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Abstract

I consider an abstract social system made of individual owners
endowed with nonpaternalistic interdependent preferences, who
interact by means of individual gifts and by exchanges on com-
petitive markets. The existence of equilibrium is established. I
identify the set of allocations that are decentralizable in the sense
that they are general equilibria for some vectors of market prices
and initial endowments. This set is characterized in a simple way
from the social endowment and individual market and distribu-
tive preferences. Decentralizable allocations are all accessible to
distributive policy, unless public transfers are confined to some
neighborhood of 0. In the latter case, distributive policy remains
free to perform local redistributions of wealth across the compo-
nents of the graph of equilibrium gifts.

1. Introduction

This paper studies the effectiveness of distributive policy in the context of
an “abstract social system” ~Debreu 1952!, involving the interaction of
competitive exchange and individual gift. The agents are individual own-
ers, whose preferences verify the assumption of nonpaternalistic utility
interdependence. Borrowing the vocabulary of Pareto’s Traité de Sociologie
Générale ~1916, Chap. XII!, an early promoter of this assumption as well as
of the application of the methods and concepts of economic equilibrium
analysis to the study of wider social equilibria, we suppose more precisely
that each individual is endowed with both an ophelimity function, describ-
ing the ~ordinal! satisfaction he derives from his own consumptions of
market commodities, and a utility function, representing his preferences
on the profiles of individual ophelimities. These agents act in the follow-
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ing general equilibrium context: They choose their individual market
excess demands and individual gifts in order to maximize their utility
functions subject to their individual budget constraints, given market prices
and the excess demands and individual gifts of the other agents. A social
equilibrium is then a system of market prices and individual actions which
clears all markets and solves simultaneously all individual maximization
problems.

The effectiveness of distributive policy is a positive matter. It consists
of the ability of the government to achieve independent objectives con-
cerning the distribution of wealth. Distributive implications are involved,
as means, ends, or mere consequences, in virtually all actions of economic
policy, whether they aim at allocative efficiency, distributive justice, or
macroeconomic regulation ~Musgrave 1959!. So the evaluation of the effec-
tiveness of distributive policy is essentially equivalent to ~both implies and
is implied by! an evaluation of the effectiveness of general economic
policy.

The debate on the effectiveness of distributive policy has largely con-
centrated on the existence and extension of a crowding out of private
transfers by public ones. Barro ~1974! and Becker ~1974! analyze models
where distributive policy is neutral in the sense that variations in public
transfers are exactly offset by opposite variations in private ones. These
neutrality theorems have been challenged on essentially two grounds.
One line of argument considers situations where some private transfers
are corner solutions ~Roberts 1984; Bergstrom, Blume, and Varian 1986!.
And an abundant literature exhibits nonneutralities in situations where
private and public transfers are not perfect substitutes, noticeably because
gift matters per se ~for instance because there is a “warm glow of giving;”
Andreoni 1989!; because gift stems from an exchange motive rather than
from an altruistic one ~e.g., Cox and Jakubson 1995!; and because of
capital market imperfections ~e.g., Altig and Davis 1993!.

This article builds on the first line of argument. Public and private
transfers are perfect substitutes, in the sense that they both consist of
lump-sum transfers aiming at correcting significant wealth differences
between the donor ~voluntary or not! and the beneficiary. Markets are
complete and perfect. I establish a rigorous relation between the effec-
tiveness of distributive policy and the structure of the graph of equilib-
rium transfers in this context. I show that the dimension of the set of
wealth distributions accessible to a public distributive policy operating by
lump-sum transfers chosen in a neighborhood of 0 is the number of
components of the graph of equilibrium transfers ~minus 1!; that is, small
public transfers can redistribute wealth “across” the components of this
graph but not inside each of them. Thus, the neutrality of distributive
policy holds true if and only if the graph of equilibrium gifts is connected.

The paper is organized as follows. Section 2 defines social equilib-
rium, Section 3 characterizes the set of decentralizable allocations, and
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Section 4 establishes existence. Section 5 presents the main theorem and
discusses the relevance of neutrality properties in the light of this result.
Section 6 concludes and the Appendix gathers the proofs.

2. Social Equilibrium

There are l commodities, identified by an index h running in L 5 $1, . . . , l %,
and n agents, identified by an index i , running in N 5 $1, . . . , n%.

The commodities are divisible consumption goods. The total quantity
of each of them available in the social system is given once and for all—in
other words, we have an exchange economy.1 Physical units are chosen so
that the endowment of the social system in any consumption good h is 1. We
denote by e the element of the space of goods Rl whose components are
all equal to 1.

The agents are individuals. They privately own the social endowment
in consumption goods ~social system of private property!. Denoting agent
i’s initial endowment as vi we have, formally,

(
i[N

vi 5 e .

Then vih denotes the nonnegative quantity of commodity h initially owned
by individual i . The vector ~v1, . . . ,vn! of individual endowments is denoted
by v.

The agents can use commodities in three different ways: private con-
sumption, individual gift, and exchange on competitive markets. We will
ignore all other conceivable individual uses, such as disposal or production.

A consumption of generic agent i is represented by an element xi of the
commodity space Rl. Its h th component xih is a quantity of commodity h
consumed by individual i . Agent i’s consumption set is the positive orthant
R1

l of the space of commodities. An allocation is then an element x 5
~x1, . . . , xi , . . . , xn ! of Rln. We denote by Xi the subset of Rln whose ith
projection on Rl is agent i’s consumption set R1

l , and jth projection on Rl

is Rl for all j Þ i . An allocation x is feasible if it belongs to R1
ln and verifies

the global resource constraint

(
i[N

xi ≤ e .

The set $x [ R1
ln 6(i[N xi 5 e % of feasible allocations that exhaust the social

endowment is denoted by F.
A gift of agent i to individual j is represented by a nonnegative ele-

ment tij of the commodity space Rl. Its h th component tijh is a nonnega-

1The introduction of production and disposal leaves our analysis essentially unchanged
under the following conditions: firms are price-takers ~perfect competition! and maximize
profits in convex production sets; and disposal is free.
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tive quantity of consumption good h , transferred by agent i to individual
j. We denote by ti , and name gift of i, a vector whose ith projection tii on
Rl is equal to 0, and jth projection tij on Rl is a gift from agent i to
individual j for all j Þ i . Agent i’s gift set Ti is the subset of R1

ln whose ith
projection on Rl is $0%, and jth projection on Rl is R1

l for all j Þ i . A vector
of individual gifts ~t1, . . . , ti , . . . , tn ! is then named a gift vector and denoted
by t . For all gift vectors t and all individual gifts ti

* , we will use the
following standard notations: tn0i will be the vector of individual gifts
obtained from t by deleting its ith component ti ; ~tn0i , ti

* ! will be the gift
vector obtained from t by replacing its ith component ti by ti

*; and Di t is
the net gift

(
j[N

~tji 2 tij !

accruing to individual i when the gift vector is t .
A net trade of agent i is represented by a vector z i of the space of

commodities. Its h th component z ih is the net trade of agent i in good
h-–that is, the difference between his physical purchases and sales of
commodity h . We denote by z a vector ~z1, . . . , z i , . . . , zn ! of individual net
trades.

A social state is then a vector ~x , t , z !. Since the individual uses of
commodities are here restricted to private consumption, individual gift,
and exchange, a state ~x , t , z ! must verify the following physical accounting
identities for all i:

xi 5 z i 1 vi 1 Di t ,

equating consumptions to net physical inflows from trade, gift-giving, and
initial endowment, for all individuals and commodities.

An action of individual i , denoted by ai , is a pair ~z i , ti !. An action
vector is then a vector a 5 ~a1, . . . ,ai , . . . ,an ! of individual actions. For all
action vector a and all individual action ai

* , we denote, as above, an0i the
vector of individual actions obtained from a by deleting its ith component
ai ; ~an0i ,ai

* ! the action vector obtained from a by replacing its ith com-
ponent ai by ai

* . We suppose that every agent considers the others’ actions
as independent of his own actions ~takes them as given!. It follows from
this and the accounting identities above that, given some an0i , the choice
by agent i of some action ai

* 5 ~z i
* , ti
* ! determines the realization of one

and only one allocation, namely allocation x ~~an0i ,ai
* !! whose jth compo-

nent is z j 1 vj 1 Dj ~tn0i , ti
* ! for all j. We suppose, too, that every agent

considers market prices as independent from his individual actions ~com-
petitive markets!. The vector of market prices is denoted by p . The
unique social state determined by the action vector a is denoted by ~x ~a!,
t~a!, z~a!!.
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Individual preference preorderings are defined directly, for the sake
of brevity, by means of their utility representations.2 Using Pareto’s words,
we define an ophelimity function of agent i , ui : Rl r R, which describes
i ’s preferences on his own consumptions. Function ~x1, . . . , xn ! r

~u1~x1 !, . . . ,un~xn !!, mapping Rln into Rn, is denoted by u . The utility
function of agent i , denoted by wi , maps the set u ~Rln ! of ophelimity
profiles into the real line. Function wi + u then describes i’s preferences
on allocations. This particular shape of individual utility functions cor-
responds to the definition of nonpaternalistic utility interdependence as
stated by Archibald and Donaldson ~1976!. It allows for the representa-
tion of moral sentiments such as benevolence, malevolence, or indiffer-
ence to others, provided that they do not involve merit wants ~individuals
are not sensitive to the others’ consumptions per se but only through
their consequences on ophelimities!. Without loss of generality, we will
let ui ~0! 5 0 for all i .

The picture concerning individual behavior is, at this point, the
following: Each agent makes the choice of his gifts and net trades in
order to achieve some allocation of resources according to his nonpater-
nalistic preferences. We can now complete this description of individual
behavior by a specification of the constraints binding individual choices.
Consider some price-action vector ~ p *,a * !, defining an environment for
individual decisions. Individual i will choose his action in the budget set
Bi ~ p *,a * ! 5 $ai 5 ~z i , ti ! [ Rl 3 Ti 6 xi ~~an0i

* ,ai !! [ R1
l and p *z i ≤ 0%, in

order to maximize his utility function according to the program:
Max$wi ~u ~x ~~an0i

* ,ai !!!!6ai [ Bi ~ p *,a * !%.
A social system is a list ~w1 + u , . . . ,wn + u ! and is denoted by w . A market

optimum of social system w is a ~strong! Pareto optimum with respect to the

2Axiomatic definitions of nonpaternalistic utility interdependence, building on preference
preorderings, can be found, for instance, in Winter ~1969!, Bergstrom ~1970!, or Lemche
~1986!. Winter considers private complete preorderings, defined on individual consump-
tions, and social ones, defined on allocations, and assumes that if xj ~resp. xi ! is preferred
~resp. strictly preferred! to xj

' ~resp. xi
' ! for j ’s ~resp. i’s! private preordering, then it must be

preferred ~resp. strictly preferred! for the preordering induced by i’s social preferences on
j ’s consumptions. Bergstrom starts with individual social complete preorderings, supposes
them weakly separable in individual consumptions ~i.e., the preordering induced by i’s social
preferences on j ’s consumptions does not depend on the others’ consumptions whatever i
and j ! and assumes that if xj is preferred to xj

' for j ’s induced preordering, then the same is
true for i’s. Lemche considers utility representations of individual social preorderings and
defines interdependence by the following condition: If xj is indifferent to xj

' for j ’s induced
preordering, then the same is true for i’s.

Lemche’s definition implies Winter’s. It implies the definition of Archibald and Donald-
son ~1976!, too, provided that the latter is strengthened by the requirement that the utility
of an individual must be increasing in his own ophelimity. The definition of Archibald and
Donaldson implies Bergstrom’s, which implies Winter’s. All these implications are strict.
Winter’s definition is essentially identical to Pareto’s original formulation
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ophelimity functions of its members, that is, a feasible allocation x such
that there exists no feasible allocation x ' verifying both u ~x ' ! ≥ u ~x ! and
u ~x ' ! Þ u ~x !. The set of market optima of w is denoted by O . A social
system of private property is a pair ~w ,v!. A social equilibrium of ~w ,v! is a
price-action vector ~ p *,a * ! such that ~i! (i[N zi

* 5 0 ~all markets clear!;
and ~ii! ai

* solves Max$wi ~u ~x ~~an0i
* ,ai !!!!6ai [ Bi ~ p *,a * !% for all i ~every-

one is satisfied with his own choice, given prices and the others’ actions!.
The following assumptions on preferences and endowments will be

maintained throughout the sequel.

ASSUMPTION 1:

~i! For all i, ui is: (a) continuous in R1
l and differentiable in R11

l (the
interior of R1

l !; (b) increasing in R11
l (i.e., ui ~xi ! . ui ~xi

' ! for all
~xi , xi

' ! [ R11
l 3 R11

l such that xi . xi
')3; (c) such that xi .. 0

whenever ui ~xi ! . 0 ~5 ui ~0!!.

~ii! For all i, wi is (a) continuous in R1
n and differentiable with respect to its

jth argument in $ [u [ R1
n 6 [uj . 0% for all j, and (b) increasing in its ith

argument.

~iii! For all i, wi + u verifies that (a) wi ~u ~lx 1 ~1 2 l!x ' !! . wi ~u ~x ' !!
for all real number l [ @0,1# and all ~x , x ' ! [ R1

ln 3 R1
ln such that

wi ~u ~x !! . wi ~u ~x ' !!, and (b) wi ~u ~x !! 5 0 whenever ui ~xi ! 5 0.

~iv! For all i, vi . 0.

We will consider, therefore, differentiable social systems4.
Assumptions ~i!~b! and ~i!~c! are commonly used in the study of dif-

ferentiable economies. Together with ~ii!~b!, ~i!~b! implies that prices are
positive at equilibrium, and ~i!~c! implies that an agent whose after-
transfer wealth is positive will consume a positive amount of all goods
~thereby eliminating inessential technicalities associated with nonnegativ-
ity constraints on consumption!.

Assumption 1~ii!~b!, stating that utility is increasing in its own ophelim-
ity, appears natural enough in the context of this study. It can be viewed
as a component of a sensible definition of nonpaternalistic utility inter-
dependence ~Lemche 1986, Rem. 1!.

Parts ~iii! and ~iv! of Assumption 1 ensure that individual behavioral
correspondences will have the relevant continuity property required for

3We write xi ≥ xi
' whenever xih ≥ xih

' for all h , xi . xi
' whenever xi ≥ xi

' and xi Þ xi
' , and xi ..

xi
' whenever xih . xih

' for all h .
4A natural strategy for the study of continuous social systems will consist of “smoothing”
them by means of appropriate approximation techniques, and then examining whether, as
is often the case, the properties of smooth social systems extend by continuity to continuous
ones. This is done, for instance, in Mercier Ythier ~1992! for the existence of a social
equilibrium in the case of a pure distributive social system ~l 5 1!.
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the existence of a social ~hence competitive market! equilibrium. Parts
~iii!~b! and ~iv!, together with ~i!~c! and ~ii!~b!, are designed to imply,
noticeably, the seemingly reasonable consequence that every agent will
wish and be able to keep a positive after-transfer wealth for all positive
price vector, which ensures in turn the continuity of budget correspon-
dences on relevant domains. The convexity of preferences ~iii!~a! implies
then the upper hemicontinuity of behavioral correspondences.

3. Decentralizable Allocations

This section characterizes the subset of allocations that can be reached as
equilibrium allocations of the social system. The following definitions will
prove useful. An allocation x * is ~i , j ! -maximal if there exists an ophelimity
profile ~ [u1, . . . , [un ! [ u ~R1

ln ! such that x * solves Max$wi ~u ~x !! 6 x is feasible
and uk~xk ! ≥ [uk for all k Þ j %.5 The set of ~i , j ! -maximal allocations is
denoted by Mij . The set ùi[N Mii is denoted by M .

The following characterization of social equilibrium follows then eas-
ily from Kuhn and Tucker first-order conditions ~proofs of the theorems
are in the Appendix!.

THEOREM 1: Suppose that ~w ,v! verifies Assumption 1. The price-action vector
~ p ,a! is then a social equilibrium of this system if and only if it verifies the
following three conditions: (i) pxi ~a! 5 p ~vi 1 Di t~a!! for all i; (ii) x ~a! .. 0
and x ~a! is (i,i)-maximal for all i; (iii) x ~a! is ~i , j ! -maximal whenever tij ~a!.0.

It follows readily from condition ~ii! of Theorem 1 that social equilibrium
allocations must lie in set M ù R11

ln .
Conditions ~ii ! and ~iii ! can receive the following interpretation,

building on the fact that Mij ~and therefore M ! is a subset of the set O of
market optima for all ~i , j ! ~as a consequence of Lemma 4~iv! of the
Appendix!. The ~i , j ! -maximality of an interior allocation means then that
agent i’s utility is nonincreasing in wealth transfers, evaluated at supporting
market prices, from j to any other agent. Condition ~ii! of Theorem 1 says
therefore that the equilibrium allocation is a market optimum, and that
nobody wants to increase his own transfers of wealth to the other agents,
evaluated at equilibrium ~hence supporting! prices. Condition ~iii! says
that, if there is a gift from i to j, the former does not want to diminish this
transfer of wealth, evaluated at supporting market prices.

5The relevant definition of ~i , j ! -maximality becomes the following in a production econ-
omy. Let Yj be the production set of firm j, and let yj denote an input-output vector of firm
j, j 5 1, . . . , m : ~x *, y* ! is ~i , j ! -maximal if there exists an ophelimity profile ~ [u1, . . . , [un ! [
u ~R1

ln ! such that ~x *, y* ! solves Max$wi ~u ~x !!6~x , y ! is feasible and uk~xk ! ≥ [uk for all k Þ j %,
where feasibility is defined in the usual way by individual constraints on consumption and
production embodied in consumption and production sets and by the global resource
constraint (i xi ≤ e 1 (j yj .
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A partial converse is established in Theorem 2.

THEOREM 2: Suppose that ~w ,v! verifies Assumption 1. For any allocation x ..
0 in M, there exist a price vector p Þ 0 and a vector v * of individual endowments,
with v * 5 x, such that the price-action vector ~ p ,0! is a social equilibrium of
~w ,v * !.

Theorem 2 states that when the vector of individual endowments is in set
M ù R11

ln there is a vector of market prices such that the status quo is an
equilibrium ~status quo meaning zero gifts and consumption of own endow-
ment for all agents!.

Set M ù R11
ln , defined in a simple way from the fundamentals of the

social system ~namely, social endowment, individual market preferences
described by ophelimity functions, and individual distributive preferences
described by utility functions!, is therefore the set of decentralizable allo-
cations, which means that any equilibrium allocation lies in this set and
any allocation in this set is an equilibrium allocation for properly chosen
vectors of market prices and individual endowments.

Example—The Cobb–Douglas social system: We take n 5 3. The number of
goods l is left unspecified. The three agents have identical market
preferences, represented by Cobb–Douglas ophelimity functions ui : xi r

)h51
l xih

10l , i 5 1, 2, 3. Their utility functions are the Cobb–Douglas
wi : u r ) j51

3 uj
aij , where the vector ai 5 ~ai1,ai2,ai3! is .. 0 and

belongs to the unit simplex S3 5 $s 5 ~s1, s2, s3 ! [ R1
3 6(i51

3 si 5 1%.
These preferences verify Assumption 1.

The market efficiency frontier is then O 5 $x [ F 6∃s [ S3 such
that xi 5 si e ∀ i %, that is, the set of feasible allocations where each
agent i consumes some fraction si of the social endowment e . The
ophelimity frontier u ~O! is therefore the simplex S3, represented in
Figure 1 by triangle u1u2u3, where ui denotes the ophelimity distri-
bution such that agent i’s ophelimity is 1 ~5 ui ~e !! and agent j ’s
ophelimity is 0 ~5 uj ~0!! for all j Þ i . All the elements of O have the
same unique supporting price vector in the unit simplex Sl 5 $s [

R1
l 6(i51

l si 5 1%, namely, price vector p * 5 S1
l
, . . . , 1

l D. And we have
therefore, for any x in O , u ~x ! 5 ~ p *x1, p *x2, p *x3 !, so that ophelimity
distribution and wealth distribution can be identified everywhere on
the market efficiency frontier.6

The maximum of wi in u ~O! is the vector of weights a i. The set u ~Mij !
of ~i , j ! -maximal ophelimity or wealth profiles is triangular surface uka ium,

6The possibility of identifying the ophelimity distribution with the wealth distribution on the
frontier of market efficiency is of course peculiar to this example. Nevertheless, it expresses
in a strong way a general feature of the type of social system examined in this paper, namely,
the fundamental equivalence of ophelimity and wealth from the viewpoint of nonpaternal-
istic individuals pursuing distributive aims on the background of a competitive economy.
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with k and m Þ j ~e.g., u ~M33 ! 5 u1a3u2; cf. Figure 1!.7 The set u ~M ! of
decentralizable ophelimity or wealth profiles is therefore the surface
~u2a1u3! ù ~u1a2u3! ù ~u1a3u2! ~the hatched area of Figure 1!. The
~unique! equilibrium distribution of wealth runs in this surface when the
vector of initial individual endowments runs in F ù R11

ln .

4. Existence of Social Equilibrium

One can easily build Cobb–Douglas social systems with an empty set M .
Mercier Ythier ~1989! or Stark ~1993!, for instance, provide simple exam-
ples of pure distributive social systems ~l 5 1! involving a “war of gifts”
between two agents. One verifies, likewise, that M is empty in the Cobb–
Douglas social system above, when distributive parameters a i are chosen
so that aij 5 aji. aii for all i and all j Þ i . There is then, at any market
optimum and associate supporting price vector, at least one individual
who wishes and is able to transfer some of his own wealth to another
agent.

The existence property is analyzed in detail in Mercier Ythier ~1992;
1993! for the one commodity case. I establish that nonexistence stems
from the fact that gifts are virtually unbounded in the presence of a
closed chain ~a “directed circuit”! of individual redistributive desires ~gifts

7Mercier Ythier ~1998b, Thm. 5!.

Figure 1: Decentralizable ophelimity profiles in a Cobb–Douglas social system.
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received by an agent then being turned, like “hot potatoes,” to the sub-
sequent one in the circuit!.8 The compactness assumption embodied in
Debreu’s ~1952! social equilibrium existence theorem, in particular, is
violated in such cases. I prove too that a social equilibrium exists for all
initial distributions of endowments when the agents never wish to make
any transfer to individuals wealthier than themselves ~Mercier Ythier 1992,
Cor. 3; or 1993, Thm. 2!.

Theorem 3 extends this last result to the case of multiple commodities.
It makes use of the following definitions and assumption. Let vi denote i’s
indirect ophelimity function, defined on the set of price-wealth vectors
~ p , Ri ! [ R11

l 3 R1 , by vi ~ p , Ri ! 5 Max$ui ~xi !6 xi [ R1
l and pxi ≤ Ri %. These

are well-defined, continuous, R11
l 3 R1 r R functions under Assumption

1 ~as a well-known consequence of the continuity of ophelimity functions
and compactness and nonemptiness of $xi [ R1

l 6pxi ≤ Ri % for all ~ p , Ri ! [
R11

l 3 R1 !. We let R 5 ~R1, . . . , Rn !, v : ~ p , R ! r ~v1~ p , R1 !, . . . ,vn~ p , Rn !!, eij

be the vector of Rn, the components of which are all equal to 0 except the
ith one, equal to 21, and the jth one, equal to 1 1; moreover, we make the
following assumption.

ASSUMPTION 2:

~i! vi is differentiable in R11
l 3 R11 for all i.

~ii! t r wi ~v ~ p , R 1 teij !!, defined on @0, Ri # , is nonincreasing whenever
Rj ≥ Ri .

Assumption 2~ii! embodies a notion of self-centeredness in distributive pref-
erences. It fits naturally in this class of models, where gift-giving is a mere
instrument of redistribution of wealth between individuals, designed in
practice to correct significant wealth differences between the donor and
the beneficiary. A much tighter, in some sense the tightest ~Mercier Ythier
1992!, condition for existence is the hypothesis of Lemma 6 of the Appen-
dix. The Cobb–Douglas social system defined above verifies Assumption 2
if and only if aii ≥ aij for all ~i , j !.

THEOREM 3: Suppose that ~w ,v! verifies Assumptions 1 and 2. Then there
exists a social equilibrium.

8This phenomenon is implicitly assumed away by Nakayama ~1980! and Kranich ~1988!.
Nakayama restricts transferable wealth to initial endowment, the latter being therefore the
upper bound to individual gifts in his construct. Kranich embodies a priori upper bounds on
individual gifts in individual gift sets Ti ~assumed compact!. These choices are not satisfac-
tory in the context of these nonpaternalistic models, where gifts are essentially identical with
transfers of wealth ~money units!. In such a context, Nakayama’s choice appears counterfac-
tual ~wealth received through gifts is clearly transferable!, and Kranich’s seems artificial
~what is the practical significance of an a priori upper bound on money transfers?!.

52 Journal of Public Economic Theory



5. Distributive Policy

The type of distributive policy that I consider now is the simplest conceiv-
able one, namely, a discretionary redistribution of individual endowments
by means of lump-sum transfers. I brief ly examine below what can be said
on the feasibility of these policies in this abstract social system.

It follows readily from Theorem 2 that a distributive policy operating
by lump-sum transfers can reach, in principle, any allocation of M . The
effectiveness of distributive policies has nevertheless been challenged by
the neutrality theorems recalled in Section 1 of this article. Theorem 4,
below, translates these neutrality properties into our framework in a way
that allows us to appreciate their relevance and scope.

A preliminary statement, which is a simple corollary of Theorems 1 and
2, will help interpret the neutrality property. From now on, we let uij [ R1

ln

be a vector of public lump-sum transfer from i to j when j Þ i , uii 5 0 for all
i , u 5 ~u11, . . . ,u1n , . . . ,un1, . . . ,unn !. We use the simple notions of graph theory
which are collected in Appendix A.II, and the following two formal defini-
tions, built from Theorems 1 and 2. Consider a social system verifying As-
sumption 1, an allocation x in M ù R11

ln and its ~unique! supporting price
vector p in the unit simplex Sl . The graph of gift desires at x is the set g ~x ! 5
$~i , j ![ N 3 N 6x [Mij %. It can be interpreted as the graph of potential equi-
librium gifts at x , in the sense that ~i , j ! must belong to g~x ! whenever ~x , t , z !
is an equilibrium state such that tij . 0 ~Theorem 1~iii!!. We define, second,
the set V~x ! 5 $v [ Rln 6(i[N vi 5 e and ∃t such that ti [Ti for all i ; tij 5 0
whenever x Ó Mij ; pxi 5p ~vi 1Di t ! for all i %. Given Theorems 1 and 2, V~x ! ù
R11

ln is the ~nonempty! set of vectors of interior individual endowments sup-
porting x as a social equilibrium allocation.

COROLLARY 1: Suppose that ~w ,v 0! verifies Assumption 1, and let ~ p ,a! be an
equilibrium. (i) ~ p , x ~a!! is an equilibrium price-allocation vector of ~w ,~v1

0 1 D1u,
. . . ,vn

0 1 Dnu!! if and only if there exists t such that ti [ Ti for all i , tij 5 0 when-
ever x ~a! Ó Mij , and p ~tij 2 tij ~a! 2 ~tji 2 tji ~a!! 1 p ~uij 2 uji ! 5 0 for all ~i , j !.
(ii) In particular, ~ p , x ~a!! is not an equilibrium price-allocation vector of
~w ,~v1

0 1 D1u, . . . ,vn
0 1 Dnu)) whenever u implies wealth transfers across compo-

nents of g~x ~a!!, that is, whenever there are two agents i and j belonging to two dis-
tinct components of g~x ~a!! such that p ~uij 2 uji ! Þ 0.

The first part of the corollary states that an equilibrium survives public
redistributions of endowments if and only if the corresponding wealth
transfers can be offset by individual countertransfers that maintain the
structure of the graph of transfers which is associated with the equilibrium
allocation. The second part states that equilibrium does not survive public
redistributions involving transfers of wealth across the components of the
graph.
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This result is intuitively appealing. It draws its logical strength from
the fact that there is only one structure of potential equilibrium gifts
associated with any potential equilibrium allocation ~any element of M !. It
points both to a sufficient condition for the nonneutrality of distributive
policy, namely that it performs redistributions of wealth across the com-
ponents of the graph of gift desires, and to its interpretation, that is, that
offsetting individual countertransfers will then be incompatible with the
structure of this graph.

We proceed now to the definition and complete characterization of
the neutrality of distributive policy. A distributive policy is locally neutral at
some vector v 0 [ F ù R11

ln of individual endowments if there exist a
neighborhood V ~v 0! of v 0 in F ù R11

ln and an ophelimity profile u0 such
that u0 is the unique social equilibrium ophelimity profile for all v in
V ~v 0!. A distributive policy is, second, globally neutral if there exists an
ophelimity profile u0 such that u0 is the unique social equilibrium ophelim-
ity profile for all v in F ù R11

ln . Local neutrality means that lump-sum
transfers will not modify the distributive outcome if they remain confined
to some neighborhood of the initial distribution of individual endow-
ments. Global neutrality means that lump-sum transfers cannot modify
the distributive outcome at all.

Theorem 4 provides necessary and sufficient conditions for the local
and global neutrality of distributive policy.

THEOREM 4: Suppose that ~w ,v! verifies Assumption 1. (i) Distributive policy is
globally neutral if and only if set u ~M ù R11

ln ! is a singleton. Consider, moreover,
an x [ M ù R11

ln . (ii) Set V~x ! 2 $x % 5 $v 2 x 6 v [ V~x !% is a nonempty,
closed, convex cone of dimension l~n 2 c ~g~x !!!, where c ~g~x !! denotes the
number of components of graph g~x !. (iii) If, in particular, u ~x ! is the unique
social equilibrium ophelimity profile for all v [ V~x ! ù R11

ln , then distributive
policy is locally neutral at any v of the (nonempty) interior of V~x ! ù R11

ln in F
if and only if g~x ! is connected.

The first part of Theorem 4 is an immediate consequence of Theorems 1
and 2: Since the elements of M ù R11

ln , and only them, can be reached as
interior equilibrium allocations, global neutrality is clearly equivalent to
the single-valuedness of u ~M ù R11

ln !.9

The last part of Theorem 4 is a less straightforward consequence of
Theorems 1 and 2. It translates Barro’s neutrality theorem into our frame-

9An interesting special case of single-valuedness of u ~M ! is Ramsey’s dynastic framework
~1928!, where the agents are generations and where, using Pareto’s vocabulary, their ophelim-
ities are integrated in a single utility function, common to all generations, consisting of the
~nondiscounted! sum of generations’ ophelimities. Such a framework leaves little room, of
course, for a conflict or even a difference between public and private views on distribution,
which lies at the heart of Barro’s neutrality theorem.
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work. The connectedness condition that characterizes local neutrality gen-
eralizes, in particular, Barro’s sufficient condition for neutrality, namely,
that “current generations are connected to all future generations by a
chain of operative transfers” ~1974, p. 1106!.

Theorem 4~iii! extends straightforwardly to the connected compo-
nents of g~x !: Small public lump-sum transfers between the vertices of a
component of the graph of equilibrium transfers leave the equilibrium
ophelimity profile unchanged. Combining this result with Corollary 1
results in the following statement: Small public transfers can influence the
distribution of wealth across the components of the graph of gift desires;
but they cannot influence the distribution of wealth inside the compo-
nents of the graph of equilibrium transfers, for they are then offset by
private countertransfers ~this part is conditional on the uniqueness of the
equilibrium ophelimity profile!.

Considered from a purely theoretical point of view, the local neutral-
ity of distributive policy, and a fortiori its global neutrality, cannot be
viewed as general properties, that is, as properties holding true under
general assumptions on preferences and endowments ~like the assump-
tions of Section 2!. In the social system of Figure 1, for instance, there are
only six decentralizable ophelimity profiles that verify connectedness, namely:
a1, a2, a3, u ', u '', and u ''' ~where the first three correspond in fact to the
situation analyzed by Becker 1974!. The distributions of the interior of
u ~M ! are all accessible objectives for distributive policy, the achievement
of which implies the crowding out of all individual gifts ~the situation
considered by Roberts 1984!. Moreover, the Beckerian situations a1, a2,
and a3 of this example are the only accessible targets of distributive policy
which do not imply a complete crowding out of private transfers and
which are, at the same time, Pareto efficient with respect to utility func-
tions. This is suggestive of a general property of this type of model: The
achievement of social Pareto efficiency by distributive policy usually implies
the crowding out of all private transfers when, as a familiar consequence
of the public good problem ~Kolm 1966; Hochman and Rodgers 1969!,
social equilibrium is Pareto inefficient with respect to utilities.10

10The set of distributive optima of Figure 1 ~i.e., the ophelimity profiles that are Pareto
efficient with respect to utility functions! is surface a1a2a3. Denoting u ~P ! this set and
]u ~M ! the boundary of u ~M !, we have u ~P ! , u ~M ! and u ~P ! ù ]u ~M ! 5 $a1,a2,a3 % in the
social system of Figure 1. Moreover, if there are gifts at equilibrium, then the corresponding
ophelimity profile must be in ]u ~M !. These facts are general: An efficient distributive policy
will normally crowd out all private transfers ~except for targets taken a discrete set that
contains the maxima of individual utility functions! whenever u ~P ! , u ~M !. General social
systems such that u ~P ! , u ~M ! can be found in Roberts ~1984, Sec. III!, and in Mercier
Ythier ~1998a, Thm. 1!. The interested reader can build easily Cobb–Douglas social systems
such that u ~P ! is not contained in u ~M ! by moving properly the a i’s in Figure 1; u ~P ! ù
]u~M ! then contains a subset ~segment! of dimension n 2 2.
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This theoretical skepticism11 is nevertheless qualified, as far as the
positive question of the effectiveness of distributive policy is concerned ~as
opposed to the normative question of its social efficiency!, when one
confronts the general properties stated in Theorem 4 with empirical evi-
dence on the structure of the graph of actual private transfers. The inter-
esting question, from a positive point of view, is not whether local neutrality
holds true or not in any real social system ~it certainly does not!, but
rather how many degrees of freedom distributive policy enjoys in such
systems. Part ~ii! of Theorem 4 states a general property that gives, at least
in principle, a precise answer to this question: distributive policy can
influence the distribution of wealth in a number of dimensions equal to
the number of components of the graph of equilibrium gifts ~minus 1!.
Combined with empirical evidence that intergenerational transfers within
the family are very important in frequency and magnitude and are by far
the most widespread type of private transfers,12 this property suggests that
it should be much easier for a distributive policy, operating by lump-sum
transfers confined to some neighborhood of 0, to redistribute wealth from
rich to poor than to perform intergenerational transfers, thereby recon-
ciling, to some extent, the opposed statements of Barro ~1974!, Becker
~1974!, and Roberts ~1984!.13

This partial practical relevance of local neutrality does not extend, of
course, to global neutrality. Clearly, there is generally a practical ability of
distributive policy to influence the distribution of wealth, as soon as lump-
sum transfers are no longer confined to a neighborhood of 0.

One should mention, for the sake of completeness, two limits to the
effectiveness of distributive policy which can appear in our framework,
besides offsetting private transfers. Both raise the question of the ability of
the government to control the consequences of nonneutral transfers in
order to achieve a determinate, a priori accessible, distributive objective
~that is, a given element of u ~M !!.

11Bernheim and Bagwell ~1988!, expresses the theoretical skepticism of the authors with
respect to Barro’s theorem in a different way; they show that if this theorem is taken
seriously, it implies that not only lump-sum public transfers but also “distorsionary” ones
might be neutral, an implication that can hardly be viewed as reasonable.
12The stimulating paper of Kotlikoff and Summers ~1981! revived empirical research con-
cerning intergenerational transfers. Recent results and a comprehensive review can be found
in Gale and Scholz ~1994!. Auten and Joulfaian ~1996! confronts intergenerational transfers
with charitable ones.
13One can imagine, for instance, that the components of the graph of transfers split the set
of agents into connected intertemporal blocks ~dynasties, so to speak, or extended families,
but conceived as sets of distinct individual agents, and not, in the manner of Ramsey ~1928!,
as single collective ones!. It would then be possible to influence the distribution of wealth
between two agents, living at different periods of time or not, if and only if they belonged
to different “dynasties.” This condition clearly imposes more restrictions on intertemporal
resdistribution ~one can not redistribute inside a “dynasty”! than on simultaneous redistribution.
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The first difficulty stems from the theoretical possibility of multiple
social equilibria.14 Social equilibrium might “jump” discontinuously, fol-
lowing small lump-sum transfers, either because of equilibrium multiplic-
ity per se ~indeterminacy of equilibrium! or because of an associate
discontinuity of the equilibrium correspondence ~the latter being in gen-
eral upper hemicontinuous but not lower hemicontinuous!. Such discon-
tinuous jumps violate the neutrality property, without implying the
effectiveness of distributive policy, since the distributive outcome is uncon-
trolled then by construction. Equilibrium multiplicity is, nevertheless, dif-
ficult to interpret. I tend to understand it as an intrinsic property of
mathematical models of social equilibrium—an unfortunate consequence
of abstractness so to speak. In such a view, it is but one manifestation of
the natural uncompleteness of theoretical representations of reality, and
should not, therefore, be taken as too serious a problem.

The second difficulty is an aspect of the well-known “transfer prob-
lem,” that is, the fact that a lump-sum transfer on endowments can impov-
erish the beneficiary and0or enrich the donor, due to induced effects on
their respective terms of trade ~e.g., Postlewaite 1979!. This phenomenon
can be safely ignored for private transfers, which consist in our framework
of individual gifts, whose consequences on market prices can be realisti-
cally viewed as negligible by the donor. But the same does not hold for
public transfers. The government could face, in principle, paradoxical
effects of his decisions on the distribution of wealth when his transfers
become large. The learning process by which the government actually
experiences his ability to influence the distribution of wealth would be
made more complicated and costly in such circumstances.

6. Conclusions

I have identified the set of allocations that are decentralizable in the sense
that they are general equilibria for some vectors of market prices and
initial endowments. This set is characterized in a simple way from the
social endowment and individual market and distributive preferences, and
is generally nonempty. All decentralizable allocations are accessible to
distributive policy unless public transfers are confined to some neighbor-
hood of 0. In the latter case, distributive policy remains free to perform
local redistributions of wealth across the components of the graph of
equilibrium gifts.

14The multiplicity of equilibrium can stem from market exchange ~multiple economic equi-
libria! as well as from gift-giving ~multiple distributive equilibria!. Status quo equilibrium is,
nevertheless, unique in pure distributive social systems endowed with suitable regularity
properties ~Mercier Ythier 1998c!; in such cases, equilibrium multiplicity remains an issue
only for local distributive policy.
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These properties are established in the least favorable context for the
effectiveness of distributive policy, namely, a competitive economy where
public and private transfers are perfect substitutes.

Relaxing perfect substitutability will increase the descriptive accuracy
of the model but is unlikely to modify its properties substantially. In a
realistic setting, small public transfers inside a component of the graph of
equilibrium gifts should be at least partly offset by private countertrans-
fers, thereby inducing only second-order effects on market prices and the
allocation of resources. Practically, effective distributive policies will then
either redistribute wealth across the components of the graph of equilib-
rium gifts or push public transfers up to the point where they become, in
the main, complements with the corresponding private transfers.

Considering market imperfections does alter the analysis quite signif-
icantly, for then distributive effects interact with efficiency effects. Conse-
quently, the positive question of the effectiveness of distributive policy
cannot be discussed independently from the normative questions of its
market and social efficiencies. The means and ends of economic policy,
more generally, must be defined simultaneously, and its distributive and
allocative objectives coordinated. These questions match some of the main
issues confronting actual distributive policy. They should become the prin-
cipal focus of future research on its effectiveness.

Appendix

Assumption 1 of Section 2 is maintained throughout.

AI. Proofs of Theorems 1 and 2

LEMMA 1: Consider a price vector p .. 0, an action vector [a, and an individual
action ai

* such that x ~~ [an0i ,ai
* !! .. 0. Then ai

* ∈ argMax$wi ~u ~x ~~ [an0i ,ai !!!!6
ai [ Bi ~ p , [a!% if and only if the following four conditions are verified:
~i! pxi ~~ [an0i ,ai

* !! 5 p ~vi 1 Di t~~ [an0i ,ai
* !!!; ~ii! ]uj

wi ~u ~x ~~ [an0i ,ai
* !!!!.

]xj
uj ~xj ~~ [an0i ,ai

* !!! ≤ ]ui
wi ~u ~x ~~ [an0i ,ai

* !!!!.]xi
ui ~xi ~~ [an0i ,ai

* !!! for all j;
~iii! @]ui

wi ~u ~x ~~ [an0i ,ai
* !!!!.]xi

ui ~xi ~~ [an0i ,ai
* !!! 2 ]uj

wi ~u ~x ~~ [an0i ,ai
* !!!!.

]xj
uj ~xj ~~ [an0i ,ai

* !!!# .tij ~~ [an0i ,ai
* !! 5 0 for all j; and ~iv! there exists a real number

m i . 0 such that ]ui
wi ~u ~x ~~ [an0i ,ai

* !!!!. ]xi
ui ~xi ~~ [an0i ,ai

* !!! 5 m i p.

Proof: Conditions ~i! to ~iv! of Lemma 1 are the Kuhn and Tucker con-
ditions for the program Max$wi ~u ~x ~~ [an0i ,ai !!!!6ai [ Bi ~ p , [a!% at a
maximum ai

* such that x ~~ [an0i ,ai
* !! .. 0 ~with m i . 0 because of our

monotonicity assumptions on utility and ophelimity functions!. These
conditions are necessary and sufficient by our assumptions and by
Arrow and Enthoven ~1961, Thm. 1~b! and Thm. 2~a! or 2~b!!. n

LEMMA 2: Consider an allocation x .. 0. It is the case that x is ~i , j ! -maximal
if and only if ~i! x [ F, and ~ii! there exist p .. 0 in R l and l 5
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~l1, . . . ,ln ! .. 0 in Rn such that, for all k in N, ]xk
uk~xk ! 5 lk p and

]uj
wi ~u ~x !!l j ≥ ]uk

wi ~u ~x !!lk.

Proof: As an immediate consequence of definitions, we have x * [ Mij if
and only if there exists u* [ Rn such that u* 5 u ~x * !; and x * solves
the program: Max$wi ~u ~x !!6 x is feasible and uk~xk ! ≥ uk

* ∀ k Þ j %.
Using our monotonicity assumptions on utility and ophelimity func-
tions, conditions ~i! and ~ii! of Lemma 2 are then the Kuhn and
Tucker conditions for an interior solution to this program. These
conditions are necessary and sufficient by Assumption 1 and by Arrow
and Enthoven ~1961, Thm. 1~b! and Thm. 2~b!!. n

Proof of Theorem 1: Consider a vector of individual endowments v [ F
such that vi . 0 for all i , and some associate social equilibrium ~ p ,a!.
Denote ~x , t , z ! the corresponding equilibrium state. It follows readily
from our monotonicity assumptions on utility and ophelimity func-
tions that p .. 0 and x [ F. Moreover, we must have x .. 0 since, for
all i and all x [ R1

ln , pvi . 0, ui ~xi ! . 0 whenever wi ~u ~x !! . 0, and
xi .. 0 whenever ui ~xi ! . 0. Conditions ~i!–~iv! of Lemma 1 are then
verified for all i at social equilibrium ~ p , a !. Recalling that
]ui

wi ~u ~x !! . 0 by Assumption 1~ii!, and letting li 5 m i 0]ui
wi ~u ~x !!,

one concludes then by Lemma 2. n

Proof of Theorem 2: Let x [ M ù R11
ln . By Lemma 2, x [ F ; and there exist

p .. 0 in Rl and l 5 ~l1, . . . ,ln ! .. 0 in Rn such that, for all ~i , k ! [
N 3 N , ]xi

ui ~xi ! 5 li p and ]ui
wi ~u ~x !!li ≥ ]uk

wi ~u ~x !!lk . Consider the
social system ~w , x !, and the price-action vector ~ p ,0!. All markets
clear by construction. It will suffice to prove, therefore, that ~z i , ti ! 5
0 solves Max$wi ~u ~x ~~0,ai !!!!6ai [ Bi ~ p ,0!% for all i . Conditions ~i! and
~iii! of Lemma 1 are obviously verified, and conditions ~ii! and ~iv! are
verified by the consequence of Lemma 2 written above ~ just let m i 5
]ui

wi ~u ~x !!.li , and recall that ]ui
wi ~u ~x !! . 0 by Assumption 1~ii! and

that p .. 0!. n

A2. Proof of Theorem 3

This section and the next make use of the following few concepts of graph
theory.15 For any x [ M , define the graph of gift desires at x, g~x ! 5 $~i , j ! [
N 3 N 6x [ Mij %; for any x [ O , define the graph of redistributive desires at
x, g ' ~x ! 5 $~i , j ! [ N 3 N 6 x [ Mij and x Ó Mii % ; and for any gift vector t ,
define the graph of individual gifts at t, g ~t ! 5 $~i , j ! [ N 3 N 6 tij . 0%. The
set g~x ! ~respectively, g ' ~x !; g ~t !! can be viewed as ~in one-to-one corre-
spondence with! a formal directed graph ~in short, digraph or graph). Its
vertices are the agents i such that either ~i , j ! or ~ j, i ! belongs to g~x !

15For a detailed presentation of the concepts and ideas of graph theory used in this Appen-
dix Section AII, cf. Tutte ~1984!.

Distributive Policy under Competition 59



~respectively, g ' ~x !; g ~t !!. An element ~i , j ! of g~x ! ~respectively, g ' ~x !;
g ~t !! is a dart, whose associate vertices i and j are named, respectively, its
tail and head. Two darts ~i , j ! and ~i ', j ' ! are adjacent if they have at least
one vertex in common ~i.e., if $i , j % ù $i ', j ' % Þ B!. An m-circuit of g~x !
~respectively, g ' ~x !; g ~t !! is a sequence ~~ik , jk !!1≤k≤m of m distinct elements
of g~x ! ~respectively, g ' ~x ! ; g ~t !! such that, for all k [ $1, . . . , m% , dart
~ik11, jk11 ! is adjacent to dart ~ik , jk ! ~setting, conventionally, ~im11, jm11 ! 5
~i1, j1 !!. A directed circuit of g~x ! ~respectively, g ' ~x ! ; g~t!! is a circuit
~~ik , jk !!1≤k≤m such that, for all k [ $1, . . . , m%, jk 5 ik11. A directed path of
g~x ! ~respectively, g ' ~x !; g ~t !! is a sequence ~~ik , jk !!1≤k≤m of adjacent darts
of g~x ! ~respectively, g ' ~x !; g ~t !! such that, for all k [ $1, . . . , m 2 1%, jk 5
ik11. A subgraph of digraph G is a digraph whose sets of vertices and darts
are contained, respectively, in the set of vertices and in the set of darts of
G. We say then that this digraph is “contained” in G. A subgraph of G spans
the latter if it has the same set of vertices. A digraph is connected if, for any
pair of distinct vertices i and j, there exists a path in the digraph which
has i and j as vertices. A component of digraph G is a connected subgraph
of G which is strictly contained in no connected subgraph of G. A digraph
is a forest if it has no circuit.

LEMMA 3: ~i! O is closed. ~ii! If x * [ O, then, for all i, either xi
* 5 0 or xi

* ..
0. ~iii! x * [ O if and only if: x * [ F; and there exist p .. 0 in R l and, for all
i [ $ j [ N 6xj

* .. 0%, a real number li . 0 such that ]xi
ui ~xi

* ! 5 li p.

Proof:

~i! Consider some converging sequence ~x q !q[N of elements of O ,
denote x * its limit, and suppose that x * Ó O . Since x * is feasible
by closedness of the set of feasible allocations, there exists a
feasible x ** such that u ~x ** ! . u ~x * !.

Let us prove first that ophelimity is nonnegative in R1
l and

positive in R11
l . Function l r ui~lxi!, defined on R1 , is con-

tinuous and decreasing whatever xi .. 0 as a consequence of
Assumption 1~i!~a! and ~i!~b!. Therefore ui ~xi ! . 0 for all xi [
R11

l . The conclusion follows from continuity and Assumption
1~i!~c!.

From the paragraphs above, we have: u ~x * ! . 0; and xi
** ..

0 whenever ui ~x
** ! . ui ~x

* !. Using continuity and monotonicity,
we can then assume without loss of generality that u ~x ** ! ..
u ~x * !. But then we must have, by continuity of ophelimity func-
tions, u ~x q ! ,, u ~x ** ! when q is large enough, a contradiction.
Therefore O is closed.

~ii! Consider some feasible allocation x *. Suppose first that for all
agent i there is some commodity h such that xih

* 5 0; we then
have u ~x * ! 5 0, while u ~x ! .. 0 for all x in the ~nonempty!
intersection of F with R11

ln ; therefore x * [ O . Suppose now that
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xi
* .. 0 for some agent i and that xjh

* 5 0 and xjh '
* . 0 for some

agent j and some pair of commodities h and h ' ; we then have
uj ~xj

* ! 5 0 5 uj ~0! and u ~x ** ! . u ~x * ! for the feasible allocation
x ** such that xi

**5 xi
*1 xj

* , xj
**5 0, and xk

**5 xk
* for all k distinct

from i and j; therefore x * Ó O and the first point is established.

~iii! Consider now some feasible allocation x * . 0 such that, for all i ,
either xi

* 5 0 or xi
* .. 0, and suppose without loss of generality

that xi
* 5 0 if and only if i . m , with m ≥ 1. Then, x * [ O if and

only if ~x1
* , . . . , xm

* ! solves the program Max$u1~x1 !6(i≤m xi ≤ e and
ui ~xi ! ≥ ui ~xi

* ! for all i 5 2, . . . , m% ~necessity follows from defini-
tions, sufficiency from the increasingness of ophelimity functions
in R11

l !. The Kuhn and Tucker conditions for an interior solu-
tion for this program are then the following: (i≤m xi

* 5 e and
there exist p .. 0 in Rl and a .. 0 in Rm such that ai ]xi

ui ~xi
* ! 5

p for all i ≤ m . The convexity property of Assumption 1~iii!~a!,
combined with the increasingness of utility in its own ophelimity
and the continuity of ophelimity in R1

l , imply the quasi-concavity
of ophelimity functions in R1

l . These first-order conditions are
therefore necessary and sufficient by Arrow and Enthoven ~1961,
Thm. 1~b! and Thm. 2~a! or 2~b!!. n

LEMMA 4: ~i! $x [ O 6uj ~xj ! 5 0% , Mij for all ~i , j !. ~ii! $x [ F 6ui ~xi ! 5 0 and
uj ~xj ! . 0% , F \Mij for all ~i , j ! such that i Þ j. ~iii! Mij is closed for all ~i , j !.
~iv! øj[N Mij 5 O whatever i. ~v! If x * [ Mij , then x * [ F and either xj

* 5 0 or
xj
* .. 0 and there exist p .. 0 in Rl and, for any k [ $q [ N 6 xq

* .. 0%, a real number
lk . 0 such that ]xk

uk~xk ! 5 lk p and ]uj
wi ~u ~x !!l j ≥ ]uk

wi ~u ~x !!lk.

Proof:

~i! Consider first some x * in O such that uj ~xj
* ! 5 0. By Lemma 3~ii!,

we then have xj
* 5 0. Therefore, $u ~x ! [ Rn 6 x [ O and uk~xk ! ≥

uk~xk
* ! for all k Þ j % 5 $u ~x * !% as a consequence of the definition

of O . The result follows immediately from the definition of Mij .

~ii! By Assumption 1~i!~c! and 1~iii!~b!, we have xj
* .. 0 5 xi

* and
wi ~u ~x * !! 5 0 whenever x * lies in $x [F 6ui ~xi ! 5 0 and uj ~xj ! . 0%.
Allocation x such that xj 5 0 and xk 5 xk

* for all k distinct from j, and
allocation x ** [ F defined by xi

**5 xi
*1 xj

* , xj
** 5 0, and xk

**5 xk
*

for all k distinct from i and j, are then such that wi ~u ~x ** !! . wi ~u ~x !!
~by the increasingness of utility in its own ophelimity! and wi ~u ~x !!5
0 5 wi ~u ~x * !! ~Assumption 1~iii!~b!!, while uk~xk

** ! ≥ uk~xk
* ! for all

k Þ j. Therefore, x * Ó Mij .

~iii! Consider some converging sequence ~x q !q[N of elements of Mij ,
denote x * its limit, and suppose that x * Ó Mij . Since x * is feasible
by closedness of the set of feasible allocations, this means that
there exists a feasible x ** such that wi ~u ~x ** !! . wi ~u ~x * !! and
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uk~xk
** ! ≥ uk~xk

* ! for all k Þ j. By Lemma 4~i!, we must have xj
* ..

0. The convexity of preferences ~Assumption 1~iii!~a!! and result-
ing quasi-concavity of ophelimity functions ~proof of Lemma 3~iii!!
allow us to assume, without loss of generality, that xj

** .. 0 ~the
elements of segment @x **, x *# being feasible and verifying the
inequalities above!. Using the continuity of utility and ophelimity
functions in R1

n and R1
l respectively, the increasingness of

ophelimity functions in R11
l , and the observation above ~proof of

Lemma 3~i!! that ophelimity is nonnegative in R1
l and strictly

positive in R11
l , we can assume, again without loss of generality,

that uk~xk
** ! . uk~xk

* ! for all k Þ j. But we must have then, by
continuity, wi ~u ~x q !! . wi ~u ~x * !! and uk~xk

q ! . uk~xk
* ! for all k Þ

j and large enough q , a contradiction. Therefore Mij is closed.

~iv! In view of the closedness of sets Mij and O , it suffices to prove,
eventually, that ~øj[N Mij ! ù R11

ln 5 O ù R11
ln But this follows

readily from Lemmas 2 and 3 and the simple observation that,
using the notations of these lemmas, for all x * in O and all i ,
there exists j such that ]uj

wi ~u ~x * !!l j ≥ ]uk
wi ~u ~x * !!lk for all k .

~v! Let x * [ Mij . The definition of Mij , the increasingness of wi in its
own ophelimity, and the monotonicity properties of uj ~increas-
ing in R11

l by Assumption 1, nonnegative in R1
l and positive in

R11
l as established in the proof of Lemma 3~i!! readily imply that

x * [ F. Moreover, Lemma 4~iv! implies that x * [ O . Lemma 3~ii!
implies then that we have either xi

* 5 0 or xi
* .. 0, whatever i . If

xj
* 5 0 the proof is completed. Suppose therefore that xj

* .. 0,
and let, without loss of generality, $i [ N 6 xi .. 0% 5 $1, . . . , m% 5
I . If m 5 1, then j 5 1, and the result is a simple consequence of
Lemma 3~iii!. Suppose next that m.1. The definition of Mij implies
that x * solves Max$wi ~u ~x !!6 x is feasible, uk~xk ! ≥ uk~xk

* ! ∀ k [
I \$ j %, xk 5 0 ∀k [ N \I% . The conclusion follows then from
Arrow and Enthoven ~1961: Thm. 2~b!!. n

LEMMA 5: Consider some price-action vector ~ p ,a! such that p . 0; ai [
Bi ~ p ,a! for all i; and g ~t~a!! has no directed circuit. Then, for all i and all j Þ
i, there exist ai

* 5 ~z i
* , ti
* ! ∈ Bi ~ p ,a! such that: tij

* [ @0, e # for all j; and p ~vi 1

(j[N ~tji ~a! 2 tij
* !! 5 0.

Proof: It suffices to prove that there exists tij
* [ @0, e # such that p ~vi 1

(j[N tji ~a!! 5 ptij
* . Denote, for all i , I ~i ! the set of vertices j of g ~t~a!!

such that there exists a directed path ~~ik , jk !!1≤k≤m in g ~t~a!! with
i1 5 j and jm 5 i . We have, by definition, I ~ j ! , I ~i ! for all j [ I ~i !,
so that the total wealth transferred to agent i p (j[N tji ~a! 5
p (j[I ~i ! tji ~a! stems, directly or indirectly, from the pool of agents
I ~i !. Moreover, the absence of directed circuits in g ~t~a!! implies
that i Ó I ~i ! for all i . Therefore, p (j[N tji ~a! is a wealth transfer
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from the pool of agents I ~i ! to outside agent i . Aggregating the
budget constraints of the elements of I ~i !, we get p (j[N tji ~a!! ≤
p (j[I ~i ! ~vj 1 (k[N \$i % ~tkj ~a! 2 tjk~a!!! ≤ p (j[I ~i ! vj . Hence, p ~vi 1

(j[N tji ~a!! ≤ pvi 1 p (j[I ~i ! vj . Since p . 0, we have pvi 1
p (j[I ~i ! vj ≤ p (j[N vj 5 pe . Therefore, p ~vi 1 (j[N tji ~a!! ≤ pe and
the result follows. n

LEMMA 6: Suppose that g ' ~x ! has no directed circuit whatever x [ O. Then,
there exists a social equilibrium.16

Proof: This lemma is the main piece of the existence proof. It is built on
the pattern of Arrow’s and Hahn’s ~1971! proof of existence of a
competitive market equilibrium.

Denote the following: T the set of gift vectors t such that tij [
@0, e # for all ~i , j !; D the cartesian product Sl 3 F 3 T 3 Sn ; and f some
homeomorphism from u ~O! to the unit simplex Sn of Rn such that,
for all i and all u* [ u ~O!, fi ~u

* ! 5 0 if and only if ui
* 5 0 ~e.g., Arrow

and Hahn 1971, Chap. 5, Sec. 2, in particular Lemma 3!.
Define the following four correspondences on D . Set p~ p , x , t , s ! ,

Sl is the set of price vectors of the unit simpex of Rl which support f 21 ~s !
~Arrow and Hahn 1971, Chap. 4, Def. 14!. Set x~ p , x , t , s ! , F is the set
of allocations x * of F such that u ~x * ! 5 f 21 ~s !. Set t~ p , x , t , s ! , T
is the following set of gift vectors: $t [ T 6 p ~vi 1 Di t ! ≤ 0 for all i ;
p ~vi 1 Di t ! 5 0 whenever x Ó Mii ; t ij 5 0 whenever x Ó Mij % . Set
s~ p , x , t , s ! , Sn is the set of elements s * of Sn such that si

*5 0 whenever
pxi . p ~vi 1 Di t !.

We know from Arrow and Hahn ~1971, Chaps. 4 and 5!, that
correspondences p, x, and s are well defined ~i.e., they have non-
empty values!, upper hemicontinuous, compact, and convex-valued.
The compact and convex-valuedness of t, moreover, is immediate. Let
us prove that t is well defined and upper hemicontinuous.

If x [ M , then 0 [ t~ p , x , t , s !. Suppose now that x Ó M , and let
us restrict ourself to those gift vectors such that ti 5 0 whenever x [
Mii .. This means that we are looking for some t such that g ~t ! , g ' ~x !
and p ~vi 1 Di t ! 5 0 whenever x Ó Mii . It follows from Lemma 4~iv!,
that for any i such that x Ó Mii there exist some j such that ~i , j ! [
g ' ~x ! ~in other words, g ' ~x ! Þ B!. Moreover, g ' ~x ! ~and therefore
g ~t !! has no directed circuit by assumption. The existence of such a
gift vector then follows from Lemma 5.

Consider now some converging sequence ~~pq,xq,tq,sq !!q[N of ele-
ments of D , with limit ~ p *, x *, t *, s * !, and some converging sequence
~t 'q !q[N of elements of T, with limit t '*, such that t 'q [ t~ pq, x q, t q, s q !
for all q . The closedness of sets Mij for all ~i , j ! established in Lemma

16This lemma was established in Mercier Ythier ~1989!, as Theorem T.4.2, p. 161.
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4~iii! implies then that there exists some q0 such that, for all q ≥ q0,
x q Ó Mij whenever x * Ó Mij . Therefore, t '* [ t~ p *, x *, t *, s * ! and
correspondence t is upper hemicontinuous.

Denote by c the product correspondence defined by c~d ! 5 p~d ! 3
x~d ! 3 t~d ! 3 s~d ! for all d [ D . Its values are nonempty, compact,
convex subsets of D , and the correspondence is upper hemicontinu-
ous. Moreover, because D is a nonempty, compact, convex set, c has
some fixed point ~ p *, x *, t *, s * ! in this set ~Kakutani’s fixed-point theo-
rem!. To finish, let us establish that ~ p *, x *, t *, s * ! defines an equilib-
rium. By Theorem 1, we have to prove that: ~i! p *xi

* 5 p * ~vi 1 Di t * !
for all i ; ~ii! x * .. 0; ~iii! x * [ M ; and ~iv! tij

* 5 0 whenever x * Ó Mij .
Point ~iv! is verified by construction of c. Let us establish the other
points.

Suppose first that p *xi
* . p * ~vi 1 Di t * ! for some i . Then si

*5 0 by
definition of s, and therefore ui ~xi

* ! 5 0 by definition of f and x.
This, in turn, implies that xi

* 5 0, and therefore p *xi
* 5 0 ≤ p * ~vi 1

Di t * ! by definition of t, a contradiction.
Suppose now that p *xi

* ≤ p * ~vi 1 Di t * !, the inequality being strict
for at least one i . Adding up over N , we must then have p *(i[N xi

* ,
p *(i[N ~vi 1 Di t * ! 5 p *e , but this is inconsistent with the defini-
tion of x, which implies x * [ F and therefore (i[N xi

* 5 e . This
establishes ~i!.

Suppose next that xih
* 5 0 for some ~i , h!. Since x * [ O by defini-

tion of x, we must have, by Lemma 3, xi
* 5 0. It follows then from

Lemma 4~ii! that x * Ó Mij whenever uj ~xj
* ! . 0 ~that is, whenever xj

*

.. 0!. Denote I the set of agents with 0 consumption ~nonempty by
assumption!. By definition of t and by point ~i! established above, we
must then have, for all i [ I , 0 5 p *xi

* 5 p * ~vi 1 Di t * ! 5 p * ~vi 1

(jÓI tji
* 1 (j[I ~tji

* 2 tij
* !!. Therefore, adding up over I , we must have

0 5 p *(i[I xi
* 5 p *(i[I ~vi 1 (i[I (jÓI tji

* ! ≥ p *(i[I vi . But since,
eventually, p * .. 0 by Lemma 3 and the definition of p, and since
vi . 0 for all i by assumption, we must have p *(i[I vi . 0, a con-
tradiction. This establishes ~ii!.

To finish, suppose that x * Ó Mii for some i . The definition of t
and point ~i! above imply then p *xi

* 5 p * ~vi 1 Di t * ! 5 0 for such an
agent. Therefore, since p * .. 0, we must have xi

* 5 0. But then x * [
Mii by Lemma 4~i!, a contradiction. n

Proof of Theorem 3: In view of Lemma 6, it suffices to prove that g ' ~x ! has
no directed circuit whatever x [ O . Suppose the contrary—that is,
consider some directed circuit G 5 ~~ik , jk !!1≤k≤m of g ' ~x !.

Let I be the set $i [ N 6 xi .. 0%; let #I 5 m ; let ~ p ,l! [ R11
l 3 R11

m

be a vector of market prices and marginal ophelimities of wealth
supporting x ~Lemma 3~iii!!; and let Ri 5 pxi for all i . From Lemma
3~ii!, we have, for all i , either xi 5 0, and then ui ~xi ! 5 0 5 vi ~ p , Ri !,
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or xi .. 0, and then, as a simple consequence of Lemma 3~iii!, ui ~xi ! 5
vi ~ p , Ri !. Moreover, we have ]Ri

vi ~ p , Ri ! 5 li for all i [ I by the
differentiability of indirect ophelimity functions in R11

l 3 R11

~Assumption 2~i!!.
Notice next that xi .. 0 for all vertex i of circuit G as a conse-

quence of Lemma 4~ii!. Let ~i , j ! be a dart of G. Then x is ~i , j ! -
maximal and not ~i , i ! -maximal, by definition of g ' ~x !. Lemmas 3~iii!
and 4 ~v! and the paragraph above together imply then that
]uj

wi ~u ~x !!.]Rj
vj ~ p , Rj ! . ]ui

wi ~u ~x !!.]Ri
vi ~ p , Ri !. Assumption 2~ii!

implies in turn that Rj . Ri for all dart ~i , j ! of G, which is
impossible. n

A3. Proof of Theorem 4

LEMMA 7: Let x [ M ù R11
ln . V~x ! 2 $x % is a nonempty closed convex cone.

Proof: Convexity and closedness are simple consequences of the defini-
tion of V~x !. Nonemptiness follows from Theorem 2, which implies
that x [ V~x ! whenever x [ M ù R11

ln . Consider now some v* [ V~x!,
some nonnegative real number a, and let us prove that a~v * 2 x ! [
V~x ! 2 $x % . Denote tij 5 tji 2 tij ; ti 5 ~tij !j.i 5 ~tii11, . . . ,tij , . . . ,tin !.
The range of the linear function f , which is t r ~t1, . . . ,ti , . . . ,tn-1 !,
defined on Pi[NTi , is Rl~n -1!~n -2!02. The rank of the linear function
~t1, . . . ,ti , . . . ,tn-1 ! r ~D1 t , . . . ,Dn t !, where t [ f 21 ~t!, is l~n 2 1! ≤
l~n 2 1!~n 2 2!02. Therefore, for all v [ Rln such that (i[N vi 5 e
there exists a gift vector t ≥ 0 such that tii 5 0 and xi 2 vi 5 Di t for all
i . Let t * be such a gift vector for v *, and consider gift vector at *. We
then have at * ≥ 0; atii

* 5 0, and a~xi 2 vi
* ! 5 Di at * for all i . There-

fore, a~v * 2 x ! [ V~x ! 2 $x % and V~x ! 2 $x % is a cone. n

LEMMA 8: For all p [ Rl and all t [ )i[N Ti , there is a t ' [ )i[N Ti such that
g ~t ' ! is a forest and pDi t ' 5 pDi t for all i.17

Proof: Consider a circuit G 5 ~~ik , jk !!1≤k≤m of g ~t !.
Suppose without loss of generality that pti1 j1 5 mink ptik jk , and

define recursively the following two orientation classes of the darts
of G: ~i1,j1! has positive orientation; ~ik11, jk11 ! has positive ~respec-
tively, negative! orientation if either ~ik , jk ! has positive orientation
and jk 5 ik11 ~respectively, jk 5 jk11 ! or ~ik , jk ! has negative orienta-
tion and jk 5 jk11 ~respectively, jk 5 ik11 ! ~with the usual convention
that ~im11, jm11 ! 5 ~i1, j1 !!. The adjacent darts ~ik , jk ! and ~ik11, jk11 !
thus have identical ~opposite! orientations in the circuit if the head
of the former coincides with the tail ~head! of the latter. This ori-

17This lemma was established in Mercier Ythier ~1992!, as the first step in the proof of
Proposition 3.
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entation is well defined, for if a dart had simultaneously a positive
and negative orientation, then this should be the case of all darts by
the recursive definition above, which would imply in turn that G has
a single vertex i and a single dart ~i , i !, which contradicts the defi-
nition of g ~t !.

There exists a gift vector t1 [ )i[N Ti such that: ptik jk
1 5 ptik jk 2

pti1 j1 whenever ~ik , jk ! has positive orientation in G; ptik jk
1 5 ptik jk 1

pti1 j1 whenever ~ik , jk ! has negative orientation in G; and tik jk
1 5 ti1 j1

whenever i or j is not a vertex of G. And one verifies readily that
g ~t 1 ! does not contain circuit G ~dart ~i1, j1 ! has been deleted!.
Moreover, pDi t1 5 pDi t for all i because of the following: Di t1 5 Di t
whenever i is not a vertex of G; if i is a common vertex of two adjacent
darts ~ j, i ! and ~i , k ! of identical, positive ~negative! orientation in G,
then p ~tik

1 2 tji
1 ! 5 ptik 2 pti1 j1 2 ptji 1 pti1 j1 5 ptik 2 ptji ~respectively,

p ~tik
1 2 tji

1 ! 5 ptik 1 pti1 j1 2 ptji 2 pti1 j1 5 ptik 2 ptji !; and if i is a
common vertex of two adjacent darts ~ j, i ! and ~k , i ! of opposite ori-
entations in G, the orientation of ~ j, i ! being positive ~negative!,
then p ~tji

1 1 tki
1 ! 5 ptji 2 pti1 j1 1 ptki 1 pti1 j1 5 ptji 1 ptki ~respectively,

p ~tji
1 1 tki

1 ! 5 ptji 1 pti1 j1 1 ptki 2 pti1 j1 5 ptji 1 ptki !. The conclu-
sion then follows from a recursive application of the algorithm above
to all circuits of g ~t ! ~in finite number since g ~t ! is finite!. n

Proof of Theorem 4: Part ~i! of Theorem 4 is a simple corollary of Theo-
rems 1 and 2. Let x [ M ù R11

ln . Part ~iii! is a straightforward conse-
quence of part ~ii!. In view of Lemma 7, we only have to prove,
therefore, that convex set V~x ! has dimension l~n 2 c ~g~x !!.

Let p be the unique price vector of Sl which supports x ~cf. Lemma
2!. Denote by C the set of spanning forest subdigraphs of g~x !, and,
for all G [ C, let VG~x ! be the convex set $v [ Rln 6∃t[)i[N Ti such
that: tij . 0 if and only if ~i , j ! [ G; and pxi 5 p ~vi 1 Di t ! for all i % .
We have then V~x ! 5 øG[C VG~x ! since, by Lemma 8, the wealth
transfers associated with any gift vector can be achieved by a gift
vector whose associated graph is a forest subgraph of the former.
From the definition of a spanning subgraph, we know that c ~G! ≥
c ~g~x !! for all G [ C. And from Tutte ~1984, Thm. I.36!, there exists
a G [ C such that c ~G! 5 c ~g~x !!. It suffices to prove, therefore, that
convex set VG~x ! has dimension l~n 2 c ~G!! whenever G is a spanning
forest subdigraph of g~x ! such that c ~G! 5 c ~g~x !!.

Consider thus, from now on, a G [ C such that c ~G! 5 c ~g~x !!. By
definition of a spanning graph, the set of vertices of G is N . By
definition of a forest, we must have i Þ j whenever ~i , j ! [ G ~loop-
darts ~i , i ! are 1-circuits!. The incidence matrix of G, denoted MG , is
defined in the following way: to every dart ~i , j ! of G, ranked lexico-
graphically ~as in a gift vector t !, there corresponds one column of
MG ; to every vertex i of G, ranked in increasing order, there corre-
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sponds one row of MG ; the entries of column ~i , j ! are, respectively,
21 on row i , 1 1 on row j, and 0 on the other rows. A well-known
result of graph theory is then that matrix MG has full rank n 2 c ~G!,
equal to the number of darts of G, if and only if G is a forest graph
~Berge 1970, Thm. 1!.

For any t [ )i[N Ti such that tij . 0 if and only if ~i , j ! [ G,
denote tG the vector obtained from t by deleting its components tij

such that ~i , j ! Ó G. The product tG . MG
T of the row vector tG by the

transpose MG
T of the incidence matrix of G is then the vector of net

transfers ~D1 t , . . . ,Dn t !. Denoting px 5 ~ px1, . . . , pxn !, we have there-
fore VG~x ! 5 $v [ Rln 6∃t [ )i[N Ti such that: tij . 0 if and only if
~i , j ! [ G; and px 5 p ~v 1 tG .MG

T !%.
Since G has exactly n 2 c ~g~x !! darts the dimension of convex set

$t [ )i[N Ti 6 tij . 0 if and only if ~i , j ! [ G% is l~n 2 c ~g~x !!!. From this
and the fact that p Þ 0 and rank MG

T 5 n 2 c ~g~x !!, it follows readily
that the dimension of VG~x ! is l~n 2 c ~g~x !!!. n
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