if subsequent investment is financed

out of retained earnings (Korinek and Stiglitz, 2009). Assuming, as we do, that profits are subject to the

CIT before any distribution occurs, we recover the neoclassical prediction that both the CIT and dividend

taxes distort investment. However, in the presence of avoidance, dividend taxation creates an additional

distortion in the choice of how to consume profits, making the CIT strictly preferable.

A second strand of the literature emphasizes allocative efficiency considerations. In an agency frame-

work, Chetty and Saez (2010) argue that dividend taxation, unlike the CIT, discourages unproductive in-

vestment, implying that revenue should be raised through the CIT while dividends should be subsidized

to better align managers’ and shareholders’ objectives. Focusing instead on financial market imper-

fections, Dávila and Hébert (2023) argue against corporate income taxation, as it exacerbates financial

constraints faced by cash-poor firms. Empirically, Alstadsæter et al. (2017) document substantial invest-

ment reallocation following dividend tax reforms. We complement this literature by ruling out market

3



frictions and instead allowing for an untaxed form of consumption for entrepreneurs through avoidance.

We also go beyond the purely efficiency-based arguments in this strand of the literature by motivating

a redistributive objective for capital income taxation within a general equilibrium framework, in the

tradition of Judd (1985).

A third argument relates to open economy considerations. Berg (2025) emphasizes that, unlike the

CIT, dividend taxes apply only to domestic shareholders. As with avoidance, this broader tax base is an

advantage of the CIT, and in this sense our contribution is complementary. However, in Berg (2025), the

broader base is not sufficient to offset the distortionary effects of the CIT, which leads to a quantitative

case in favor of dividend taxation. We provide a theoretical argument against this logic, showing that

the weaker investment response to dividend taxation can arise from avoidance. Moreover, our structural

assumptions allow us to determine the optimal policy mix at a fixed level of investment, thereby muting

the wage channel that plays a key quantitative role in Berg (2025).6

Finally, we contribute to the literature on optimal capital income taxation. First, we show that when

capital directly enters capitalists’ utility, strictly positive capital income taxation can be optimal in the

two-class economy of Judd (1985). Unlike Saez and Stantcheva (2018), we do not require utility to be

increasing in the capital stock to overturn the zero capital tax result of Judd (1985) and Chamley (1986).

Instead we introduce a disutility from managing capital as an alternative microfoundation that keeps the

long-run elasticity of capital supply finite.7 Second, we explicitly distinguish between corporate and

dividend taxation in infinite-horizon models and show that the undesirability of dividend taxation holds

in every period, rather than only in the steady state, as is standard in this literature (Judd, 1985; Chamley,

1986; Piketty and Saez, 2013; Saez and Stantcheva, 2018).8

Outline. We present the simple model in Section II and the infinite-horizon framework in Section

III. Section IV concludes. Formal proofs are relegated to the Appendix.

II A Simple Model

In this section, we provide a simple model to understand how avoidance can affect the optimal com-

bination between corporate and dividend taxation. The economy consists of an entrepreneur, a unit mass

of workers, and the government. To keep this first model the simplest possible, the government’s ob-
6Under perfect competition, general equilibrium effects can always be offset by adjusting capital and labor income taxes

(Diamond and Mirrlees, 1971; Jacquet and Lehmann, 2025). Our argument is more general, as separability allows reasoning at
a fixed capital supply and therefore applies to any market structure in which wages are unchanged when investment does not
vary.

7Whether utility is strictly increasing or decreasing in capital, we analytically obtain a strictly positive long-run CIT when
the economy instantaneously converges to its steady state, as in the “simple model” of Saez and Stantcheva (2018). With
consumption smoothing, we focus on the case with management costs and numerically show that the optimal economy features
strictly positive capital income taxation.

8Notable exceptions are Chari and Kehoe (1999) and Werning (2007), who obtain zero capital income taxation in every
period.

4



jective is solely concerned with the well-being of workers whose labor supply is assumed inelastic and

untaxed. We relax these assumptions in Section III.

The entrepreneur invests k units of capital and hires L units of labor, payed at wage w, to pro-

duce F(k, L) units of goods. This yields before tax profits F(k, L) − w L. The production function

(k, L) 7→ F(k, L) is increasing and concave in each argument and exhibits constant returns to scale.

Profit maximization therefore implies a before-tax rate of return r verifying:

r
def≡ max

L
k

F
(
1,

L

k

)
− w

L

k

The government can tax profits Π = r k at rate τπ. We can define the after-CIT return of capital ρ

as:

ρ
def≡ (1− τπ)

{
max

L
k

F
(
1,

L

k

)
− w

L

k

}
= (1− τπ)r

The entrepreneur can consume out of after-CIT-profits ρ k by paying out dividends D, taxed at rate

τd, hence enjoying “legal” consumption c = (1− τd) D. But in practice, dividend taxes can be avoided

through tax planning strategies such as deferring capital gains or reallocating capital income to holdings,

pass-through entities, or controlled private corporations. This can also be done through tax evasion.

We capture these alternative ways of consuming out of after-CIT-profits by introducing “sheltered” con-

sumption z in the entrepreneur’s preferences. Both legal and sheltered consumption generate utility.

However, they are imperfect substitutes due to the cost of utility associated with sheltered consumption

compared to legal consumption. All profits are consumed, either legally or through avoidance, so that

ρ k = D + z. Denoting (c, z, k) 7→ U (c, z, k) the entrepreneur’s utility function, the representative

entrepreneur solves:

max
D,k

U ((1− τd)D, ρ k −D, k) (1)

The drivers of capital supply k are embedded in the entrepreneur’s utility function U (.). A straight-

forward micro-foundation is to assume an initial period during which the entrepreneur is endowed with

A, consumes A − k and enjoys utility u
(
A− k

)
during the initial period, leading to Uk < 0. In the

second period, the entrepreneur would then enjoy utility υ(c, z) from legal and sheltered consumption.

We nevertheless remain agnostic about the micro-foundation for the entrepreneur’s preferences, pro-

vided that the utility function (c, z, k) 7→ U (c, z, k) is concave, twice continuously differentiable and

verifies Uc,Uz > 0 > Uk. The entrepreneur’s program (1) admits a single solution which we denote

k = K(ρ, 1− τd) and D = D(ρ, 1− τd).

The government wishes to maximizes workers’ total income, which equals labor earnings w L plus

tax revenue from corporate and dividend taxes. Hence the social welfare function (SWF) is given by:

SWF = w L+ τπ r k + τd D (2)
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taking into account not only the capitalist behaviors though the reduced-forms k = K(ρ, 1 − τd) and

D = D(ρ, 1 − τd), but also the endogeneity of the w wage and of the before-tax return of capital r.

For any endogenous variable X , we denote ζXρ
def≡ (ρ/X)(∂X/∂ρ) the elasticity of X with respect to

the net-of-corporate-tax rate of return ρ. Similarly, we denote ζXd
def≡ −((1 − τd)/X)(∂X/∂τd) the

elasticity of X with respect to the net-of-dividend tax rate 1 − τd. We define these elasticities at the

partial equilibrium, i.e. holding the wage w and the before-tax return on capital r fixed. Hence ζXρ also

represents the partial equilibrium elasticity of X with respect to the net-of-corporate profit tax 1 − τπ.

Finally, we denote ∆
def≡ D/(ρ k) the share of dividends D in after-corporate-tax profits (1−τπ)Π = ρ k,

so that D = ∆ ρ k. In Appendix A.1, we show the following proposition.

Proposition 1. Suppose direct and cross-elasticities of capital and dividend verify

ζDρ ζkd <
(
1 + ζDd

)
ζkρ (3a)

Then the optimal policy implies:

i) 0 ≷ τd if and only if

ζkd ≷ ∆ ζkρ (3b)

ii) 0 ≷ τπ if and only if

∆ ζDρ ≷ 1 + ζDd (3c)

Part i) of Proposition 1 provides a simple condition, in terms of empirically meaningful statistics, for

determining whether the optimal dividend tax is positive, negative or zero. The optimal dividend tax is

positive (negative) if the elasticity ζkd of capital with respect to the net-of-dividend tax is below (above)

a threshold displayed in the right-hand side of (3b). Importantly, this threshold differs from the elasticity

ζkρ of capital with respect to net-of-corporate tax. Instead, the threshold equals the product of ζkρ to the

share ∆ of dividends D in after-CIT profits ρ k.

To build intuition for Condition (3b), consider the effect of changing the mix between the dividend

tax τd and the corporate tax τπ, while holding the capital supply k fixed, i.e imposing:

∂τπ
∂τd

∣∣∣∣
k

= −1− τπ
1− τd

ζkd
ζkρ

(4)

Such a reform does not affect capital k, thereby impacts neither the wage level w nor the before tax profits

r k. Consequently, according to (2), it affects the government’s objective solely through mechanical

effects on the corporate and dividend tax bases, and through behavioral effects on the dividend tax base:

∂SWF

∂τd

∣∣∣∣
k

= D︸︷︷︸
Mechanical effect

on dividends

+
∂τπ
∂τd

∣∣∣∣
k

r k

︸ ︷︷ ︸
Mechanical effect

on the CIT

+ τd
∂D

∂τd

∣∣∣∣
k︸ ︷︷ ︸

Behavioral effects
on dividends
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Examining the impact of a change in the tax mix starting from a zero dividend tax (i.e., when τd = 0)

eliminates the behavioral effects on the dividend tax base. Consequently, a tax shift toward positive

dividend taxation improves (or worsens) workers’ welfare if and only if the mechanical effect on the

dividend tax dominates (or is dominated by) the mechanical effect on corporate income tax. Combining

with (4) leads to Condition (3b).

The optimal dividend tax is more likely to be positive when the ratio of the two elasticities of capital

with respect to dividend and corporate taxation is low. A lower ratio means that the corporate tax rate

needs to decrease less to keep the capital supply unchanged when the dividend tax rises. Consequently,

using (4), the mechanical effect on the corporate tax base is smaller relative to that on the dividend tax

base. Moreover, a larger share ∆ of dividends in after-corporate-tax profits amplifies the mechanical

effect on the dividend tax base relative to the corporate tax base, making a positive optimal dividend

tax more likely. The empirical literature document moderate but significant responses of investment to

corporate income tax reforms (Hassett and Hubbard (2002), Chodorow-Reich et al. (2024)) which cannot

be detected for dividend tax reforms (Yagan (2015), Alstadsæter et al. (2017) and Bach et al. (2024)).

Hence the ratio ζkd/ζ
k
ρ is likely below 1. In particular, Orihuela and Cubillos (2025) directly compares

responses of taxable profits to dividend taxation and CIT in Canada and find a ratio ζkd/ζ
k
ρ = 0.296. As

detailed in Appendix A.3, we obtain a baseline ∆ of 18% in France and 32% in the US using fiscal data

on taxable corporate and dividend income. Whether ζkd/ζ
k
ρ is above (below) ∆, in which case a positive

(negative) dividend tax is optimal, is therefore empirically ambiguous.

Part i) of Proposition 1 do not depend on general equilibrium effects. As one can see from (4), our

optimality condition for τd is obtained by keeping capital supply constant. Under perfect competition,

this is enough to keep the before-tax return on capital r and the wage level w unchanged. But this

reasoning could be extend to situations with market failure, provided that a fixed capital supply k is

enough to guarantee a fixed wage w and a fixed return r. Conversely, to derive part ii) of Proposition

1, one cannot avoid considering the general equilibrium effects of tax reforms on the wage w and on

the before-tax return r. However, assuming perfect competition and following Diamond and Mirrlees

(1971), we show in Appendix A.1 that for a given dividend tax τd, there exists a one-to-one decreasing

relationship between the corporate income tax rate τπ and the after-CIT return of capital ρ = (1− τπ)r.

After an increase in the corporate tax rate τπ, the rise in r needed for capital demand to decrease as much

as capital supply is not sufficient to offset the fall in 1− τπ. Using the definition of ρ and exploiting the

assumption of constant return to scale of the production function, so that F (k, L) = w L+ r k, we can

therefore rewrite the government’s program as maximizing as:

SWF (ρ, 1− τd) = F (K(ρ, 1− τd), L)− ρ K(ρ, 1− τd) + τd D(ρ, 1− τd) (5)

Increasing the corporate income tax rate τπ (i.e. decreasing the after-CIT return of capital ρ) is
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socially beneficial if and only if ∂SWF/∂ρ < 0 where:

∂SWF

∂ρ
= k

{
τπ

1− τπ
ζkρ − 1 + τd ∆ ζDρ

}
(6)

In the absence of a dividend tax, the optimal corporate tax rate would verify the usual 1/(1 + e)

tax rule where e = ζkρ is the capital supply elasticity with respect to the net-of-CIT rate of return ρ.

However, when τd ̸= 0, a change in the corporate tax rate induces a cross-base effect on the dividend tax

base captured by the elasticity ζDρ . Evaluating (6) at τπ = 0 and at the optimal dividend tax (i.e. with

τd = 1/(1 + ζDd )) leads to:
∂SWF

∂ρ
= −k

{
1−

∆ ζDρ

1 + ζDd

}

Therefore, starting from an optimal dividend tax, introducing a positive (negative) corporate income tax is

socially beneficial (detrimental) depending on Condition (3c) in Part ii) of Proposition 1. This condition

expresses whether the optimal corporate tax should be positive depending on empirically meaningful

sufficient statistics: the elasticities of the dividend tax base with respect to the two types of tax reforms

and the share of dividends in the after CIT profits.

Since D = ∆ ρ k, it follows that ζDρ = 1 + ζkρ + ζ∆ρ . Building on the literature estimating the direct

response of dividends to dividend tax reforms, we expect ζDd to be significant and potentially large.9

Therefore, if the effect of the CIT on the allocation of profits between legal and sheltered consumption

is small, so that ζ∆ρ is negligible, we should expect 1 + ζDd to be at least of the same order of magnitude

as ζDρ . Consequently, ∆ ζDρ is very likely to be smaller than 1 + ζDd , ensuring that the optimal corporate

tax rate is positive.

As detailed in Appendix A.1, Condition (3a) ensures that the first-order conditions (3b) and (3c)

correspond to a maximum. When 1 + ζDd ≥ ζDρ , the relatively weak response of investment, ζkd < ζkρ ,

makes (3a) likely to hold.

Combining Proposition 1 with existing empirical evidence on how profits and dividends respond to

taxation provides a rationale for positive corporate income taxation. Conversely, the empirical literature

remains too imprecise to draw clear conclusions on the sign of the optimal dividend tax. Besides, even

if we were able to precisely measure ζkd , ζ
k
ρ and ∆, these sufficient statistics are not policy invariant and

might take different values when estimated in the current economy compared to the optimal one. To lift

such ambiguity on the sign of ζkd − ∆ ζkρ , hence on the sign of optimal dividend taxation, we impose

more structure on our modeling of capital supply. We note that the first-order condition with respect to

D in program (1) yields:
9In the United States, Chetty and Saez (2005) document a direct elasticity of dividends of about 0.5, which is in the same

range as the estimate of ζkρ reported by Chodorow-Reich et al. (2024). In contrast, Bach et al. (2024) find substantially stronger
reactions, with ζDd exceeding 2.
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Uz(c, z, k)

Uc(c, z, k)
= 1− τd

Hence, if that the marginal rate of substitution between c and z depends only on c/z, the share ∆ of

profits distributed as dividends depends only dividend tax rate τd. To ensure this property, we impose the

following preference structure.

Assumption 1. The entrepreneur’s preferences are represented by a weakly separable utility function:

c, z, k 7→ U (Ω(c, z), k) where U(·, ·) is concave and increasing in the first argument and where the

sub-utility function Ω(·, ·) is increasing and concave in both arguments and exhibits constant returns to

scale.

Under Assumption 1 we can rewrite the entrepreneur’s program (1) as:

max
k

U
(
ρ k

{
max
∆

Ω ((1− τd)∆ , (1−∆))

})

Hence the entrepreneur faces a subprogram that allocates after-CIT profits ρ k between dividends

and sheltered consumption independently of the CIT rate τπ. The choice of capital then solves:

max
k

U (ρ k ω⋆(1− τd), k)

with:

ω⋆(1− τd)
def≡ max

∆
Ω ((1− τd)∆ , (1−∆)) (7)

So under Assumption 1 investment is solely driven by ρ ω⋆(1 − τd). This implies that the response

of capital supply K(ρ, 1 − τd) = K (ρ ω(1− τd)) to dividend and CIT reforms are linked through

∂K /∂(1 − τd) = ρ ω′ (∂K /∂ρ). Applying the envelope theorem to (7), this relationship can be

rewritten in elasticity terms as:

ζkd = ∆ ζkρ (8)

Compared to the benchmark without avoidance, where investment only depends on τ̂ = τπ + τd(1−
τπ), our model does predict a larger response of capital to corporate income tax reforms than to dividend

tax reforms. But under Assumption 1, this simply reflects that a share 1 − ∆ of profits have not been

subject to dividend taxation. Hence, the apparently weaker distortions from dividend taxation simply

stem from avoidance responses.

Proposition 2. When the entrepreneur’s preferences verify Assumption 1:

i) The optimal dividend tax is nil: τd = 0.

ii) The optimal corporate income tax verifies an inverse elasticity rule: τπ = 1
1+ζkρ
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As shown in Appendix, Condition (3a) is verified under Assumption 1 as long as the elasticity of

the payout ratio ∆ to the net-of-dividend tax is positive. Combining (8) with part i) of Proposition 1,

Assumption 1 therefore implies no dividend taxation at the optimum. To better understand the intuition

underlying the undesirability of dividend taxation, it is useful to rewrite the objective of the government

(2) as:

SWF = F(k, L)− c− z (9)

where we used the budget constraint of the capitalist c+z = ρ k−τd D. By reducing the amount of pro-

duction F (k, L) available for workers, the capitalist’s consumption reduces welfare. Hence the planner

should tax differently legal and sheltered consumption only if c and z affect investment differently. But

under Assumption 1, the capitalist’s program depend on c and z only through the subutility Ω(c, z). The

government should therefore minimize c+z while keeping Ω(c, z) constant, which implies no distortion

between c and z. As one can see from the subprogram (7), whether we impose a dividend tax τd > 0,

hence favoring avoided consumption, or a subsidy τd < 0, we distort the capitalist’s choice over these

two commodities c and z and create resource losses. Echoing Atkinson and Stiglitz (1972), the first part

of Proposition 2 discards dividend taxation because it discards differential commodity taxation.

As it applies the same tax rate on undistributed and distributed profits, i.e legal and sheltered con-

sumption, the corporate income tax does not violate uniform commodity taxation. In this case, the second

part of Proposition 2 implies that the optimal CIT should verify a standard inverse elasticity rule since

zero dividend taxation implies no cross-base effects of the CIT on dividend tax revenue.

The first part of Proposition 2 implies that, as long as some avoidance margins exist, tax policies using

dividend taxation are dominated. The severity of avoidance however determines the quantitative gain we

can expect from implementing the optimal policy. This follows from the fact that, under Assumption

1, investment depends only on ρ Ω(c, z). By decreasing dividend taxation, we lower the price of legal

consumption c. Hence the higher the elasticity of the payout ratio ζ∆d , the more we can increase the CIT

while leaving ρ Ω(c, z), hence investment, constant. In the left part of Figure 1, we simulate this increase

in CIT allowed by erasing dividend taxation in the French and US context.

Details of the calibration are provided in Appendix A.3. For both countries, we consider a unit

elasticity of investment to its after-tax rate of return ρ, i.e ζkρ = 1.10 The difference between France and

the US arises from two sources. First, we consider a baseline CIT rate (dividend tax rate) of 25% (30%)

for France against 21% (25%) in the US. As detailed in Appendix, dividend tax rates are based on the

flat French tax and on a approximation of the average federal dividend tax rate in the US. Second, we

combine our baseline rates with revenue data on taxable corporate income and dividends to recover a

10We assess the sensitivity of our results when ζkρ = 0.5 in Appendix A.4.
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baseline ∆ of 18% in France and 32% in the US. In the Appendix we consider alternative measures of ∆

based on national accounts. There exist an important literature on the response of dividends to their net

of tax rate. Estimates from Chetty and Saez (2005) and Yagan (2015) based on the US 2003 dividend tax

cut report an elasticity close to 0.5. In the French context, Bach et al. (2024) reports higher elasticities,

around 2.5 for the 2018 tax cuts and even larger for the 2013 dividend tax hike. Using 0.5 and 2.5 as a

reasonable interval for ζDd , our simulations indicate that erasing dividend taxation can allow France to

raise its CIT rates from 25% to 30-32% and the US from 21% to 28-29% without affecting investment.

The gains in tax revenue are depicted in the right part of Figure 1. For low dividend elasticities, revenue

gains are close to 0.1% of GDP in both countries, while it is slightly higher, exceeding 0.3% in the US

for high dividend elasticities. As shown in Appendix A.4, we find a similar range of 0.1-0.4% of GDP

revenue gains for both countries in our robustness exercises, despite different calibrations for ζkρ and ∆.

0.5 1.0 1.5 2.0 2.5 3.0
D
d20

21
22
23
24
25
26
27
28
29
30
31
32
33

Corporate Income Tax rate (%)

US calibration
US current CIT
French calibration
French current CIT

0.5 1.0 1.5 2.0 2.5 3.0
D
d0.0

0.1

0.2

0.3

0.4

Tax revenue gains (% GDP)

US calibration
French calibration

Figure 1: Corporate income tax (left) and associated tax-revenue gain (right) obtained after eliminating
dividend taxation and raising the CIT to keep investment fixed, shown as a function of the direct dividend
elasticity ζDd , with ζkρ = 1. Vertical bars at ζDd = 0.5 and ζDd = 2.5 correspond to the estimates of Chetty
and Saez (2005) and Bach et al. (2024).

Our simple model predicts substantial revenue gain from shifting the burden of profit taxation fully

to the corporate income tax. To prove the inefficiency of dividend taxation, we only needed to impose

Assumption 1 which will typically be verified in a framework with time-separable preferences and in-

vestment funded by equity issuance. We however do not consider the possibility of funding investment

out of retained earnings, as in "new view" models (King (1977), Auerbach (1979), Bradford (1981)). In

the next section we assess the robustness of Proposition 2 when retained earnings can be used to both

consume without paying dividend taxation but also to fund future investment. To avoid terminal dates

mechanisms where ultimately everything is consumed, legally or not, we consider an infinite-horizon

model.
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III An Infinite Horizon Model

While highlighting the core mechanism of our paper, the simple model of Section II has five limita-

tions that we aim to lift in this section. First, we allow for endogeneous response of labor supply. Second,

we introduce skill heterogeneity between workers. Third, we now allow the government to tax workers,

through a nonlinear labor income tax. We however keep the two-class structure by preventing workers

from saving and capitalists from supplying labor. Fourth, we consider a proper welfare function, that

can take into account the well-being of the entrepreneur. Finally, we move from the static framework

and consider an infinite horizon model to avoid terminal dates effects on the dynamic determination of

capital taxes. So doing, we allow the entrepreneur to use undistributed profits to finance investment. To

summarize, workers behave as in the static framework of Mirrlees (1971), while the entrepreneur solves

an intertemporal maximization problem as in Judd (1985), augmented to include corporate and dividend

taxation.

We first present in III.1 the entrepreneur’s behavior before turning to workers in III.2. We then

present the government’s social objective and budget constraint in III.3 before defining the competitive

equilibrium in III.4. Finally, the optimal allocation and policies are characterized in III.5. All proofs

are provided in Appendix B. In Appendix C, we generalize our main result to nonlinear capital income

taxation in presence of heterogeneous entrepreneurs.

III.1 The Entrepreneur

The entrepreneur enters period t with wealth at. She chooses how to allocate her wealth between

bonds bt and investment in capital kt:

at = bt + kt (10)

One unit of goods invested in bonds at the beginning of period t yields 1 + rbt units of goods at the end

of period t.

Investing kt units of capital and hiring Lt units of labor produces F(kt, Lt; t) units of goods where

the production function (k, L) 7→ F(kt, Lt; t) of period t is increasing and concave in both arguments,

is strictly quasi-concave and exhibits constant returns to scale. We allow technical progress so the pro-

duction function can be time-varying. Denoting δ ∈ [0, 1] the depreciation rate, and wt the wage rate

at date t, the before tax gross profits is F(kt, Lt; t) − wt Lt + (1 − δ)kt. The corporate income tax τπt

applies to net operating surplus F(kt, Lt; t) − wt Lt − δ kt.11 Therefore kt units of investment yields

(1 − τπt ) (F(kt, Lt; t)− wt Lt − δ kt) + kt units of goods at the period t. At the end of period t, the

11In practice, tax deductions for capital depreciation apply only to tangible assets. Moreover, the life cycle of firms can
prevent the full realization of depreciation plans when a firm exits the market. In Appendix B, we show that our results are
robust to limiting eligible depreciation to a fraction 0 ≤ δ̂ ≤ δ of capital kt.
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entrepreneur’s wealth is given by:

Dt + zt + at+1 = (1 + rbt )bt + (1− τπt ) (F(kt, Lt; t)− wt Lt − δkt) + kt (11)

A part of this wealth is distributed as dividends Dt which are taxed at rate τdt to give legal consump-

tion ct = (1−τdt )Dt. Another part finances sheltered consumption zt and the rest constitutes next period

wealth at+1. Combining Equations (10) and (11), the entrepreneur’s budget constraint is:

at+1 = (1 + rbt )at + (1− τπt ) (F(kt, Lt; t)− wt Lt − δ kt)− rbt kt −
ct

1− τdt
− zt (12)

The entrepreneur derives utility from both forms of consumption c and z. If capital supply is solely

driven by a saving motive, it becomes infinitely elastic at the steady state, hence preventing capital

income taxation (Judd, 1985).12 We circumvent this issue by imposing that capital directly enters the

instantaneous utility of the entrepreneur.

Assumption 2. The entrepreneur preferences are represented by a weakly separable utility function:

(c, z, k) 7→ U (Ω(c, z), k, t), where U (·, ·, t) is strictly concave and increasing in the first argument and

where the subutility function Ω(·, ·) is increasing and concave in both arguments and exhibits constant

returns to scales.

A first microfoundation for capital directly entering the utility function is wealth-in-the-utility (Piketty

and Saez (2013), Saez and Stantcheva (2018)), which implies Uk > 0 > Ukk. An alternative is to con-

sider convex management costs such that Uk < 0 < Ukk. This captures the idea that transforming

savings into productive capital requires the entrepreneur to exert effort, and that the required effort in-

creases with the scale of investment k. We remain agnostic between these two microfoundations, as long

as preferences over capital are weakly separable from preferences over consumption and utility function

is concave in capital. In addition, as in Assumption 1, we impose that preferences over c and z are

homothetic.13

Note that Assumption 2 allows the entrepreneur’s preferences to vary over time. The entrepreneur’s

program writes:

Vt(at)
def≡ max

ct,zt,kt,Lt,at+1

U (Ω(ct, zt), kt, t) + β V (at+1) s.t. : (12) (13)

Since the budget constraints (12) are linear in ct, zt and the production function is strictly quasi-concave,

the first-order conditions of (13), which are derived in Appendix B.1 are also sufficient. The first-order

condition with respect to labor provides the labor demand equation:

wt =
∂F(kt, Lt; t)

∂Lt
⇔ ∂F(kt, Lt; t)

∂kt
=

F(kt, Lt; t)− wt Lt

kt
(14a)

12In Chamley (1986), the discount factor can vary such that the elasticity of capital supply can become finite. But in this case,
the absence of capital taxation either implies convergence to a first-best with also zero labor income taxation or to a steady-state
with no capital (See Proposition 6 of Straub and Werning (2020)).

13In Appendix C, we allow for non-homothetic preferences over c and z in the presence of heterogeneous entrepreneurs,
provided that their preferences over legal and sheltered consumption remain weakly separable from preferences over capital.
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where the second equality holds because the production function exhibits constant returns to scale. Com-

bining the first-order conditions with respect to legal and sheltered consumption leads to:

(1− τdt ) Ωc(ct, zt) = Ωz(ct, zt) (14b)

The Euler equation with respect to bonds is:

Ωz(ct, zt) UΩ(Ω(ct, zt), kt, t) = β(1 + rbt+1) Ωz(ct+1, zt+1) UΩ(Ω(ct+1, zt+1), kt+1, t+ 1) (14c)

Let

ρt
def≡ (1− τπt )

(
∂F(kt, Lt)

∂kt
− δ

)
(14d)

denote the after-CIT return of capital. The Euler Equation with respect to capital is:

Ωz(ct, zt) UΩ(Ω(ct, zt), kt, t) = β Uk(Ω(ct+1, zt+1), kt+1, t+ 1) (14e)

+ β(1 + ρt+1) Ωz(ct+1, zt+1) UΩ(Ω(ct+1, zt+1), kt+1, t+ 1)

Finally, the transversality condition is:

lim
t7→∞

βt V ′
t (at) at = 0 (14f)

Combining (14c) with (14e), we note that the after-CIT return of capital ρt+1 is higher (lower) than

the return on bonds rbt+1 if the marginal utility from capital Uk is negative (positive). While at this stage

we remain agnostic on the sign of Uk, we will privilege a microfoundation based on management costs,

hence Uk < 0, in our numerical exercise of Section III.6, in order to replicate the realistic scenario where

ρt > rbt .

III.2 Workers

Workers are endowed with different types denoted θ distributed over [θ, θ], where 0 ≤ θ < θ ≤ ∞,

through the cumulative distribution function Φ(·) and the density φ(·) def≡ Φ′(·). Following Judd (1985),

we assume workers are hand-to-mouth and do neither save nor borrow. Moreover, following a long tradi-

tion in the optimal income tax literature (Atkinson, 1990; Diamond, 1998) or in macroeconomics (Green-

wood et al., 1988), we assume away income effects on labor supply. Finally, we assume workers desire

to smooth their consumption over time and discount the future at the same rate β as the entrepreneur. We

therefore assume that the per-period preference of a type−θ worker over consumption y and labor supply

are given by υ(y − h(ℓ; θ, t)), where υ′(·) > 0 ≥ υ′′(·) and the utility cost of working function h(·; ·) is

increasing and convex in labor supply, decreasing in type (providing a given amount of labor supply is

easier for a higher type) and verifies the single-crossing condition according to which the marginal cost

of supplying a marginal unit of supply is easier for a higher type. We allow for these preferences over
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labor to vary over time. To summarize, we assume hℓ(·; ·, t), hℓ,ℓ(·, ·, t) > 0 > hθ(·; ·, t), hℓ,θ(·, ·, t). Let

Tt(·) denote the nonlinear labor income tax schedule in period t. A type−θ worker solves in period t:

Ut(θ)
def≡ max

ℓ
wt ℓ− Tt (wt ℓ)− h(ℓ; θ, t) (15)

Let ℓt(θ) denote the solution to this program and yt(θ)
def≡ wt ℓ(θ) − Tt(wt ℓ(θ)), so that Ut(θ) =

yt(θ)−h(ℓt(θ); θ, t). A type-θ worker enjoys at period t utility υ(Ut(θ)) and consumes yt(θ) = Ut(θ)+

h(ℓt(θ); θ, t). The first-order condition of (15) is:

1− T ′
t(wt ℓt(θ)) =

hℓ(ℓt(θ); θ, t)

wt
(16)

According to the Taxation Principle (Hammond, 1979), and as shown in Appendix B.2, it is equiv-

alent for the government, in period t, to design an income tax function y 7→ Tt(y), taking into ac-

count workers’ labor supply decisions in (15), or to directly select an incentive-compatible allocation.

θ 7→ (ℓt(θ), Ut(θ), yt(θ)) where ℓt(·) is non-decreasing and:

Ut(θ) = Ut(θ)−
∫ θ

θ
hθ(ℓt(x);x, t) dx and yt(θ) = Ut(θ) + h(ℓt(θ); θ, t) (17)

III.3 The Government

The government’s objective is weighted utilitarianism. Let Ψ(·) denote the cumulative distribution

of the weights on type−θ workers and let κ ≥ 0 be the weight on the entrepreneur. The social welfare

function is given by:

SWF =

∞∑

t=0

βt

{∫ θ

θ
υ (Ut(θ)) dΨ(θ) + κ U (Ω(ct, zt), kt, t)

}
(18)

During period t, the government reimburses debt bt plus interest rbt bt by issuing new debt bt+1 and

taxing profits, dividends and labor income:

(1 + rbt )bt = bt+1 + τπt (F(kt, Lt; t)− wt Lt − δ kt) + τdt Dt +

∫ θ

θ
Tt (wt ℓt(θ)) dΦ(θ) (19)

Combining the entrepreneur’s budget constraints (10) and (11) with government’s budget constraint (19)

leads to the period−t resources constraint (See Appendix B.3):

∫ θ

θ
yt(θ) dΦ(θ)

︸ ︷︷ ︸
Workers’ consumption

+ ct + zt︸ ︷︷ ︸
Entrepreneur’s

consumption

+ kt+1︸︷︷︸
Next period

capital

= F(kt, Lt; t)︸ ︷︷ ︸
Production

+ (1− δ)kt︸ ︷︷ ︸
undepreciated

capital

(20)

Hence production F(kt, Lt; t) plus undepreciated capital (1 − δ)kt on the right-hand side of (20) are

used either for workers’ consumption
∫ θ
θ yt(θ) dΦ(θ), for the entrepreneur’s legal ct and sheltered zt
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consumption or for next period capital kt+1 in the left-hand side of (20). Using the first-order incentive

constraint (17), the period−t resources constraint can be rewritten as (See Appendix B.3):

Ut(θ) +

∫ θ

θ

[
h (ℓt(θ); θ, t)−

1− Φ(θ)

φ(θ)
hθ (ℓt(θ); θ, t)

]
dΦ(θ) + ct + zt + kt+1

= F(kt, Lt; t) + (1− δ)kt (21)

III.4 The Competitive Equilibrium

Definition 1. Given a sequence of corporate income tax rates {τπt }t∈N, of dividend tax rates {τdt }t∈N, of

labor income tax schedules {Tt(·)}t∈N, and of public debt {bt}t∈N and for a given level of entrepreneur’s

initial wealth a0, a competitive equilibrium is a sequence of legal consumption {ct}t∈N, of sheltered

consumption {zt}t∈N, of capital {kt}t∈N, of labor demand {Lt}t∈N, of labor supplies {θ 7→ ℓt(θ)}t∈N,

of workers’ consumption {θ 7→ yt(θ)}t∈N, of workers utility {Ut(θ)}t∈N, of wages {wt}t∈N and of

interest rates on bonds {rbt}t∈N, such that:

1. {ct, zt, kt, Lt, bt}t∈N solves the entrepreneur’s program (13), taking wages {wt}t∈N and interest

rates of bonds {rbt}t∈N as given, where assets {at}t∈N verifies (10).

2. At each period t ∈ N and for each type θ ∈
[
θ, θ
]
, labor supply ℓt(θ) solves the workers’ program

(15) taking the wage wt as given and yt(θ)
def≡ wt ℓt(θ)− Tt (wt ℓt(θ)).

3. Market clears, labor demand is equal to aggregate labor supply:

∫ θ

θ
ℓt(θ) dΦ(θ) = Lt (22)

and, by the Walras law, the resources constraint (20) is satisfied.

As described in Appendix B.4, we characterize a competitive equilibrium as a sequence of allocations

{ct, zt, kt+1, Ut(θ), θ 7→ ℓt(θ)} that verifies the implementability constraint:

∞∑

t=0

βt [UΩ(Ω(ct, zt), kt, t) Ω(ct, zt) + Uk(Ω(ct, zt), kt, t) kt] = V ′
0(a0) a0, (23)

the resources constraint (21) at each period t and where θ 7→ ℓt(θ) is non decreasing.

III.5 Optimal Policies

We are now in position to consider the optimal policy with commitment which consists in choosing

the policy sequence {τπt , τdt , Tt(·), bt}t∈N such that the associated competitive equilibrium maximizes the

social objective (18). This amounts to choosing the best sequence of allocations {ct, zt, kt+1, Ut(θ), θ 7→
ℓt(θ)} that verifies the implementability constraint (23), the resources constraint (21) at each period and
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the monotonicity constraints that θ 7→ ℓt(θ) are non-decreasing, i.e.:

max
ct,zt,kt+1,Ut(θ),ℓt(·)

∞∑

t=0

βt

{∫ θ

θ
υ

(
Ut(θ)−

∫ θ

θ
hθ(ℓt(x);x, t) dx

)
dΨ(θ) + κ U (Ω(ct, zt), kt, t)

}

s.t :
∞∑

t=0

βt [UΩ(Ω(ct, zt), kt, t) Ω(ct, zt) + Uk(Ω(ct, zt), kt, t) kt] = V ′
0(a0) a0

∀t ≥ 0 : Ut(θ) +

∫ θ

θ

[
h (ℓt(θ); θ, t)−

1− Φ(θ)

φ(θ)
hθ (ℓt(θ); θ, t)

]
dΦ(θ) + ct + zt + kt+1

= F(kt, Lt; t) + (1− δ)kt (24)

∀t ≥ 0 : ℓt(·) is non-decreasing

In the model of Judd (1985) which does not distinguish between corporate and dividend taxation,

Straub and Werning (2020) explains that the optimal economy may not converge to a steady state with

positive capital if the intertemporal elasticity of substitution is too low (if wealth effects are too high).

To avoid this difficulty, we assume that at each period, the Lagrange multiplier associated to the imple-

mentability constraint (23), denoted µ, verifies:

(κ+ µ)UΩ (t) + µ [UΩ,Ω(t) Ω(t) + UΩ,k(t) kt] > 0 (25)

To better understand the constraint imposed by this condition, consider the case where preferences

for capital are additively separable from preferences for consumption and determined by an isoelastic

management cost. Denoting by Γ the scale parameter and by ϵ the Frisch-elasticity of this effort, the

entrepreneur’s utility function takes the form:

U (Ω, k) =
Ω1−γ

1− γ
− Γ ε

1 + ε
k1+

1
ε if : γ ̸= 1 (26)

= log(Ω)− Γ ε

1 + ε
k1+

1
ε if : γ = 1

where γ ≥ 0 and ε > 0. In this case, condition (25) reduces to:

κ+ µ(1− γ) > 0. (27)

such that our convergence condition depends on policy-invariant primitives and amounts to impose a

lower bound on the intertemporal elasticity of substitution 1/γ. We prove in Appendix B.5 the following

result:

Proposition 3. Suppose the entrepreneur’s preferences verify Assumption 2 and that the multiplier µ of

the implementability constraint verifies (25). Then, the optimal dividend tax is nil at each period:

∀t ≥ 1 : τdt = 0.
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As for part i) of Proposition 2, we can recover Proposition 3 by directly comparing environments

with and without dividend taxation. The difference with the static model is that the government must

adapt to the absence of dividend taxation not only by adjusting the corporate income tax but also the

sequence of public debt. Proposition 3 therefore implies that for each sequence of policies with div-

idend taxation {τπt , τdt , bt}t∈N, there exists another sequence of policies without dividend tax denoted

{τ̂πt , τ̂dt = 0, b̂t}t∈N that increases welfare. To understand the mechanism underlying Proposition 3, we

can characterize this alternative sequence of corporate income tax τ̂πt and public debt b̂t.

Using (7), we first note that to obtain at each period a given subutility Ωt = Ω(ct, zt) from legal ct

and sheltered zt consumption, the entrepreneur needs consumption expenditures:

ct

1− τdt
+ zt =

Ωt

ω⋆(1− τdt )

Using this relation as well as (14a) and (14d), the entrepreneur’s program (13) becomes:

Vt(at)
def≡ max

Ωt,kt
U (Ωt, kt) + β Vt+1

(
(1 + rbt+1)at +

(
ρt − rbt

)
kt −

Ωt

ω⋆(1− τdt )

)
(28)

Therefore, given the sequence of policies {τπt , τdt , bt}t∈N, and the endogenous sequence of interest rates

{rbt}t∈N, the entrepreneur’s choices lead to a sequence of subutility and capital {Ωt, kt}t∈N where the

budget constraints (10) and (12) can be rewritten as:

bt+1 + kt+1 = (1 + rbt )(bt + kt) +
(
ρt − rbt

)
kt −

Ωt

ω⋆(1− τdt )
, (29a)

while the Euler equation on bonds (14c) is rewritten as:

ω⋆(1− τdt ) UΩ(Ωt, kt) = β
(
1 + rbt+1

)
ω⋆(1− τdt+1) UΩ(Ωt+1, kt+1) (29b)

and the optimal condition on capital (14e) as:

−Uk(Ωt, kt) = UΩ(Ωt, kt) ω
⋆(1− τdt )

(
ρt − rbt

)
(29c)

According to (29b), to yield the same subutility {Ωt, kt}t∈N without dividend taxation, the alternative

sequence of bonds must verify:

r̂b0 = rb0 and : ∀t ∈ N : 1 + r̂bt+1 =
ω⋆(1− τdt+1)

ω⋆(1− τdt )

(
1 + rbt+1

)
. (30a)

Combining (14d) and (29c), the alternative corporate tax rate τ̂πt is defined from the after-corporate-tax

return on capital ρ̂t through:

∀t ∈ N : ρ̂t = r̂bt +
ω⋆(1− τdt )

ω⋆(1)

(
ρt − rbt

)
(30b)

Finally, according to (29a), the alternative sequence of public debt verifies the recursive equation:

b̂t+1 =
(
1 + r̂bt

)
b̂t +

ω⋆(1− τdt )

ω⋆(1)

(
bt+1 −

(
1 + rbt

)
bt

)
(30c)

+

(
ω⋆(1− τdt )

ω⋆(1)
− 1

)
kt+1 −

(
ω⋆(1− τdt )

ω⋆(1)
(1 + rbt )−

(
1 + r̂bt

))
kt
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Therefore, the sequence {Ωt, kt}t∈N verifies the necessary conditions (30a), (30b) and (30c) of the en-

trepreneur’s program (28) under the two environments {τπt , τdt = 0, bt, r
b
t}t∈N and {τ̂πt , τ̂dt = 0, b̂t, r̂

b
t}t∈N.

Since capital is the same, the two environments lead also to the same sequence of wages, labor demands

and labor supplies under the same labor income tax Tt(·) and the same level of utility at each period

for the entrepreneur U (Ωt, kt). However, the two environments differ only by the amount of resources

ct + zt to be extracted at each period by the entrepreneur to get the same sub-utility level Ωt = Ω(ct, zt)

at each period, which are minimized under no dividend policy at each period.

Proposition 3 implies that the undesirability of dividend taxation is independent of the redistributive

tastes of the planner. There are two reasons for that. First, because workers are hand-to-mouth, the

choice of capital income taxation instruments can only have indirect impacts on workers’ well-being,

through investment. Hence any combination of corporate and dividend taxation that leaves investment

unchanged leaves the welfare of workers unchanged. Second, because of Assumption 2, there always

exists a sequence of policies without dividend taxation that induces the same sequence of investment

decisions, hence the same sequence of utility for workers, as well as the same sequence of utility from

legal and sheltered consumption, hence the same sequence of utility for the entrepreneur, as an arbitrary

sequence of policies with non-zero dividend taxation. Since utility of workers and the entrepreneurs

is unaffected, the choice of using dividend taxation solely depends on efficiency concerns. And we

know from Atkinson and Stiglitz (1972) that under Assumption 214, dividend taxation, i.e a different tax

treatment of legal and sheltered consumption, is Pareto-dominated, as any differential commodity tax.

It follows from Proposition 3 that the undesirability of dividend taxation established in Proposition 2

continues to hold in a dynamic setting in which undistributed profits finance not only avoidance but also

future investment. Contrary to “new view” models, however, we impose that any investment {kt}t∈N
must be subject to the corporate income tax before being either distributed or retained, as can be seen

from the entrepreneur’s budget constraint (12). Hence, there is no initial cash held by the firm that

could be distributed and incur dividend taxation without first being subject to corporate income taxation.

Otherwise, the corporate income tax would distort investment by discouraging the reinvestment of initial

cash, while the dividend tax would be neutral, since initial cash would ultimately be subject to dividend

taxation (Auerbach, 1979). Ruling out such "trapped equity" (Poterba and Summers (1984)), allowing

for profits to be reinvested does not prevent capital supply to respond to both dividend and corporate

taxation.15

Finally, it is worth noting that the undesirability of dividend taxation continue to hold in an economy
14As shown in Appendix C, we can relax Assumption 2 by allowing non-homothetic preferences in presence of heterogeneous

entrepreneurs. In this case, the choice of dividend taxation remains independent of equity issues, provided that preferences
remain weakly separable and that the government has access to nonlinear capital income taxes, echoing Atkinson and Stiglitz
(1976).

15Even with initial cash holdings trapped in the firm, dividend taxation would still be distortionary if additional equity is
needed, as in the cash-poor case of Chetty and Saez (2010) or the young firm of Korinek and Stiglitz (2009).
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with technical progress when the production function and workers and entrepreneurs are time varying,

provide that the convergence condition (25) continue to hold.

Erasing dividend taxation allows for Pareto-improvement under Assumption 2. The tax burden that

should however be imposed on different types of workers and on the entrepreneur involves equity con-

siderations. To obtain a clear-cut result on the corporate income tax, i.e the only tax levied on the

entrepreneur at the optimum, we assume that the government is only concern with the well-being of

workers, as in Judd (1985).

Proposition 4. Suppose that the planner does not value the utility of the entrepreneur, i.e κ = 0, and

that the discount factor β tends to 1. Then, when Assumption 2 and the convergence condition (25) hold,

the optimal steady-state corporate income tax verifies:

τπ =
1

1 + ζkρ

with ζkρ the elasticity of steady state capital supply with respect to after-corporate-tax returns ρ.

The proof is given in Appendix B.5. While part i) of Proposition 2 is valid at each period of an

infinite-horizon model, part ii) only constitutes a limit case of an economy that directly jumps to its

steady-state. In Section III.6, we explore the shape of corporate income taxation in more realistic set-

tings with consumption smoothing. The analytical solution for the corporate income tax described in

Proposition 4 is however worth-mentioning for two reasons.

First, Proposition 4 shows that the absence of dividend taxation, established in Proposition 3, does

not trivially follow from the undesirability of capital taxation in infinite-horizon models (Judd, 1985;

Chamley, 1986; Chari and Kehoe, 1999). To see this, consider the case with isoelastic preferences (26)

with a discount factor β 7→ 1. In this case, as shown in Appendix B.5, the steady-state elasticity of capital

supply verifies 1 + ζkρ = (1 + ϵ)/(1 + γ ϵ), which is strictly positive and finite. Combining Proposition

3 and 4 implies that dividend taxation should be eliminated in an economy that however requires strictly

positive capital income taxation, through the CIT, at the optimum.

Second, Proposition 4 provides an example where the optimal long run corporate income tax does

not depend on its incidence on factor prices. Compared to the simple model developed in Section II, the

introduction of nonlinear labor income taxation prevents a straightforward application of the production

efficiency theorem which was proved under linear taxation (Diamond and Mirrlees, 1971). But Jacquet

and Lehmann (2025) showed that the validity of the production efficiency theorem does not hinge on the

nonlinearity of the tax instruments but on the ability of the tax system to target each production factor’s

income. A separate tax schedule for labor income and capital income, as assumed here, is therefore

enough to apply their production efficiency theorem in a competitive economy. Hence the optimal linear
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corporate income tax, and, as shown in Appendix B.6, the optimal nonlinear labor income tax do not

depend on parameters of the production function.

Although providing a knife-edge example where corporate income taxation follows a simple inverse

elasticity logic in an infinite-horizon model, the assumption of a discount rate tending to one, which

implies the absence of transitional dynamic, is unrealistic. We therefore numerically explore optimal

corporate income taxation in presence of consumption smoothing in the next Subsection.

III.6 Optimal Corporate Income Tax: The Isoelastic Case

To explore the shape of the optimal corporate income taxation along the transition dynamics when

the discount factor is below one, we numerically solve a special case of the economy described in Section

III.

We first assume that the entrepreneur’s preferences can be represented by an isoelastic cost of man-

agining capital, additively separable from preferences for consumption. We attach no welfare weight to

the entrepreneur, i.e κ = 0. To enforce the convergence condition to non degenerate steady-states (25),

we assume that the entrepreneur’s utility is given by (26) with the intertemporal elasticity of substitution

satisfying 1/γ > 1, i.e 0 < γ < 1.

Second, we assume that workers’ preferences are also isoelastic with

h(ℓ; θ) =
ξ

1 + ξ
ℓ
1+ 1

ξ θ
− 1

ξ with : ξ > 0 (31)

Moreover, we assume that workers have the same intertemporal preferences than entrepreneurs so their

utility level υ(Ut) is given by:

υ(Ut(θ)) = max
ℓ

(
wt ℓ− Tt

(
wt ℓ− ξ

1+ξ ℓ
1+ 1

ξ θ
− 1

ξ

))1−γ

1− γ
γ ∈ (0, 1) (32)

Third assume a maximin objective among workers such that the cumulative distribution of the

weights on type-θ boils down to Ψ(θ) = 1 for all θ ∈ (θ, θ].

Eventually, to recover the dynamics of the optimal economy, we need to specify the production

function, which we assume to be Cobb-Douglas with:

F(k, L) = A kα L1−α α ∈ (0, 1) (33)

In Appendix B.6, we solve for the government’s program (24) under this specific set of structural

assumptions. Parameter choices are described in Table 2. In particular, we set the coefficients γ and ϵ

of the entrepreneur’s program (26) so that the steady-state capital supply elasticity ζkρ 7→ 1 when the

discount factor β 7→ 1. In this extreme case with zero discounting, Proposition 4 implies a steady-state

optimal corporate income tax rate of 50%. In Figure 2, we describe how the optimal corporate income

tax rate deviates from this closed-form inverse elasticity rule when β < 1.
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Figure 2: Optimal steady-state corporate income tax rate (%) versus 1/(1 + ζkρ ) tax rule, depending on
the discount factor β.

Introducing discounting reduces the optimal steady-state corporate income tax. However, in presence

of discounting, the optimal corporate income tax (in blue) should be higher than the one predicted by

a naive inverse elasticity rule (in red). To get an intuition, recall that not only the entrepreneur but also

workers discount the future at rate β. Hence when β < 1, workers, so the government, are willing to

sacrifice some future consumption to maximize their present utility. When γ > 0 such that capital does

not jump to its steady-state level instantaneously, this transfer from future to present consumption can

be done by setting the steady-state corporate income tax above its steady-state revenue maximizing level

1/1 + ζkρ . Hence, the optimal capital stock converges to a steady-state level that is lower than the one

implied by the 1/(1 + ζkρ ) rule. This mirrors the optimal growth economy, in which the steady-state

capital stock converges to a "modified" golden rule level that is below the one implied by the golden rule

(Blanchard and Fischer, 1989).

2 4 6 8 10
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Optimal corporate tax (%)

Optimal tax rate at period t
Long term optimal tax rate

Figure 3: Convergence to the optimal steady-state corporate income tax rate (%) starting from a capital
stock 10% below the steady-state, with β = 0.98.

To go beyond steady-state analysis, we depict in Figure 3 the convergence of the corporate income
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tax when capital is 10% below its steady-state level. The adjustment is smooth, with the tax rate rising

from 47% to its 48.4% steady-state level over six years, indicating that the response of the optimal CIT

along the transitional dynamics are very small compared to the initial deviation of capital stock.

IV Conclusion

We asked whether profits should be taxed directly through a corporate income tax or, once distributed,

via a dividend tax in a two-class economy with workers and capitalists. Introducing shareholder-level

avoidance makes dividend taxation undesirable at the optimum. Hence, the government should rely on

an enhanced corporate income tax rather than the current combination of the two instruments used in

most OECD countries.

We first employed a stylized model with simplified dynamics and welfare preferences to establish our

core result. It showed that dividend taxation raises the resource cost required for capitalists to undertake

investment and therefore should be eliminated. In the second part of the paper, we demonstrated that

this intuition holds in an infinite-horizon model with a full-fledged utilitarian welfare function: dividend

taxation should be set to zero in every period. In the long run, the optimal corporate income tax is

strictly positive. In the limiting case where the economy immediately reaches its steady state, the optimal

corporate income tax follows the standard inverse-elasticity rule.

To establish the undesirability of dividend taxation, we focused on a closed economy, abstracting

from issues such as profit shifting. However, our logic can extend to an open economy as long as profits

shifted abroad are not ultimately repatriated to shareholders as taxable dividends. Whether shifted profits

escape both corporate and dividend taxation remains an empirical question for future research.
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A Appendix to the Toy model

A.1 Proof of Proposition 1

Let η > 0 denote the capital demand elasticity so that differentiating the capital demand equation
leads to:

dk

k
= −η

dr

r

Differentiating the capital supply equation yields

dk

k
= ζkρ

dρ

ρ
= ζkρ

[
dr

r
− dτπ

1− τπ

]

Combining the two yields:

(η + ζkρ )
dr

r
= ζkρ

dτπ
1− τπ

1− τπ
r

∂r

∂(1− τπ)

∣∣∣∣
GE

τd

= −
ζkρ

η + ζkρ

1− τπ
ρ

∂ρ

∂(1− τπ)

∣∣∣∣
GE

τd

= 1 +
1− τπ

r

∂r

∂(1− τπ)

∣∣∣∣
GE

τd

=
η

η + ζkρ
> 0 (A.1)

so that decreasing τπ does increase ρ and the government problem can be rewritten as (5). Differentiating
(5) with respect to ρ and τd yields:

∂SWF

∂ρ
= −k + (r − ρ)

∂K
∂ρ

+ τd
∂D
∂ρ

= −
[
1− r − ρ

ρ

ρ

k

∂K
∂ρ

]
k +

τd
ρ

ρ

D

∂D
∂ρ

D

= −
[
1− τπ

1− τπ
ζkρ

]
k + τd ζ

D
ρ

D
ρ

= −k

{
1− τπ

1− τπ
ζkρ − τd ∆ ζDρ

}
(A.2a)

∂SWF

∂τd
= D − τd

∂D
∂(1− τd)

− (r − ρ)
∂K

∂(1− τd)

=

[
1− τd

1− τd
ζDd

]
D − τπ r

k

1− τd
ζkd

=

[
1− τd

1− τd
ζDd

]
D − τπ

1− τπ
ζkd

ρ k

1− τd

=
D

1− τd

{
1− (1 + ζDd )τd −

τπ
1− τπ

ζkd
∆

}
(A.2b)

Multiplying (A.2a) by (4) and using (A.2b), the impact of increasing τd while adjusting ρ to keep k
fixed is given by:
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∂SWF

∂τd

∣∣∣∣
k

=
ρ

1− τd

ζkd
ζkρ

∂SWF

∂ρ
+

∂SWF

∂τd

=
ρ k

1− τd

ζkd
ζkρ

{
−1 +

τπ
1− τπ

ζkρ + τd ∆ ζDρ

}

+
D

1− τd

[
1− τd(1 + ζDd )

]
− τπ

1− τπ
ζkd

ρ k

1− τd

=
D

1− τd

{
− 1

∆

ζkd
ζkρ

+ τd ζ
D
ρ

ζkd
ζkρ

+ 1− τd(1 + ζDd )

}

=
D

1− τd

{
1− 1

∆

ζkd
ζkρ

+ τd

[
ζDρ

ζkd
ζkρ

− 1− ζDd

]}
(A.3)

Evaluating this first-order condition at τd = 0 yields the first part of Proposition 1. This condition is
sufficient for identifying a maximum if and only if:

ζDρ
ζkd
ζkρ

− 1− ζDd < 0 ⇔ ζDρ ζkd <
(
1 + ζDd

)
ζkρ (A.4)

At the optimal dividend tax, on gets from (A.2b):

0 =
∂SWF

∂τd

(1 + ζDd )τd = 1− τπ
1− τπ

ζkd
∆

τd ∆ ζDρ =
∆ ζDρ

1 + ζDd
−

ζDρ ζkd
1 + ζDd

τπ
1− τπ

Inserting the latter equality into (A.2a) yields:

∂SWF

∂ρ
= k

{
−1 +

∆ ζDρ

1 + ζDd
+

[
ζkρ −

ζDρ ζkd
1 + ζDd

]
τπ

1− τπ

}

Evaluating this condition at τπ = 0 yields the second part of Proposition 1. Whenever condition

(A.4) is verified, one gets16 ζkρ >
ζDρ ζkd
1+ζDd

. Therefore ∂SWF/∂ρ is increasing in τπ, i.e. is decreasing in ρ

and ∂SWF/∂ρ = 0 corresponds to a maximum.

A.2 Proof of Proposition 2

Since D = ∆ ρ k and ∆ does not depend on ρ under Assumption 1, we get:

ζDρ = 1 + ζkρ and ζDd = ζkd + ζ∆d .

Applying the envelope theorem to (7) yields:

∂ω⋆(1− τd)

∂(1− τd)
= ∆ Ωc

(1− τd)
∂ω⋆(1− τd)

∂(1− τd)
= (1− τd)∆ Ωc

(1− τd)

ω⋆(1− τd)

∂ω⋆(1− τd)

∂(1− τd)
=

(1− τd)∆ Ωc

(1− τd)∆ Ωc + (1−∆) Ωz

= ∆
16if ζDd > −1.
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where the third equality holds because Ω(·, ·) exhibits constant return to scale while the last equality uses
the entrepreneur’s first-order condition with respect to z Ωz = (1− τd)Ωc. Since capital supply depends
on ρ and τd solely through ρ ω⋆(1− τd), we thus get

ζkd = ∆ ζkρ

To summarize Assumption 1 implies:

ζkd = ∆ ζkρ , ζDρ = 1 + ζkρ and ζDd = ζkd + ζ∆d (A.5)

Using (A.5), the second-order condition (A.4) under Assumption 1 boils down to ∆ < 1+ ζ∆d which
is always verified since ∆ ≤ 1 by definition. Plugging (A.5) in (A.3) proves the first part of Proposition
2. Plugging τd = 0 into (A.2a) yields the second part of Proposition 2.

A.3 Calibration

Let specify the subutility function Ω(·, ·) by the CES:

Ω(c, z) =
[
c
1− 1

γ + α z
1− 1

γ

] γ
γ−1

. (A.6)

Program (7) implies:
max
∆

(1− τd)
γ−1
γ ∆

1− 1
γ + α (1−∆)

1− 1
γ

The first-order condition implies:

�
�
�
��

(
1− 1

γ

)
(1− τd)

γ−1
γ ∆

− 1
γ =

�
�
�
��

(
1− 1

γ

)
α (1−∆)

− 1
γ

(
1−∆

∆

) 1
γ

= α (1− τd)
1−γ
γ

1−∆

∆
= αγ (1− τd)

1−γ

1−∆ = αγ (1− τd)
1−γ ∆

1 =
(
1 + αγ (1− τd)

1−γ
)
∆

and eventually:

∆(1− τd)
def≡ 1

1 + αγ (1− τd)1−γ
(A.7)

We want to set parameters γ and α to reproduce empirical values for ∆ and ζ∆d . Differntiating (A.7)
yields:

∂∆

∂(1− τd)
=

−(1− γ) αγ(1− τd)
−γ

[1 + αγ (1− τd)1−γ ]2

(1− τd)
∂∆

∂(1− τd)
= (γ − 1)

αγ(1− τd)
1−γ

[1 + αγ (1− τd)1−γ ]2

= (γ − 1)
1

1 + αγ (1− τd)1−γ

αγ(1− τd)
1−γ

1 + αγ (1− τd)1−γ

= (γ − 1) ∆ (1−∆)

Consequently:

ζ∆d = (γ − 1)(1−∆(1− τd)) (A.8)
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So for a given value of ζ∆d and of ∆, we can retrieve γ. Plugging this calibrated value of γ with a
baseline value for ∆ and for τd into (A.7) we can retrieve α through:

1

∆
= 1 + αγ (1− τd)

1−γ

1−∆

∆
= αγ (1− τd)

1−γ

1−∆

∆
(1− τd)

γ−1 = αγ

(
1−∆

∆

) 1
γ

(1− τd)
γ−1
γ = α

In France, we use the 2022 flat-tax rate on dividend to set τd = 0.3. Using tax data for 2022 from
DGFIP, we estimate D ≈ 36, 7 billion euros and r k ≈ 277, 5. Setting τπ = 0.25 based on the corporate
income tax rate, this yields ∆ ≈ 18%.

In the US, dividends are part of the nonlinear personal income tax. Using the IRS data, we retrieve
a distribution of ordinary and qualified dividends based on adjusted gross income. Using the 2022 tax
schedule for ordinary and qualified dividend, we approximate taxable dividend and corresponding tax
rates by levels of AGI as described in Table 1. This yields D ≈ 717.6 billion dollars . We use the IRS
Corporate Income Tax Report to retrieve r k ≈ 2879, 1 billion dollars. Setting τπ = 0.21, this yields
∆ ≈ 32%. We round up or implicit average dividend tax rate to τd = 0.25.17

Approximating r k by net operating surplus, we obtain ∆ ≈ 44% in France and ∆ ≈ 52% in the US
using national accounts data instead of tax data.

AGI Bin Ordinary (bn) Qualified (bn) Ordinary Rate Qualified Rate

Under $1 3,572,443 2,332,836 10% 0%
$1–$10,000 2,524,930 1,567,951 10% 0%
$10,000–$25,000 5,663,804 3,510,019 12% 0%
$25,000–$50,000 10,829,069 7,015,253 12% 15%
$50,000–$75,000 14,304,823 9,597,796 22% 15%
$75,000–$100,000 16,250,082 11,244,723 22% 15%
$100,000–$200,000 59,404,894 43,356,086 24% 15%
$200,000–$500,000 81,364,750 62,176,807 32% 18.8%
$500,000–$1,000,000 46,707,610 36,106,096 37% 23.8%
$1,000,000 or more 167,640,201 132,448,172 37% 23.8%

Table 1: Ordinary and Qualified Dividend Amounts and Tax Rates by AGI Bin - US - 2022

A.4 Alternative Calibration

17 France: DGFiP (income tax data and business tax statistics ), U.S: IRS (dividend statistics and Corporate Income Tax
Report ).
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Figure 4: Corporate income tax (left) and associated tax-revenue gain (right) for the US with alternative
values for ∆ and ζkρ
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Figure 5: Corporate income tax (left) and associated tax-revenue gain (right) for France with alternative
values for ∆ and ζkρ

B Appendix of the Infinite Horizon Model

Throughout this section, we allow for a discrepancy between total depreciation δ kt and depre-
ciation eligible for tax deduction δ̂ kt, with 0 ≤ δ̂ ≤ δ. Therefore kt units of investment yields
(1− τπt )

(
F(kt, Lt; t)− wt Lt − δ̂ kt

)
+ (1− δ + δ̂) kt units of goods at the period t.

B.1 Entrepreneur’s program

The first-order condition with respect to employment Lt is Equation (14a). The envelope and first-
order conditions with respect to ct, zt and kt associated to the entrepreneur’s program (13) are:

V ′
t (at) = β(1 + rbt ) V

′
t+1(at+1) (B.1a)

Ωc(ct, zt) UΩ(Ω(ct, zt), kt, t) =
β V ′

t+1(at+1)

1− τdt
(B.1b)

Ωz(ct, zt) UΩ(Ω(ct, zt), kt, t) = β V ′
t+1(at+1) (B.1c)

−Uk(Ω(ct, zt), kt, t) = β V ′
t+1(at+1)(ρt − rbt ). (B.1d)

where we used (14d) to derive (B.1d). Combining (B.1b) and (B.1c) leads to (14b). Combining (B.1a)
at period t+ 1 with (B.1c) leads to (14c). Combining (B.1a) and (B.1d) leads to:

V ′
t (at) = Uk(Ω(ct, zt), kt, t) + β(1 + ρt) V

′
t+1(at+1)
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and so:

β V ′
t+1(at+1) = β

[
Uk(Ω(ct+1, zt+1), kt+1, t+ 1) + β(1 + ρt+1) β V ′

t+2(at+2)
]

Using (B.1c) leads to (14e).

B.2 Workers

We first reproduce the proof by Hammond (1979) of the Taxation principle whish establishes the
equivalence between designing an income tax schedule taking (15) into account and designing an al-
location θ 7→ (ℓt(θ), yt(θ)) that verifies an incentive constraint. Since ℓt(θ) solves (15) and yt(θ) =
wt ℓt(θ)− Tt(wt ℓt(θ)), one gets that:

∀t, θ, ℓ′ : yt(θ)− h(ℓt(θ); θ, t) ≥ wt ℓ
′ − Tt(wt ℓ

′)− h(ℓ′; θ, t).

Taking ℓ′ = ℓt(θ
′) in the last inequality and noting that yt(θ′) = wt ℓt(θ

′) − Tt(wt ℓt(θ
′)) leads to

incentive (equivalently self-selection) constraint:

∀t, θ, θ′ : yt(θ)− h(ℓt(θ); θ, t) ≥ yt(θ
′)− h(ℓt(θ

′); θ, t) (B.2)

We now consider an allocation θ 7→ (ℓt(θ), yt(θ)) that verifies the incentive constraint (B.2) and build
an income tax schedule that decentralizes it (i.e. such that ℓt(θ) solves (15) and yt(θ) = wt ℓt(θ) −
Tt(wt ℓt(θ))). Let X = {x | ∃θ ∈ [θ, θ] s.t x = wt · ℓt(θ)} denote the income range.

• If x /∈ X , set
Tt(x) = +∞.

• Otherwise, if x ∈ X and there exists θ1 ̸= θ2 ∈ [θ, θ] such that x = wt ℓt(θ1) = wt ℓt(θ2), then
(B.2) implies yt(θ1) ≥ yt(θ2) and yt(θ2) ≥ yt(θ1), so one must have yt(θ1) = yt(θ2). We then
unambiguously define

Tt(x) = x− yt(θ1) = x− yt(θ2).

Given this tax schedule, a taxpayer never opt for pretax labor income wt ℓ outside the income range and
program (15) amounts to solve:

max
θ′

yt(θ
′)− h(ℓt(θ

′); θ, t)

whose solution is θ′ = θ according to (B.2).

The next step is to show that any allocation θ 7→ (ℓt(θ), yt(θ)) verifies the incentive constraint (B.2)
if and only if it verifies (17) and θ 7→ ℓt(θ) is non decreasing. Using Ut(θ) = yt(θ)− h(ℓt(θ); θ, t), we
first rewrite (B.2) as

∀t, θ, θ′ : Ut(θ) ≥ Ut(θ
′) + h(ℓt(θ

′); θ′, t)− h(ℓt(θ
′); θ, t) (B.3)

Let θ1 < θ2 ∈
[
θ, θ
]
. Apply (B.3) to θ = θ2 and θ′ = θ1 and vice versa leads to:

h(ℓt(θ1); θ1, t)− h(ℓt(θ1); θ2, t) ≤ Ut(θ2)− Ut(θ1) ≤ h(ℓt(θ2); θ1, t)− h(ℓt(θ2); θ2, t)

−
∫ θ2

θ1

hθ(ℓt(θ1);x, t) dx ≤ Ut(θ2)− Ut(θ1) ≤ −
∫ θ2

θ1

hθ(ℓt(θ2);x, t) dx (B.4)

Since hℓ,θ(·, ·; t) < 0 and θ1 < θ2, Equation (B.4) imposes ℓt(θ1) ≤ ℓt(θ2), i.e. that ℓt(·) is non
decreasing. Moreover, for any θ ∈

[
θ, θ
]
, divide the [θ, θ] interval into n sub-intervals and apply (B.4)
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on each of these sub-intervals. Sum these n inequalities. As n tends to infinity, the left-hand side and the
right-hand sides converges to the right-hand side of:

Ut(θ) = Ut(θ)−
∫ θ

θ
hθ(ℓt(x);x, t) dx (B.5)

in Equation (17).
Conversely, assume ℓt(·) is non decreasing and define Ut(θ) and yt(θ) using (17). Since Ut(·) verifies

(B.5), ℓ(·) is non decreasing and hℓ,θ(·, ·; t) < 0, one gets (B.4) for any θ1 < θ2, thereby (B.3) and (B.2)
for any θ ̸= θ′.

B.3 The Government

Using (10) and (11), we get:

(1 + rbt )bt − bt+1 = Dt + zt + kt+1 − (1− τπt )
(
F(kt, Lt; t)− wt Lt − δ̂ kt

)
− (1− δ + δ̂)kt

Combining the latter equation with ct = (1− τdt )Dt and (19) leads to:

ct + zt + kt+1 = F(kt, Lt; t)− wt Lt − δ̂ kt + (1− δ + δ̂)kt +

∫ θ

θ
Tt (wt ℓt(θ)) dΦ(θ)

= F(kt, Lt; t)− wt Lt + (1− δ)kt +

∫ θ

θ
(wt ℓt(θ)− yt(θ)) dΦ(θ)

= F(kt, Lt; t) + (1− δ)kt −
∫ θ

θ
yt(θ) dΦ(θ)

where we used yt(θ)
def≡ wt ℓt(θ) − Tt(wt ℓt(θ)) in the second equality and the labor market clearing

condition Lt =
∫ θ
θ ℓt(θ) dΦ(θ) in the third equality, to finally obtain (20).

According to (17) workers’ consumption are given by:
∫ θ

θ
yt(θ) dΦ(θ) =

∫ θ

θ
Ut(θ) dΦ(θ) +

∫ θ

θ
h (ℓt(θ); θ, t) dΦ(θ)

= Ut(θ)−
∫∫

θ≤x≤θ≤θ
hθ (ℓt(x);x, t) dΦ(θ)dx+

∫ θ

θ
h (ℓt(θ); θ, t) dΦ(θ)

= Ut(θ)−
∫ θ

θ
hθ (ℓt(x);x, t) (1− Φ(x)) dx+

∫ θ

θ
h (ℓt(θ); θ, t) dΦ(θ)

= Ut(θ) +

∫ θ

θ

[
h (ℓt(θ); θ, t)−

1− Φ(θ)

φ(θ)
hθ (ℓt(θ); θ, t)

]
dΦ(θ)

Plugging the latter result into (20) leads to (21).

B.4 Implementability condition

Using (14a) and (14d), the entrepreneur’s budget constraint (12) can be rewritten as:

at+1 = (1 + rbt )at + (ρt − rbt )kt −
ct

1− τdt
− zt

β V ′
t+1(at+1) at+1 = β(1 + rbt ) V

′
t+1(at+1) at + β V ′

t+1(at+1)(ρt − rt) kt

− β V ′
t+1(at+1)

ct

1− τdt
− β V ′

t+1(at+1) zt

β V ′
t+1(at+1) at+1 = V ′

t (at) at − Uk(Ω(ct, zt), kt, t) kt

− Ωc(ct, zt) UΩ(Ω(ct, zt), kt, t) ct − Ωz(ct, zt) UΩ(Ω(ct, zt), kt, t) zt

β V ′
t+1(at+1) at+1 = V ′

t (at) at − Uk(Ω(ct, zt), kt, t) kt − UΩ(Ω(ct, zt), kt, t) Ω(ct, zt)
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where we multiplied the first equation by β V ′
t+1(at+1) to get the second equation, we used (B.1a),

(B.1b), (B.1c) and (B.1d) to get the third equation and where we used the assumption that Ω(·, ·) exhibits
constant returns to scales, so ct Ωc(ct, zt)+zt Ωz(ct, zt) = Ω(ct, zt), to get the last equation. The sum of
the last equation times βt, together with the transversality condition (14f) leads to the implementability
constraint (23).

Symmetrically, for each sequence of allocations {ct, zt, kt+1, Ut(θ), θ 7→ ℓt(θ)}t∈N that verifies
the implementability constraint (23), the resources constraint (21) at each period t and where θ 7→
ℓt(θ) is non decreasing, we now show the existence and uniqueness of a sequence of fiscal policies
{τπt , τdt , Tt(·), bt} such that that there exists a unique competitive equilibrium that corresponds to that
sequence of allocations. We show this as follows.

• There exists a unique sequence of labor demand {Lt}t∈N that clear the labor market at each period
according to (22).

• There exists a unique sequence of wages {wt}t∈N that satisfies the labor demand conditions (14a)
at each period.

• There exists a unique sequence of interest rates on bonds {rbt}t∈N that verifies the entrepreneur’s
Euler equation with respect to bonds (14c) at each period.

• There exists a unique sequence of corporate income tax rates {τπt }t∈N that verifies the entrepreneur’s
Euler equation with respect to capital (14e) at each period using the definition of after-corporate-
tax returns of capital ρt in (14d).

• There exists a unique sequence of dividend tax rates {τdt }t∈N that verifies the entrepreneur’s opti-
mality condition with respect to sheltered consumption (14b) at each period.

• Given the entrepreneur’s initial wealth a0, one can recover the sequence of entrepreneur’s wealth
at using (12), thereby the sequence of bonds bt using (10).

Note that since the allocation {ct, zt, kt}t∈N verifies the implementability constraint (23), {ct, zt, kt, Lt, bt}t∈N
verifies for a given sequence of wage, interest rates on bonds, corporate tax rates and dividend tax rates
{wt, r

b
t , τ

π
t , τ

d
t }t∈N the transversality condition (14f), the entrepreneur’s necessary conditions (14a)-(14f)

and budgetary constraint (12). It thus solves the entrepreneur’s program (13) at each period.

• At each period and for each type θ ∈
[
θ, θ
]

of worker, there exists a unique sequence of type−θ
worker’ consumption yt(θ) and utility level Ut(θ) verifying (17).

As discussed in B.2, since ℓt(·) is a at each period non-decreasing, the resulting mechanism t 7→
(ℓt(θ), yt(θ)) verifies the incentive constraint (B.2). Therefore, following the Taxation principle of Ham-
mond (1979), there exists an income tax schedule that decentralizes it, i.e. ℓt(θ) solves the worker−θ
type program (15).

Finally, since the allocation verifies the resource constraint (21) and the entrepreneur’s budget con-
straint (12) and transversality condition (14f), it also verifies by the Walras Law the government’s budget
constraint (19) and the no-Ponzi condition preventing public debt from exploding.

B.5 Optimal Policy

Let µ denote the Lagrange multiplier with respect to the implementability constraint (23) and let
βt λt denote the Lagrange multiplier with respect to period−t resource constraint (21). Taking (17) into
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account, the Lagrangian of government’s problem (24) is:

L =
∞∑

t=0

βt

{∫ θ

θ
υ

(
Ut(θ)−

∫ θ

θ
hθ (ℓt(x);x, t) dx

)
dΨ(θ) + κ U (Ω(ct, zt), kt, t)

+ µ [UΩ(Ω(ct, zt), kt, t) Ω(ct, zt) + Uk(Ω(ct, zt), kt, t) kt]

+ λt

[
F
(
kt,

∫ θ

θ
ℓt(θ)dΦ(θ); t

)
+ (1− δ)kt − kt+1 − ct − zt − Ut(θ)

−
∫ θ

θ

[
h (ℓt(θ); θ, t)−

1− Φ(θ)

φ(θ)
hθ (ℓt(θ); θ, t)

]
dΦ(θ)

]}
− µ V ′

0(a0) a0

Using the shorted notation (t) to indicate that functions are evaluated along the optimal allocation at
period t, the first-order conditions are:18

ct : λt = Ωc(t) ((κ+ µ)UΩ (t) + µ [UΩ,Ω(t) Ω(t) + UΩ,k(t) kt]) (B.6a)

zt : λt = Ωz(t) ((κ+ µ)UΩ (t) + µ [UΩ,Ω(t) Ω(t) + UΩ,k(t) kt]) (B.6b)

kt+1 : λt = λt+1 β

(
∂F(t+ 1)

∂k
+ 1− δ

)
+ β(κ+ µ)Uk (t+ 1) (B.6c)

+ β µ [UΩ,k(t+ 1) Ω(t+ 1) + Uk,k(t+ 1) kt+1]

Ut (θ) : λt =

∫ θ

θ
υ′ (Ut(θ)) dΨ(θ) (B.6d)

ℓt(θ) : 0 =
∂F(t)

∂L
− hℓ (ℓt(θ); θ) +

1− Φ(θ)−
∫ θ
θ

υ′(Ut(θ))

λt
dΨ(θ)

φ(θ)
hℓ,θ (ℓt(θ); θ) (B.6e)

Assuming Condition (25) is verified, one get that λt > 0 according to (B.6a) and (B.6b).

Proof of Proposition 3

Dividing (B.6a) and (B.6b) by (κ + µ)UΩ (t) + µ [UΩ,Ω(t) Ω(t) + UΩ,k(t) kt], which is positive
under Condition (25), leads to:

Ωc(ct, zt) = Ωz(ct, zt) (B.7)

which, combined with (14b) proves τdt = 0 for t ≥ 1.

Proof of Proposition 4

If the optimal allocation converges to a steady state with positive capital, Equations (B.6a) and (B.6b)
imply:

λ = ω⋆(1) UΩ

[
κ+ µ+ µ

Ω UΩ,Ω + k UΩ,k

UΩ

]
, (B.8a)

while Equation (B.6c) implies:

λ (β (1 + r)− 1) = −β Uk

[
κ+ µ+ µ

Ω UΩ,k + k Uk,k

Uk

]
(B.8b)

where:

r
def≡ ∂F(k, L)

∂k
− δ

18Following the first-order approach, (B.6e) presumes that the monotonicity constraints are not binding, a presumption that
has to be verified ex-post.
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Combining (B.8a) and (B.8b), the optimal allocation should verify in the long run:

κ+ µ+ µ
Ω UΩ,Ω + k UΩ,k

UΩ

κ+ µ+ µ
Ω UΩ,k + k Uk,k

Uk

(β (1 + r)− 1)ω⋆(1) UΩ = −β Uk (B.9)

At a steady state with τd = 0, Equation (14e) becomes:

(β (1 + ρ)− 1)ω⋆(1) UΩ = −β Uk (B.10)

where (14d) implies at the steady state:

ρ = (1− τπ)(r + δ − δ̂) + δ̂ − δ = r − τπ(r + δ − δ̂)

Let us denote

τ̂π
def≡ τπ

r + δ − δ̂

r
⇔ ρ = (1− τ̂π)r (B.11)

Equating the left-hand sides of Equations (B.9) and (B.10), one obtains that at the steady state of the
optimal allocation:


1−

κ

µ
+ 1 +

Ω UΩ,Ω + k UΩ,k

UΩ

κ

µ
+ 1 +

Ω UΩ,k + k Uk,k

Uk


 (β (1 + r)− 1)ω⋆(1) UΩ = β τ̂π r ω⋆(1) UΩ

Ω UΩ,k + k Uk,k

Uk
− Ω UΩ,Ω + k UΩ,k

UΩ

κ

µ
+ 1 +

Ω UΩ,k + k Uk,k

Uk

(β (1 + r)− 1) = β τ̂π r

and so:

τ̂π =

Ω UΩ,k + k Uk,k

Uk
− Ω UΩ,Ω + k UΩ,k

UΩ

κ

µ
+ 1 +

Ω UΩ,k + k Uk,k

Uk

β(1 + r)− 1

β r

When β 7→ 1, we get:

τ̂π =

Ω UΩ,k + k Uk,k

Uk
− Ω UΩ,Ω + k UΩ,k

UΩ

κ

µ
+ 1 +

Ω UΩ,k + k Uk,k

Uk

(B.12)

which is strictly below 1, whenever (25) holds, whatever κ.

We now compute the microeconomic/partial equilibrium long-run elasticity of capital supply with
respect to net-of after-corporate-tax rate of return of capital ρ, in the absence of public debt. This elas-
ticity denoted e is therefore computed from the steady-state of the entrepreneur’s program, holding the
wage rate w and interest rates rbt and rt as given and when b = 0. Differentiating the Euler equation with
respect to capital at the steady state (B.10) leads to:19

Ω UΩ,k

Uk

dΩ

Ω
+

k Uk,k

Uk

dk

k
=

β ρ

β (1 + ρ)− 1

dρ

ρ
+

Ω UΩ,Ω

UΩ

dΩ

Ω
+

k UΩ,k

UΩ

dk

k
(B.13)

19This can be obtained either by log-differentiating (B.10) if Uk < 0 and β(1 + ρ) > 1 or by log-differentiating
β Uk(Ω(c, z), k) = (1− β(1 + ρ)) UΩ(Ω(c, z), k) if Uk > 0 and β(1 + ρ) < 1.
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Using Equations (14a) and (14d), Equation (11) becomes at the steady state:

0 = rb a+ (ρ− rb)k − c

1− τd
− z

Using I = c
1−τd

+ z and (10), one gets in the absence of public debt b = 0 that I = ρ k, thereby that:

Ω = ω⋆(1) ρ k. (B.14)

Therefore, when τd is fixed one has dΩ/Ω = dI/I = dρ/ρ+ dk/k, Equation (B.13) becomes:

Ω UΩ,k

Uk

dρ

ρ
+

Ω UΩ,k + k Uk,k

Uk

dk

k
=

β ρ

β (1 + ρ)− 1

dρ

ρ
+

Ω UΩ,Ω

UΩ

dρ

ρ
+

Ω UΩ,Ω + k UΩ,k

UΩ

dk

k

So
(
Ω UΩ,k + k Uk,k

Uk
− Ω UΩ,Ω + k UΩ,k

UΩ

)
dk

k
=

(
β ρ

β (1 + ρ)− 1
+

Ω UΩ,Ω

UΩ
− Ω UΩ,k

Uk

)
dρ

ρ
(B.15)

and when β 7→ 1

ζkρ =
1 +

Ω UΩ,Ω

UΩ
− Ω UΩ,k

Uk

Ω UΩ,k + k Uk,k

Uk
− Ω UΩ,Ω + k UΩ,k

UΩ

⇒ 1 + ζkρ =
1 +

k Uk,k

Uk
− k UΩ,k

UΩ

Ω UΩ,k + k Uk,k

Uk
− Ω UΩ,Ω + k UΩ,k

UΩ

Multiplying both sides of Equation (B.10) by k when β 7→ 1 and using (B.14) yields −Uk k = Ω UΩ.
Therefore we get

1 + ζkρ =
1 +

Ω UΩ,k + k Uk,k

Uk

Ω UΩ,k + k Uk,k

Uk
− Ω UΩ,Ω + k UΩ,k

UΩ

(B.16)

Combining with (B.12) ends the proof that when β 7→ 1 and κ = 0, the optimal corporate tax wedge
τ̂π = 1/(1 + ζkρ ).

Steady-state elasticity with isoelastic preferences

When the entrepreneur’s preferences verify (26), we get:

Uk = −Γ k
1
ε and : UΩ = Ω−γ ; (B.17)

This implies:

k Uk,k =
1

ε
Uk and : Ω UΩ,Ω = −γUΩ (B.18)

Plugging (B.17) and (B.18) in (B.16) and using UΩ,k = 0 yields:

1 + ζkρ =
1 + 1

ε
1
ε + γ

=
1 + ε

1 + γ ε
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B.6 Optimal Policy under Maxmin and Isoelastic Preferences

Using (B.17) and (B.18) and κ = 0, Equations (B.6a)-(B.6c) simplify to:

ct : λt = Ωc(t) µ(1− γ) Ω−γ
t (B.19a)

zt : λt = Ωz(t) µ(1− γ) Ω−γ
t (B.19b)

kt+1 : λt = λt+1 β

(
∂F(t+ 1)

∂k
+ 1− δ

)
− β µ

(
1 +

1

ε

)
Γ k

1
ε
t+1 (B.19c)

Because of the Maximin assumption, Equation (B.6d) simplifies to:

λt = υ′ (U(θ)) = (U(θ))−γ (B.19d)

Because of the iso-elasticity of workers’ preferences, we get that

hθ = −h(ℓ; θ)

ξ θ
and : hℓ,θ = −hℓ(ℓ; θ)

ξ θ
,

so, under Maximin preferences, Equation (B.6e) becomes:

∂F(t)

∂L
− hℓ (ℓt(θ); θ) =

1− Φ(θ)

ξ θ φ(θ)

Using the labor demand condition (14a) and workers’ first-order condition (16), the optimal marginal tax
rate faced by a type−θ worker verifies the ABC formula:

T ′(wt ℓt(θ))

1− T ′(wt ℓt(θ))
=

1

ξ

1− Φ(θ)

θ φ(θ)
(B.19e)

In particular, even if wt changes over time, thereby changing the earning wt ℓt(θ)) of each type of worker,
the optimal marginal tax of type−θ worker is constant over time. Moreover we get:

ℓt(θ) = wξ
t θ

[
1 +

1

ξ

1− Φ(θ)

θ φ(θ)

]−ξ

⇒ Lt = wξ
t

∫ θ

θ
θ

[
1 +

1

ξ

1− Φ(θ)

θ φ(θ)

]−ξ

dΦ(θ) (B.20)

Since the production function is Cobb-Douglas, we get

wt = (1− α) A kαt L−α
t

∂F(k, L)

∂k
= α A kα−1

t L1−α
t (B.21)

Let us denote

L
def≡
∫ θ

θ
θ

[
1 +

1

ξ

1− Φ(θ)

θ φ(θ)

]−ξ

dΦ(θ).

so that Lt = wξ
t L. We get:

wt = L
1
ξ

t L
− 1

ξ = (1− α) A kαt L−α
t

L
1
ξ
+α

t = L
1+α ξ

ξ

t = (1− α) A kαt L
1
ξ

Lt = (1− α)
ξ

1+α ξ A
ξ

1+α ξ k
α ξ

1+α ξ

t L
1

1+α ξ (B.22a)

wξ
t =

Lt

L
= (1− α)

ξ
1+α ξ A

ξ
1+α ξ k

α ξ
1+α ξ

t L
−α ξ
1+α ξ

wt = (1− α)
1

1+α ξ A
1

1+α ξ k
α

1+α ξ

t L
−α

1+α ξ (B.22b)

F(kt, Lt) = (1− α)
ξ(1−α)
1+α ξ A

1+
ξ(1−α)
1+α ξ k

α+(1−α) α ξ
1+α ξ

t L
1−α

1+α ξ

F(kt, Lt) = (1− α)
ξ(1−α)
1+α ξ A

1+ξ
1+α ξ k

α(1+ξ)
1+α ξ

t L
1−α

1+α ξ (B.22c)
∂F(kt, Lt)

∂kt
= α

F(kt, Lt)

kt
∂F(kt, Lt)

∂kt
= α (1− α)

ξ(1−α)
1+α ξ A

1+ξ
1+α ξ k

α−1
1+α ξ

t L
1−α

1+α ξ (B.22d)
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Since

h(ℓ; θ) =
ξ

1 + ξ
ℓ
1+ 1

ξ θ
− 1

ξ hθ(ℓ; θ) = − 1

1 + ξ

(
ℓ

θ

)1+ 1
ξ

= −h(ℓ; θ)

ξ θ

the resources constraint (21) can be re-expressed as:

kt+1 = F(kt, Lt) + (1− δ)kt − ct − zt − Ut (θ)

− ξ

1 + ξ

∫ θ

θ
(ℓt(θ))

1+ 1
ξ θ

− 1
ξ

[
1 +

1− Φ(θ)

ξ θ φ(θ)

]
dΦ(θ)

= F(kt, Lt) + (1− δ)kt − ct − zt − Ut (θ)

− w1+ξ
t

ξ

1 + ξ

∫ θ

θ
θ

[
1 +

1− Φ(θ)

ξ θ φ(θ)

]−ξ

dΦ(θ)

= F(kt, Lt) + (1− δ)kt − ct − zt − Ut (θ)− wt
ξ

1 + ξ
Lt

=

(
1− (1− α)

ξ

1 + ξ

)
F(kt, Lt) + (1− δ)kt − ct − zt − Ut (θ)

=
1 + α ξ

1 + ξ
F(kt, Lt) + (1− δ)kt − ct − zt − Ut (θ)

=
1 + α ξ

1 + ξ
(1− α)

ξ(1−α)
1+α ξ A

1+ξ
1+α ξ k

α(1+ξ)
1+α ξ

t L
1−α

1+α ξ + (1− δ)kt − ct − zt − Ut (θ)

=
1 + α ξ

1 + ξ
(1− α)

ξ(1−α)
1+α ξ A

1+ξ
1+α ξ k

α(1+ξ)
1+α ξ

t L
1−α

1+α ξ + (1− δ)kt −
Ωt

ω⋆(1)
− Ut (θ)

Combining (B.19a), (B.19b) and (B.19d) implies that

λt = ω⋆(1) µ(1− γ) Ω−γ
t = (U(θ))−γ ⇒ U(θ) = Ωt (ω⋆(1) µ(1− γ))

− 1
γ

So the resources constraint becomes

kt+1 =
1 + α ξ

1 + ξ
F(kt, Lt) + (1− δ)kt −

(
1

ω⋆(1)
+ (ω⋆(1) µ(1− γ))

− 1
γ

)
Ωt (B.23)

Plugging (B.19b) into (B.19c) yields:

ε(1− γ)

1 + ε
ω⋆(1) Ω−γ

t = β (1 + rt+1)
ε(1− γ)

1 + ε
ω⋆(1) Ω−γ

t+1 − β Γ k
1
ε
t+1

Ω−γ
t + β Γ

1 + ε

ε(1− γ) ω⋆(1)
k

1
ε
t+1 = β(1 + rt+1) Ω

−γ
t+1 (B.24)

Numerical Solution

Given µ, the system (B.23)-(B.24) expresses (kt+1,Ωt+1) as a function of (kt,Ωt). Actually, kt+1

is obtained from (kt,Ωt) thanks to (B.23). Then, (B.22d) provides rt+1 as a function of kt+1, taking
into account the adjustment of labor supplies when capital changes. Finally, Ωt+1 is obtained thanks to
(B.24) as a function of Ωt, and the obtained kt+1 and rt+1.

We numerically solve for this system using the following parameters.

Technology Workers Entrepreneurs Both
α A δ ξ L ε Γ ω⋆(1) β γ

0.25 1 8% 1/3 1 2 1 1 0.98 1/2

Table 2: Parameters for the calibration

Linearizing (B.23) and (B.24) around the steady state leads to eigenvalues 0.336, which is inside
the unit circle, and 2.722, which is outside the unit circle, so the dynamics is saddle-path. Since kt is a
backward-looking variable and Ωt is forward-looking, the Blanchard-Kahn conditions are satisfied.
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Optimal Steady State Corporate Income Tax

At a steady state, the government’s Euler equation (B.24) becomes:

ε(1− γ)

1 + ε
ω⋆(1) Ω−γ (β (1 + r)− 1) = β Γ k

1
ε (B.25)

while the capitalist’s Euler equation (14e) becomes:

ε(1− γ)

1 + ε
ω⋆(1) Ω−γ (β (1 + (1− τπ) r)− 1) = β Γ k

1
ε , (B.26)

Combining (B.25) with (B.26) yields:

τπ =
1 + γ ε

1 + ε

β(1 + r)− 1

β r
(B.27)

Log differentiating (B.26) yields:

−γ
dΩ

Ω
+

β ρ

β (1 + ρ)− 1

dρ

ρ
=

1

ε

dk

k

Using dΩ/Ω = dρ/ρ+ dk/k, this implies that the steady-state capital supply elasticity verifies:

ζkρ =
ε

1 + γ ε

(
β ρ

β(1 + ρ)− 1
− γ

)
(B.28)

When γ = 0, the optimal corporate income tax formula (B.27) boils down to:

τπ =
1

1 + ε
− 1

1 + ε

1− β

β r
(B.29)

and the steady-state elasticity (B.28) verifies:

1 + ζkρ =
β (1 + ρ(1 + ε))− 1

β(1 + ρ)− 1
(B.30)

Using ρ = (1− τπ)r, (B.29) implies:

β (1 + ρ(1 + ε))− 1 = β ε r (B.31a)

β(1 + ρ)− 1 =
β ε r

1 + ε
− (1− β)ε

1 + ε
(B.31b)

Combining (B.30) and (B.31) with (B.29) implies:

1

1 + ζkρ
=

1

1 + ε
− 1− β

β(1 + ε)r
= τπ

C Nonlinear tax on profits and dividends

We now assume, on the one hand, that entrepreneurs are endowed with different characteristics20

denoted χ and, on the other hand, that they pay at each period t a non linear tax on profits Πt, cash flow
Ft and (after-tax) dividends ct denoted (Πt, Ft, ct) 7→ Tt(Πt, Ft, ct).

Assumption 3. The entrepreneur preferences are represented by a weakly separable utility function:
(c, z, k) 7→ U (Ω(c, z), k), where U (·, ·) is concave and increasing in the first argument and where the
subutility function Ω(·, ·) is increasing and concave in both arguments.

20χ can be interpreted as an entrepreneurial ability if Uk < 0 or as a taste for wealth if Uk > 0.
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Note that we do no longer assume the subutility Ω(·, ·) to be homogeneous.
The type−χ entrepreneur’s program in period t solves:21

Vt(at;χ) = max
ct,zt,kt,Lt,at+1;χ

U (Ω(ct, zt), kt;χ) + β Vt+1(at+1;χ) (C.1a)

s.t. : at+1 = (1 + rbt )at +Πt − rbt kt − ct − zt − Tt(Πt, Ft, ct) (C.1b)

Πt = F(kt, Lt)− wt Lt − δ kt (C.1c)

Ft = (1 + rbt )at − at+1 +Πt − rbt kt (C.1d)

The solution to this program are denoted as functions of the type χ of the entrepreneur.22

This program includes a labor demand subprogram which is type-independent:

Πt(k) = max
L

F(k, L)− wt L− δ k (C.2a)

with first-order condition:

wt =
∂F(kt(χ), Lt(χ))

∂L
(C.2b)

Assuming the production function is the same for all entrepreneurs and it exhibits constant returns to
scale we get:

Πt(χ) = rt kt(χ) where : rt =
∂F(kt(χ), Lt(χ))

∂k
− δ (C.2c)

and rt is the same for all entrepreneurs.
Consequently, the type−χ entrepreneur’s program in period t solves:

Vt(at;χ) = max
ct,zt,kt,at+1

U (Ω(ct, zt), kt;χ) + β Vt+1(at+1;χ)

at+1 = (1 + rbt )at + rt kt − rbt kt − ct − zt − Tt(rt kt, Ft, ct)

Ft = (1 + rbt )at − at+1 + rt kt − rbt kt

or

Vt(at;χ) = max
ct,zt,kt,at+1

U (Ω(ct, zt), kt;χ) + β Vt+1(at+1;χ) (C.3a)

ct + zt = Ft − Tt(rt kt, Ft, ct) (C.3b)

Ft = (1 + rbt )at − at+1 + (rt − rbt )kt (C.3c)

We now show that for each status-quo sequence of tax schedules (Πt, Ft, ct) 7→ T 0
t (Πt, Ft, ct), there

exists an alternative sequence of tax schedules denoted (Πt, Ft) 7→ T ∗
t (Πt, Ft) that do not tax dividends

but only cash flow and profits which induces each type of entrepreneurs to make the same investment
and saving decisions and enjoy the same level of utility.

For this purpose, we define the subprogram:

Ω0
t (k, F ) = max

c,z
Ω(c, z) s.t : c+ z = F − T 0

t (rt k, F, c) (C.4)

Then, under the status-quo sequence of tax schedules, saving and investment decisions have to solve:

Vt(at;χ) = max
kt,at+1

U
(
Ω0
t

(
kt, (1 + rbt )at − at+1 + (rt − rbt )kt

)
, kt;χ

)
+ β Vt(at+1;χ) (C.5)

Under the alternative sequence of tax schedules, we define:

Ω∗
t (k, F ) = max

c,z
Ω(c, z) s.t : c+ z = F − T ∗

t (rt k, F ) (C.6)

21We take δ̂ = δ to simplify notations
22In the absence of public debt, at = kt, so Ft = Πt + kt+1 − kt, i.e. Ft is before tax profits less investment. With public

debt, cash flow Ft is the capitalist before income tax flows Πt + rbt bt = Πt + rbt at − rbt kt minus investment in wealth
at+1 − at
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so that, under the alternative sequence of tax schedules, saving and investment decisions have to solve:

Vt(at;χ) = max
kt,at+1

U
(
Ω∗
t

(
kt, (1 + rbt )at − at+1 + (rt − rbt )kt

)
, kt;χ

)
+ β Vt(at+1;χ) (C.7)

Define the expenditure function:

E (ω) = min
c,z

c+ z s.t : Ω(c, z) = ω (C.8)

Note that by duality:
∀t, ∀(F, k) : E (Ω∗

t (F )) = F − T ∗
t (F ) (C.9)

Define:

∀t, ∀(F,Π) : T ∗
t (Π, F )

def≡ F − E

(
Ω0
t

(
Π

rt
, F

))
(C.10)

At each period t, and for each F and k, since Π = rt k, we get:

E
(
Ω0
t (k, F )

)
= F − T ∗

t (rt k, F )

E
(
Ω0
t (k, F )

)
= E (Ω∗

t (k, F ))

Ω0
t (k, F ) = Ω∗

t (k, F )

Therefore, comparing (C.5) and (C.7), the status quo and the alternative sequence of tax policies
induce each type of entrepreneur to take at each period the same saving and investment decisions. As
the alternative sequence of tax policies require less resources to each type of entrepreneurs, it Pareto
dominates the status quo sequence of tax policies.
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