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Abstract

The contractionary effect of technology shocks on hours gradually vanishes over
time in OECD countries. To rationalize the decline in hours and its disappearance,
we use a VAR-based decomposition of technology shocks into symmetric and asym-
metric technology improvements. While hours decline dramatically when technology
improves at the same rate across sectors, hours significantly increase when technology
improvements occur at different rates. Because they are primarily driven by symmetric
technology improvements, permanent technology shocks drive down total hours. Such
a decline progressively vanishes due to the growing importance of asymmetric technol-
ogy shocks. To reach these two conclusions, we simulate a two-sector model which can
reproduce the contractionary effect on hours once the economy is internationally open
and we allow for production factors’ mobility costs, factor-biased technological change,
and home bias. To account for the vanishing decline in hours, we have to let the share
of asymmetric technology shocks increase over time.
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1 Introduction

Has the response of hours to permanent technology improvements changed over time? What

is the main driver behind this change? Our empirical findings reveal that the impact effect

on hours of a permanent technology shock hides a large and gradual structural change. More

specifically, the contractionary effect of technology improvements on hours has significantly

shrunk over the last fifty years in OECD countries. We show that the increasing importance

of technology improvements which occur at different rates between (traded and non-traded)

sectors is responsible for the gradual disappearance of the negative effect of a permanent

technology shock on hours.

The shrinking contractionary effect of technology shocks on hours has been documented

by Gaĺı and Gambetti [2009], Barnichon [2010], Nucci and Riggi [2013], Cantore et al.

[2017] on U.S. data only. These papers put forward more pro-cyclical monetary policies, a

reduction in hiring frictions, an increase in performance-related pay schemes, or a greater

substitutability between capital and labor, respectively, to rationalize the vanishing decline

of hours. While these interpretations may fit the U.S. experience, we provide evidence

showing that none of these explanations can account for the vanishing decline in hours

after technology shocks we document for OECD countries.

Indeed, our empirical analysis reveals that the gradual disappearance of the negative

impact of technological change on hours is not restricted to the U.S. and is also shared by

OECD countries. To be more specific, we find that a 1% permanent increase in utilization-

adjusted-total-factor-productivity (TFP) produces a decline in hours by -0.31% on impact

in the pre-1992 period while hours remain unresponsive to technology shocks in the post-

1992 period. Our structural interpretation of the decline in hours after a technology shock

together with its gradual disappearance rests on the international openness aspect and the

multi-sector dimension of OECD countries which exert opposite effects on hours.

When the economy is internationally open, households find it optimal to increase im-

ports and borrow from abroad to enjoy more leisure after a permanent technology improve-

ment. While international openness has a contractionary effect on hours, the multi-sector

dimension has a positive influence. More specifically, in a multi-sector economy, technology

improves at different rates across sectors and this technology dispersion has a strong expan-

sionary effect on hours by fostering labor demand in low productivity growth (non-traded)

industries. Therefore, the increasing share of technology improvements driven by asym-

metric technology shocks between sectors can potentially rationalize the vanishing decline

in hours we document empirically. In line with our hypothesis, our evidence reveals that

the share of the forecast error variance of utilization-adjusted-TFP growth attributable to

asymmetric technology shocks between sectors has dramatically increased from 7% before

1992 to more than 44% in the post-1992 period.

1



Besides the fact that our interpretation fits the experience of our sample of OECD coun-

tries, our line of explanation also accords well with the evidence documented by Foerster et

al. [2011] who find that the share of output fluctuations explained by asymmetric shocks

across sectors has dramatically increased since the great moderation. The rising share of

asymmetric technology shocks between sectors we document for industrialized countries

deserves particular attention as our estimates also show that (only) asymmetric technol-

ogy improvements are shocks which are associated with innovation (concentrated in traded

industries).

By considering a panel of 17 OECD countries over 1970-2017, we find empirically that

total hours decline by -0.15% on impact after a 1% permanent technology improvement.

Our estimates on rolling windows (with a fixed length of thirty years) reveal that the decline

in hours shrink from -0.26% (the first thirty years) to -0.11% (the last thirty years). To

rationalize theses findings, we put forward two hypothesis. First, hours decline after per-

manent technology shocks because they are primarily driven by technology improvements

which are symmetric across industries. Second, the decline in hours worked shrinks over

time as aggregate technology shocks are increasingly influenced by technology improvements

which are asymmetric between sectors.

The first step of our analysis is to perform a VAR-based decomposition of aggregate

technology improvements into symmetric and asymmetric technology shocks between sec-

tors, in the same spirit as Gar̀ın et al. [2018] who decompose economic fluctuations into a

common (across sectors) and a sector-specific component. Our evidence shows that a tech-

nology shock characterized by a technology improvement which is uniformly distributed

between (the traded and non-traded) sectors leads to a dramatic decline in hours by -0.47%

on impact. By contrast, when the technology shock is concentrated toward specific (i.e.,

traded) industries, hours significantly increase by 0.31% on impact.

The second step of our analysis is to rationalize the magnitude of the decline in hours

and its gradual disappearance we document for OECD countries. We develop an exten-

sion of the open economy setup with tradables and non-tradables pioneered by Kehoe and

Ruhl [2009] and simulate the model by considering symmetric and asymmetric technology

shocks between sectors calibrated to the data. To discipline our exercise, we generate exoge-

nous shocks as measured in the empirical part. We conduct two separate but intertwined

quantitative exercises which corroborate our two hypothesis.

First, we show that five elements are essential to generate the contractionary effect of

a permanent technology shock on hours we estimate empirically: international openness,

barriers to factors’ mobility between sectors, home bias in the domestic traded good, factor-

biased technological change, and a mix of symmetric and asymmetric technology shocks.1

1We could also employ the home bias terminology for non-traded goods but because consumption in
non-traded goods significantly mitigates the decline in hours after a technology shock only once we allow for

2



International openness is key to producing a decline in hours after a permanent technology

improvement. Because a technology shock stimulates consumption and investment, an

economy open to international trade and world capital markets finds it optimal to import

goods from abroad and lower labor supply by running a current account deficit.

However, abstracting from factors’ mobility costs between sectors and assuming that

home- and foreign-traded goods are perfect substitutes leads the model to overstate the

reallocation of productive resources toward the non-traded sector and the decline in total

hours. Because factors’ mobility costs reduce the shift of resources toward the non-traded

sector, households must give up a fraction of their higher consumption of leisure to produce

additional units of non-traded goods. Households must further give up leisure to meet the

demand for domestic (tradable) goods when home- and foreign-produced traded goods are

imperfect substitutes because consumers are reluctant to replace domestic with imported

goods. While these ingredients mitigate the decline in hours caused by financial (and trade)

openness, we also have to let technology improvements be biased toward labor in the traded

sector (in line with our estimates) to account for the effects of a technology shock on hours.

Intuitively, when traded output turns out to be more labor intensive, higher demand for

labor in traded industries neutralizes the incentives to shift labor toward the non-traded

sector which further mitigates the decline in hours.

While the four aforementioned ingredients ensure that the model can account for the

magnitude of the decline in hours, the performance of the baseline model also implicitly

rests on assuming a mix of symmetric and asymmetric technology shocks between sectors.

When technology improves at the same rate in both sectors, sectoral goods’ prices depreci-

ate (because an excess supply shows up on goods’ markets) which puts downward pressure

on sectoral wages and causes a dramatic decline in hours (by -0.40% on impact close to

-0.47% in the data). In contrast, asymmetric technology shocks have a strong expansionary

effect on hours (by 0.28% on impact close to 0.31% in the data). Because asymmetric tech-

nology improvements are concentrated within traded industries, non-traded goods’ prices

appreciate (due to the excess demand on the non-traded goods market) which has an ex-

pansionary effect on labor demand in non-traded industries. Firms in this sector thus pay

higher wages to attract workers which has a positive impact on labor supply. Since hours

significantly increase when technology improvements occur at different rates across sectors

or fall dramatically when technology improves at the same rate, none of the shocks taken

separately can account for the evidence. We need a mix of the two to ensure that tech-

nology improvements are associated with a productivity differential between tradables and

non-tradables which provides incentives to shift labor toward non-traded industries and

generates upward pressure on wages.

In the second quantitative exercise, we assess the ability of our model to account for

mobility costs between sectors, we find it more relevant to refer to the role of barriers to factors’ mobility.

3



the shrinking decline in hours we document empirically. To conduct this analysis, we let

the share of technology improvements driven by asymmetric technology shocks increase

over time from 10% to 40% in line with our estimates based on rolling sub-samples. While

our open economy setup reproduces well the shrinking contractionary effects on hours of

technology shocks we document empirically, we show that factor-biased technological change

is a key element to account for the evidence, in particular when we focus on the time-

varying responses of sectoral hours. When we impose Hicks-neutral technological change,

the restricted model generates a time-decreasing impact response of traded hours worked in

contradiction with our evidence because asymmetric technology shocks encourage labor to

shift toward non-traded industries. By neutralizing the incentives to shift labor away from

traded industries, technological change biased toward labor in the traded sector ensures

that traded hours decline less over time as the share of asymmetric technology shocks is

increased, in accordance with our estimates.

Importantly, the decomposition of technology shocks into a symmetric and an asym-

metric component between sectors also allows us to reconcile two strands of the literature.

Shea [1999] and Alexopoulos [2011] find that technology shocks driven by innovation in-

crease labor while the literature pioneered by Gal̀ı [1999] finds that technology shocks lower

hours worked. Because our evidence reveals that only asymmetric technology shocks give

rise to innovation, if we focus on technology improvements driven by asymmetric technology

shocks, these shocks will increase significantly labor, in accordance with the first strand of

the literature. By contrast, if we focus on aggregate technology shocks, hours worked will

fall because symmetric technology shocks are predominant.

The article is structured as follows. In section 2, we propose a VAR-based decomposi-

tion of technology shocks into a symmetric and an asymmetric component between sectors

to rationalize the time-varying effects on hours we estimate empirically. In section 3, we

develop a two-sector open economy model where factor-augmenting technology has a sym-

metric and an asymmetric component between sectors. In section 4, we calibrate the model

to the data and assess its ability to account for the time-varying effects. Finally, section

5 concludes. The Online Appendix contains more empirical results, conducts robustness

checks, details the solution method, and shows extensions of the baseline model.

2 Technology and Hours across Time: Evidence

In this section, we document evidence for seventeen OECD countries about the link between

technology and hours across time. Below, we denote the percentage deviation from initial

steady-state (or the rate of change) with a hat.
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2.1 Contribution to Existing Literature

Before going into details about the empirical strategy, it is useful to explain our contribution

to the existing literature investigating the effects of a technology shock on hours.

Existing explanations of the time-increasing impact response of hours to

a technology shock. The vanishing decline in hours after a technology shock has been

documented by Gaĺı and Gambetti [2009], Cantore et al. [2017] on U.S. data only. The first

paper puts forward more pro-cyclical monetary policies to rationalize the disappearance of

the fall in hours after a productivity increase. Intuitively, while a permanent technology

improvement leads firms to reduce hours when prices are sticky and money supply is fixed,

the decline in hours is mitigated as monetary policy turns out to be more accommodating

with technology shocks. The second paper suggests that technological change biased toward

capital (which lowers labor demand) has shrunk over time as a result of the time-increasing

value of the elasticity of substitution between capital and labor in production. The third

line of explanation explored by Barnichon [2010], Gaĺı and Van Rens [2021], Mitra [2023]

assumes that the reduction in labor market frictions has lowered hiring costs which have

led firms to adjust employment instead of hours per worker. Nucci and Riggi [2013] have

proposed a fourth line of explanation based on the development of performance-related pay

scheme in the U.S. from the mid 1980s.

The gradual disappearance of the decline in hours after a technology shock

is not limited to the United States. In Fig. 1, we plot the dynamic response of hours

worked to a 1% permanent increase in utilization-adjusted-total-factor-productivity (TFP)

by considering two sub-periods. We use local projections to estimate the dynamic response

of hours to the technology shock whose identification will be detailed later. In line with the

literature pioneered by Gaĺı [1999], we focus on the impact response of hours to a technology

shock. As shown in the dashed red line, a permanent technology shock produces a decline

in hours by -0.31% on impact in the pre-1992 period while hours remain unresponsive to

technology shocks in the post-1992 period (see the blue line).2

Can existing theories rationalize the vanishing decline in hours after a tech-

nology shock in OECD countries? In Online Appendix A, we investigate empirically

whether the four existing theories brought to the fore to rationalize the vanishing decline

in hours in the U.S. can also accommodate the evidence we document for OECD coun-

tries. While we relegate detailed evidence to Online Appendix A for reasons of space, we

summarize our main results below. First, the hypothesis proposed by Gaĺı and Gambetti

[2009] cannot explain the vanishing decline in hours we document for OECD countries as

we do not find that monetary policies are significantly more accommodating with technol-

2We choose 1992 as the cutoff year for the whole sample because the Great Moderation occurs in the
post-1992 period for European countries which account for three-fourth of our sample, see e.g., Benati [2008]
for the U.K. and González Cabanillas and Ruscher [2008] for the euro area.
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Figure 1: Response of Hours to Technology Shocks: 70-92 vs. 93-17 Notes: The figure shows
the response of hours to a 1% permanent increase in utilization-adjusted-TFP before (dashed red line)
and after (solid blue line) 1992. Solid and dashed lines represent point estimates and light (dark) shaded
areas represent 90 (68) percent confidence intervals. Vertical axis measures deviation from the pre-shock
trend/level in percent.

ogy shocks in OECD countries. Second, we find empirically that technology shocks are not

biased toward capital in OECD countries and the elasticity of substitution between capital

and labor has not increased but instead has remained stable over time (in contrast to the

hypothesis by Cantore et al. [2017]). Third, our estimates reveal that the response of em-

ployment to a technology shock remains muted on impact which questions the hypothesis

based on the reduction of hiring frictions. In addition, on average, in OECD countries,

the relative volatility of employment has remained stable which is not surprising since the

evidence gathered by Gaĺı and Van Rens in their online appendix indicates that most of

the OECD countries did not experience the decline in labor market frictions observed in

the United States. Fourth, we find a significant time-declining response of the real wage to

technology shocks in OECD countries which is hard to reconcile with the assumption of a

rising performance pay put forward by Nucci and Riggi [2013].

Our explanation of the vanishing decline in hours after a technology shock

in OECD countries. In contrast to the existing literature, we stress the importance of

two key aspects shared by all OECD countries. First, the international openness dimension

generates a strong negative link between technology and hours. Intuitively, by increasing

imports after a permanent technology shock, the home country can meet a higher demand

for traded goods which in turn releases labor resources to produce more units of non-traded

goods so that households can work less. As we shall see in the quantitative analysis, frictions

into the movement of resources and imperfect substitutability across goods will reduce the

negative correlation between hours and technology. The second key aspect we emphasize

is the multi-sector dimension of OECD countries. In a multi-sector economy, technology

improves at different rates across sectors and the dispersion in technology improvements

across sectors appreciates relative prices in low productivity growth industries which makes

hiring more profitable (as long as the price-elasticity of demand is low) and leads these

industries to pay higher wages, thus putting upward pressure on wages and increasing

labor supply.

Our first contribution is to show that hours decline after a technology shock (as long as
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the economy is internationally open) because technological change is primarily driven by

symmetric technology shocks which lower labor supply. In Online Appendix B, we contrast

the impact effect on hours of a 1% permanent increase in utilization-adjusted-TFP across

variants of our baseline model laid out in section 3. We find that hours decline when the

economy is internationally open and increase if the economy is closed. Our second and key

contribution is to show that the decline in hours shrinks over time because technological

change is increasingly driven by asymmetric technology shocks which have a strong positive

impact on labor supply. If our explanation were correct, the share of the forecast error

variance of utilization-adjusted-TFP growth attributable to asymmetric technology shocks

between sectors should be lower before 1992. Indeed, our estimates reveal that the share

of asymmetric technology shocks has dramatically increased from 7% before 1992 to more

than 44% in the post-1992 period. While in the empirical part we document evidence

which corroborates our hypothesis, we further test our assumption in section 4 by feeding

our two-sector open economy model with the increasing share of asymmetric technology

shocks we observe in the data.

The decline in hours after a technology shock: Existing vs. our explanation.

As shown in Online Appendix B where we contrast numerically the effects of a technology

shock in a closed economy model with flexible prices with those in an open economy,

international openness is an essential element to rationalize the decline in hours. Differently,

the ’standard’ explanation of the decline in hours after a technology shock pioneered by

Gali [1999] stresses the role of sticky prices. Under the assumption that money supply does

not increase and prices are rigid, the excess supply in the goods market caused by higher

productivity will be eliminated through a decline in hours. This explanation has been

challenged by Chang and Hong [2006] who do not find that a strong correlation between

the response of labor and the duration of output prices adjustment. In addition, as shown by

Dotsey [1999], Cantore et al. [2017], a closed economy model with sticky prices will produce

a rise in hours worked when monetary policy is pro-cyclical (in line with the evidence).

The second line of explanation has been suggested by Cantore et al. [2014] who put

forward technological change biased toward capital to explain the decline in hours in the

United States. When we consider our sample of seventeen OECD countries detailed later,

we do not find that technology shocks are biased toward capital and thus this explanation

cannot account for a decline in hours after a permanent technology improvement.

While most of the existing literature investigating the effects of technology shocks on

total hours worked considers a closed economy, Collard and Dellas [2007] consider a one-

sector RBC model in open economy. The authors must impose an elasticity of substitution

between domestic and foreign goods smaller than one to give rise to a decline in hours.

We empirically find however that the decline in hours is concentrated in the non-traded
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sector and the response of traded hours worked remains muted. To generate these findings,

we have to consider a two-sector open economy where home- and foreign-produced traded

goods are high substitutes, as evidence suggests, see e.g., Bajzik et al. [2020] who report

an elasticity larger than one.3

2.2 Data Construction

We briefly discuss the dataset we use. We take data from EU KLEMS and OECD STAN to

construct time series for tradables (indexed by the superscript j = H) and non-tradables

(indexed by the superscript j = N). Online Appendix H provides a lot of details about the

source and the construction of time series. Our sample contains annual observations and

consists of a panel of 17 OECD countries. The period runs from 1970 to 2017.

Classification of industries: tradables vs. non-tradables. To classify eleven 1-

digit ISIC-rev.3 industries industries as tradables or non-tradables, we use data from the

World Input Output Dataset (WIOD) to calculate the openness to international trade of

each industry, measured by the ratio of imports plus exports to gross output. We treat

industries as tradables when trade openness is equal or larger than 20%. We thus classify

“Agriculture, Hunting, Forestry and Fishing”, “Mining and Quarrying”, “Total Manu-

facturing”,“Transport, Storage and Communication”, and “Financial Intermediation” in

the traded sector. The remaining industries “Electricity, Gas and Water Supply”, “Con-

struction”, “Wholesale and Retail Trade” and “Community Social and Personal Services”,

“Hotels and Restaurants” and “Real Estate, Renting and Business Services” are classified

as non-tradables. We perform a sensitivity analysis with respect to the classification in

Online Appendix L.2 and find that all conclusions hold.

Macroeconomic variables. We construct time series for sectoral hours worked, Lj
it,

the hours worked share of sector j, νL,jit , where the subscripts i and t denote the country and

the year. To capture the transmission mechanism of a technology shock in a two-sector open

economy, we also analyze the movements in the value added share at constant prices, νY,jit ,

in the relative price of non-tradables which is computed as the ratio of the non-traded value

added deflator to the traded value added deflator (i.e., Pit = PN
t /PH

it ), and in the terms of

trade denoted by PH
t = PH

it /P
H,?
it where PH

it is the traded value added deflator of the home

country i and PH,?
it captures foreign prices defined as an import share (geometric) weighted

average of the traded value added deflator of the sixteen trade partners of country i. Note

that the share of imports from the trade partner is averaged over 1970-2017. Because the

strict definition of the current account includes items such as unilateral transfers which

play no role in our model, we have constructed time series for the current account by

3We cannot give justice to the vast literature seeking to rationalize the decline in hours after a technology
shock but it is worth mentioning that alternative explanations have been proposed such as factors mitigating
the increase in aggregate demand, see Francis and Ramey [2005] who allow for capital adjustment costs and
habit formation or by assuming that technology gradually builds up, see Lindé [2009].
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calculating the difference between the GNP and the sum of final consumption expenditure

by households, gross fixed capital formation, and final consumption expenditure by the

government.

Utilization-adjusted sectoral TFPs. Sectoral TFPs are Solow residuals calculated

from constant-price (domestic currency) series of value added, Y j
it, capital stock, K

j
it, and

hours worked, Lj
it, i.e.,

ˆTFP
j
it = Ŷ j

it − sjL,iL̂
j
it−

(
1− sjL,i

)
K̂j

it where s
j
L,i is the labor income

share (LIS henceforth) in sector j averaged over the period 1970-2017. To construct time

series for Kj
it, we first construct the aggregate capital stock Kit by adopting the perpetual

inventory approach and then we use the sectoral valued added shares to split Kit into KH
it

and KN
it , see Online Appendix L.3. We construct a measure for technological change by

adjusting the Solow residual with the capital utilization rate, denoted by uK,j
it :

Ẑj
it =

ˆTFP
j
it −

(
1− sjL,i

)
ûK,j
it , (1)

where we follow Imbs [1999] in constructing time series for uK,j
it , as utilization-adjusted-

TFP is not available at a sectoral level for most of the OECD countries of our sample over

1970-2017, see Online Appendix I where we detail the adaptation of Imbs’s [1999] method.

In Online Appendix M.3, we find that our empirical findings are little sensitive to the use

of alternative measures of technology which include i) Basu’s [1996] approach which has

the advantage of controlling for unobserved changes in both capital utilization and labor

effort, ii) and time series for utilization-adjusted-TFP from Huo et al. [2023] and Basu et al.

[2006]. Our preferred measure is based on Imbs’s [1999] method because it fits our model

setup where we consider an endogenous capital utilization rate and the last two measures

can only be constructed over a shorter period of time and for a limited number of OECD

countries.

2.3 Identification of Asymmetric vs. Symmetric Technology Shocks

Objective and strategy. Our objective is to demonstrate that the gradual disappearance

of the negative response of hours to technology shocks is caused by the increasing impor-

tance of technology improvements which occur at different rates between sectors. To show

this point, we proceed in three steps below. First, we estimate the effects on hours of a

permanent technology shock. Second, we contrast the effects on hours after a symmetric

technology shock with those caused by asymmetric technology shocks. Third, we estimate

the time-varying effects on hours of a permanent technology improvement and quantify

the progression in the share of technology improvements driven by asymmetric technology

shocks.

To conduct our empirical study, we compute the responses of selected variables by using

a two-step estimation procedure. We first identify a permanent technology improvement

by adopting the identification pioneered by Gali [1999]. Like Gali, we impose long-run
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restrictions in the VAR model to identify permanent technology shocks as shocks that

increase permanently the level of our measure of technology. Because Erceg et al. [2005]

and Chari et al. [2008] have shown that persistent non-technology shocks can disturb the

identification of permanent technology shocks, we adjust TFP with the capital utilization

rate. Chaudourne et al. [2014] demonstrate that the use of ’purified’ TFP to measure

technological change ensures the robustness of the identification of technology shocks. In

the second step, we trace out the dynamic effects of the identified shock to utilization-

adjusted TFP by using Jordà’s [2005] single-equation method. This two-step approach is

particularly suited to our purpose as we identify technology shocks once and for all and

next estimate the dynamic responses of a set of variables to the identified shock and assess

empirically its time-varying effects on rolling windows.

VAR identification of symmetric vs. asymmetric technology shocks across

sectors. The starting point of the identification of symmetric and asymmetric technology

shocks is the sectoral decomposition of the percentage deviation of utilization-adjusted-

aggregate-TFP (i.e., ẐA
it ) relative to its initial steady-state:

ẐA
it = νY,Hi ẐH

it +
(
1− νY,Hi

)
ẐN
it , (2)

where ẐH
it and ẐN

it measure technology improvements in the traded and the non-traded sec-

tor, respectively, and νY,H is the value added share of tradables. Eq. (2) can be rearranged

as follows

ẐA
it = ẐN

it + νY,Hi

(
ẐH
it − ẐN

it

)
, (3)

which enables us to decompose technological change into technology improvements which

are common and asymmetric between sectors. When technology improves at the same rate

in the traded and the non-traded sector, i.e., ẐH
it = ẐN

it , then the second term on the RHS

of eq. (3) vanishes and technological change collapses to its symmetric component (indexed

by the the subscript S), i.e., ẐA
S,it = ẐH

S,it = ẐN
S,it. In contrast, the asymmetric component

(indexed by the the subscriptD) of aggregate technological change is captured by the second

term on the RHS, i.e., ẐA
D,it = νY,Hi

(
ẐH
D,it − ẐN

D,it

)
, which reflects the excess of technology

improvements in the traded sector over those in the non-traded sector (weighted by νY,Hi ).

The above discussion implies that technology in sector j is made up of a symmetric and

an asymmetric component, i.e., Zj
it = (ZS,it)

ηi
(
Zj
D,it

)1−ηi
with ẐH

S,it = ẐN
S,it = ẐS,it, where

we denote by η the share of technological change which is common across sectors. Log-

linearizing this expression and plugging the result into eq. (2) leads to the decomposition

of aggregate technological change into a symmetric and an asymmetric component:

ẐA
it = ηiẐ

A
S,it + (1− ηi) Ẑ

A
D,it, (4)

where ẐA
S,it = ẐS,it. To decompose shocks to ZA

it into symmetric and asymmetric technology

shocks, we use the fact that an increase in the symmetric and the asymmetric components
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both raise ZA
it while only a rise in the asymmetric component raises the productivity of

tradables relative to non-tradables, see eq. (3).

We consider two versions of the VAR model. In both cases, we estimate a reduced form

VAR model in panel format on annual data with two lags and with both country fixed

effects and time dummies. The first version includes utilization-adjusted-aggregate-TFP,

real GDP, total hours worked and the real consumption wage. All quantities are divided

by the working age population which removes the trend caused by population growth and

also ensures that each country has the same weight in the empirical analysis; all variables

enter the VAR model in rate of growth, see Online Appendix L.1 which documents evidence

about the presence of a unit-root process for all variables of interest. We impose long-run

restrictions to identify technology shocks as shocks which increase permanently ZA
it , see On-

line Appendix G which provides more details about the SVAR identification. In the second

version, we augment the VAR model with the ratio of traded to non-traded utilization-

adjusted-TFP ordered first. We impose long-run restrictions such that both symmetric and

asymmetric technology shocks increase permanently ZA
it while only asymmetric technol-

ogy shocks increase ZH
it /Z

N
it in the long-run. Technically the long-run cumulative matrix

is lower triangular which implies that only asymmetric technology shocks in the first row

increases both the ratio of traded to non-traded technology and aggregate technology while

symmetric technology shocks in the second row leave the relative productivity of tradables

unaffected.

Estimating dynamic effects. Once we have identified technology shocks from the

VAR model’s estimation, in the second step, we estimate the dynamic effects on selected

variables (detailed later) by using Jordà’s [2005] single-equation method. Besides the fact

that Pagan [1984] has demonstrated that the coefficient and the standard error on generated

regressors are consistent and asymptotically valid, by decoupling the shock identification

and the estimate of the dynamic responses, our approach ensures that the variables respond

to the same shock. The second advantage of local projections is that this method does not

impose any structure to the dynamic adjustment and thus is less restrictive. The local

projection method amounts to running a series of regressions of each variable of interest on

a structural identified shock for each horizon h = 0, 1, 2, ...

xi,t+h = αi,h + αt,h + ψh (L) yi,t−1 + γhε
Z
i,t + ηi,t+h, (5)

where x is the logarithm of the variable of interest, y is a vector of control variables (i.e., past

values of utilization-adjusted-TFP and of the variable of interest), ψh (L) is a polynomial (of

order two) in the lag operator; αi,h are country fixed effects which control for time invariant

characteristics such as mobility costs between sectors or substitutability between goods, and

αt,h are time dummies which control for common macroeconomic shocks. While Online

Appendix L.11 shows that estimates are little sensitive to the inclusion of time dummies, it
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is still important to include them in the regression because in doing this, we can interpret

the dynamic responses as deviations relative to the sample average. The coefficient γh

on the RHS of eq. (5) gives the response of x at time t + h to the identified technology

shock εZi,t at time t for an average OECD economy. We compute heteroskedasticity and

autocorrelation robust standard errors based on Newey-West.

Robustness checks w.r.t. SVAR identification. Because the SVAR estimation

allows for a limited number of lags, the SVAR critique has formulated some reservations with

regard to the ability of the SVAR model to disentangle pure technology shocks from other

shocks (which have long-lasting effects on productivity) when capital adjusts sluggishly,

see e.g., Erceg et al. [2005], Dupaigne et al. [2007], Chari et al. [2008]. While the

use of utilization-adjusted-TFP ensures the robustness of the identification of technology

shocks, as demonstrated by Chaudourne et al. [2014], we have also conducted a series of

robustness checks related to several aspects of our VAR identification of technology shocks

and measures of technology which are detailed in Online Appendices L and M.

First, in Online Appendix M.1, we test whether the identified shocks to technology are

correlated with non-technology shocks. Following Francis and Ramey [2005], we run the

regression of identified technology shocks based on three measures of technology on (three)

shocks to government spending, monetary policy, and taxation. The F-test reveals that

none of the demand shocks are correlated with our identified technology shocks only when

we use utilization-adjusted-TFP to measure technology. Technology shocks identified on

the basis of the Solow residual (unadjusted with factors’ utilization) and labor productivity

are instead found to be correlated with the demand shocks. Second, following the recom-

mendation by Chari et al. [2008] and De Graeve and Westermark [2013] who find that

raising the number of lags may be a viable strategy to achieve identification when long-run

restrictions are imposed on the VAR model, in Online Appendix M.2, we increase the lags

from two to eight and find that all of our conclusions stand.

Third, in Online Appendix M.4, we adopt the Maximum Forecast Error Variance (FEV)

approach proposed by Francis et al. [2014] which extracts the shock that best explains the

FEV at a long but finite horizon of the measure of technology. We find that the re-

sponse of hours when the technology shock is identified by means of the Maximum FEV

is not statistically different from that obtained when imposing long-run restrictions for the

median estimate as well as at the individual level (except for three out of seventeen coun-

tries). Fourth, following Fève and Guay [2010], in Online Appendix M.5, we estimate in

the first step a VAR model by excluding hours and including only the rate of change in

utilization-adjusted-TFP and the log ratio of consumption plus net exports to GDP and

impose long-run restrictions to identify technology shocks and then in the second step, we

estimate the dynamic effects by using local projections. We find no differences between our
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results and those obtained when we exclude hours from the first step. Fifth, as detailed in

Online Appendix M.6, we build on the method proposed by Dupaigne and Fève [2009] and

replace the country-level-utilization-adjusted-TFP with the import-share-weighed-average

of utilization-adjusted-TFPs of the home country’s trade partners which by construction

is not influenced by country-specific persistent non-technology shocks. Differences are not

statistically significant although hours do not fall below trend on impact because world tech-

nology shocks are further driven by asymmetric technology shocks compared with shocks

to country-level utilization-adjusted-TFP.

Robustness checks w.r.t. our empirical strategy. The time-varying impact re-

sponse of hours to a technology shock could potentially suggest that parameters which

govern labor demand or labor supply or both have changed over time. This is the route

taken by Li [2023]. Instead, we assume that the model’s parameters have remained un-

changed and our explanation of the vanishing decline in hours is based on the changing

nature of technology shocks over time, in the same spirit as Görtz et al. [2024]. While

we provide below a set of empirical evidence which supports our assumption of the change

in the composition of technological change, we test our hypothesis in the theoretical part.

More specifically, we simulate our model by keeping all model’s parameters fixed and by

assigning values to the share of asymmetric technology shocks in accordance with our em-

pirical estimates. It is worth mentioning that we do not detect any structural breaks in

the time series for utilization-adjusted-TFP and hours nor in their relationship, see Online

Appendix L.1 and L.13, which is not surprising as the changing composition of technology

shocks is a gradual process.

Because in estimating the response of hours to a technology shock, we assume that the

coefficient is the same across countries, we have conducted a series of robustness checks in

Online Appendix L.9 where we allow for a heterogeneity in responses across countries. All

of our robustness checks confirm the validity of the homogeneity assumption. Fourth, we

use a two-step approach where we identify the structural technology shocks and quantify

empirically their impact on a set of variables by using local projections. Because the shock

measure is a generated regressor for which standard errors are asymptotically valid, several

papers have adopted this two-step approach, e.g., Coibion and Gorodnichenko [2015]. To

further test the robustness of this approach, we alternatively considered the one-step method

(see e.g., Ramey and Zubairy [2018]) where we regress the variable of interest on the rate

of growth of utilization-adjusted-TFP and find that our results are unchanged (see Online

Appendix L.10).

2.4 Effects on Hours of a Technology Shock

We first investigate the effects of a permanent increase in utilization-adjusted-TFP normal-

ized to 1% in the long-run and shown in Fig. 2(a). The dynamic adjustment of variables to
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Figure 2: Dynamic Effects of a Permanent Technology Shock. Notes: Traded to non-traded
technology refers to utilization-adjusted-TFP of tradables relative to non-tradables.

an exogenous increase in ZA
it is estimated by means of local projections. Solid lines in Fig.

2 represent point estimates, light (dark) shaded areas represent 90 (68) percent confidence

intervals. The horizontal axis of each panel measures the time after the shock in years and

the vertical axis measures deviations from trend. The response of non-traded hours worked

is re-scaled by the sample average of labor compensation share of non-tradables to express

the variation in LN
it in percentage point of total hours worked.

Effects on hours. Fig. 2(e) reveals that a permanent technology improvement (of 1%

in the long-run) significantly lowers hours worked by 0.15% on impact in OECD countries.

Since one key element we put forward to rationalize the decline in hours in the quantitative

analysis is the international openness dimension of OECD countries, we have estimated the

response of the current account to a permanent technology shock in Fig. 2(c). The figure

shows that the current account deteriorates significantly in the short-run. This finding

suggests that an average OECD country will increase imports and borrow from abroad to

enjoy more leisure after a technology shock.

Labor reallocation. Fig. 2(f) shows that the decline in total hours worked is con-

centrated in the non-traded sector in the short-run while the situation is reversed from

t = 4 as labor is reallocated toward the non-traded sector as can be seen in Fig. 2(g). The

deindustrialization trend movement in the long-run is driven by the productivity growth

differential between tradables and non-tradables which averages 1.2% (see Fig. 2(b)).

As technology improvements are concentrated in the traded sector, non-traded indus-

tries charge higher prices to compensate for the higher marginal cost, as can be seen in Fig.

2(h) which shows that the relative price of non-tradables appreciates. Because the demand

for non-traded relative to traded goods is little sensitive to the relative price of non-tradables
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(see e.g., Mendoza [1992], Stockman and Tesar [1995]), the non-tradable content of expen-

diture increases which causes labor to shift toward the non-traded sector. However, labor

reallocation toward the non-traded sector materializes only in the long-run. As shown later

in section 4.2, there are a number of factors which prevents labor from shifting in the short-

run, in particular imperfect substitutability between home- and foreign-produced traded

goods. Because productivity growth is concentrated in traded industries, the value added

share of tradables at constant prices increases permanently which leads to a depreciation

in the terms of trade as shown in Fig. 2(d). Because home- and foreign-produced traded

goods are high substitutes, as evidence suggests, see e.g., Bajzik et al. [2020], the terms of

trade depreciation has a strong expansionary effect on labor demand in the traded sector

by increasing both the domestic and foreign demand components for home-produced traded

goods. Besides the terms of trade adjustment, both factors’ mobility costs and technological

change biased toward labor also play a key role as shown later in the quantitative analysis.

Skilled vs unskilled. In Online Appendix R, we differentiate between skilled and

unskilled workers by considering eleven (out of seventeen) OECD countries. Our evidence

reveals that the decline in total hours after a technology shock is mostly driven by the fall in

skilled workers’ hours. According to our estimates and in line with the model’s predictions,

the dramatic decline in skilled workers’ hours is caused by an increase in unskilled-labor-

augmenting productivity together with a high substitutability between skilled and unskilled

labor, see Online Appendix J.7 where we estimate the elasticity of substitution between the

two groups of workers.

Cross-country dispersion. While after a permanent technology improvement, an

average OECD economy works less and runs a current account deficit, our estimates mask

a wide cross-country dispersion, as documented in Online Appendix L.14. According to

our model’s predictions, such a dispersion is driven by international differences in mobil-

ity costs between sectors, in the share of asymmetric technology shocks or the degree of

substitutability between home- and foreign-produced traded goods. In this regard, hours

are expected to decline more in large than in small countries because the latter economies

display larger mobility costs, a smaller substitutability between domestic and foreign goods

and a greater share of asymmetric technology shocks. Indeed, we find that hours decline

dramatically in large countries and remain muted in small countries after a permanent tech-

nology shock. It is worth mentioning that the validity of our conclusions does not require

that the seventeen countries’ current account balances add up to zero after a technology

shock because current account deficits can be financed by countries which are not included

in the sample.
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2.5 Symmetric vs. Asymmetric Technology Shocks across Sectors

So far, we have considered a shock to utilization-adjusted-TFP (i.e., to ZA
it ). According

to eq. (4), a technology shock can be decomposed into a symmetric and an asymmetric

technology shock between sectors. In this subsection, building on our discussion in sec-

tion 2.3, we identify symmetric and asymmetric technology shocks between sectors (i.e.,

shocks to ZA
S,it and to ZA

D,it, respectively) and we contrast the dynamic effects driven by

symmetric (shown in blue lines) with those driven by asymmetric (shown in dashed red

lines) technology shocks in Fig. 3. Light (dark) shaded areas represent 90 (68) percent

confidence intervals. While both shocks lead to a technology improvement by 1% in the

long-run (i.e., ẐA
i,S = ẐA

i,D = 1%), see Fig. 3(a), the behavior of technology at a sectoral

level is different. As can be seen in Fig. 3(b), asymmetric technology shocks generate a

significant increase (by 2.9% on average) in utilization-adjusted-TFP of tradables relative

to non-tradables while productivity growth is uniformly distributed across sectors after a

symmetric technology shock since the ratio ZH/ZN remains unchanged at all horizons. It

is worth mentioning that the effects shown in Fig. 2 are a linear combination of the effects

driven by symmetric and asymmetric technology shocks displayed by Fig. 3.

Effects of symmetric technology shocks. Fig. 3(e) reveals that symmetric and

asymmetric technology shocks produce distinct effects on labor as hours worked decline

dramatically (by -0.47% on impact) after symmetric technology shocks while hours increase

(by 0.31% on impact) after asymmetric technology shocks. These opposite effects are the

result of the impact of productivity on sectoral prices. As shown in the blue line in Fig.

3(c) and Fig. 3(d), both non-traded and traded goods’ prices depreciate after symmetric

technology shocks which in turn put downward pressure on wages and exert a negative

impact on labor supply. This negative impact is amplified by the fact that technological

change is biased toward capital in the traded sector as captured by a decline in our measure

of factor-biased technological change, see Fig. 3(h). As detailed in Online Appendix F,

we adapt the methodology pioneered by Caselli and Coleman [2006] and Caselli [2016] to

construct time series for utilization-adjusted-factor-biased-technological change at a sectoral

level by using the ratio of labor demand to capital demand and plugging our estimates for

the elasticity of substitution between capital and labor together with time series for the

labor incomes share, the capital labor ratio and the capital utilization rate.

As can be seen in Fig. 3(f), the decline in total hours worked is mostly driven by the fall

in hours worked in the non-traded sector. Because the elasticity of substitution between

traded and non-traded goods is low (i.e., less than one), the fall in non-traded prices drives

down the share of expenditure spent on non-traded goods which reduces labor demand in

the non-traded sector. By contrast, because home- and foreign-produced traded goods are

high substitutes, the terms of trade depreciation raises the share of home-produced traded
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Figure 3: Dynamic Effects on Hours of Asymmetric vs. Symmetric Permanent Technology
Shocks. Notes: Traded to non-traded technology refers to utilization-adjusted-TFP of tradables relative
to non-tradables; ’FBTC’ means factor-biased technological change.

goods and thus further increases the share of tradables. This has an expansionary effect on

labor demand in the traded sector which leads to a shift of labor toward traded industries

as reflected into an increase in the hours worked share of tradables displayed by the blue

line in Fig. 3(g).

Effects of asymmetric technology shocks. Asymmetric technology shocks produce

very distinct effects on labor. Because technology improvements are concentrated in traded

industries, see the red line in Fig. 3(b), asymmetric technology shocks give rise to an excess

supply for home-produced traded goods and an excess demand for non-traded goods. As

shown in Fig. 3(c) (see the dashed red line), the excess demand puts upward pressure on

non-traded goods prices. Because traded and non-traded goods are gross complements, the

appreciation in non-traded prices increases the share of non-tradables which has a positive

impact on non-traded hours worked, as displayed by Fig. 3(f).

The rise in LN is amplified by the shift of labor toward the non-traded sector. As shown

in the red line of Fig. 3(g), the hours worked share of tradables declines dramatically on

impact by 0.1 ppt of total hours worked before recovering gradually. The first four years,

the reallocation of labor toward the non-traded sector accounts for one-third of the rise

in non-traded hours worked. To encourage workers to shift, non-traded firms must pay

higher wages which puts upward pressure on non-traded wages and thus on the aggregate

wage which has a strong expansionary effect on labor supply as shown in Fig. 3(e) (see

the red line). On impact, the rise in total hours worked mostly originates from non-

traded industries and is amplified by the fact that asymmetric technology improvements

are significantly biased toward labor (in the traded sector), as displayed by Fig. 3(h) (see

the red line). The combined effect of the terms of trade depreciation displayed by Fig. 3(d)
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and the rise in the labor intensity of traded production prevents traded hours worked from

decreasing at time t = 0.

Do symmetric or asymmetric technology shocks or both increase innovation?

One important question is whether symmetric or asymmetric technology shocks stimulate

innovation in the traded and the non-traded sector. Using data from Stehrer et al. [2019]

(EU KLEMS database) we construct time series for the capital stock in R&D in the traded

and non-traded sectors. Data are available for thirteen countries over 1995-2017. Our

evidence relegated to Online Appendix L.5 reveals that symmetric technology shocks do

not significantly increase the stock of R&D and thus these shocks should capture better

management practices and improvements in firm’s organization. In contrast, our estimates

show that asymmetric technology improvements are shocks which are associated with a

significant and positive increase in the stock of R&D (concentrated in traded industries).

Innovation will take place if the rise in the stock of R&D gives rise to a higher utilization-

adjusted-TFP. While we find an elasticity of traded technology w.r.t. the stock of R&D in

the traded sector of 0.238, the elasticity is virtually zero in the non-traded sector. These ev-

idence thus underlines that (asymmetric) technology improvements which are concentrated

within traded industries capture technological innovation.

2.6 The Time-Varying Response of Hours

Our evidence reveals that a permanent technology improvement has a contractionary effect

on total hours worked on impact in OECD countries. We now investigate whether this

decline has changed over the last fifty years.

The shrinking contractionary effect of technology shocks on hours. To capture

the gradual and continuous change in the response of hours over time, like Cantore et

al. [2017], we re-estimate the effect of a permanent technology improvement on hours by

running the regression eq. (5) on rolling windows of fixed length. We focus on the impact

effect captured by the estimated value γ0 and consider a window of thirty years. More

specifically, we estimate γ0, starting from 1970-1999, repeating the estimation by moving

the starting date by one year until we estimate the response over the last thirty years of

the sample, i.e., over 1988-2017. We have considered windows of alternative length such

as T = 20 and T = 25 and find that all the conclusions hold. As shown in Fig. 4(a),

the decline in hours after a 1% permanent increase in utilization-adjusted aggregate TFP

shrinks over time as total hours worked fall by -0.26% on impact over 1970-1999 and by

-0.11% only over the last thirty years. Online Appendix L.6 shows that the time-increasing

impact response of hours to a technology shock only operates at the intensive margin.

The increasing importance of asymmetric technology shocks. As shown in Fig.

4(d), the shrinking impact labor response is concomitant to the rise in the share of technol-

ogy improvements driven by asymmetric technology shocks between sectors. The forecast
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Figure 4: Time-Varying Effects of a Technology Shock. Notes: While the vertical axis of Fig.
4(a) shows the point estimate (i.e., γ0) for the impact response of hours (Lit) to a 1% permanent increase in
utilization-adjusted-aggregate-TFP obtained from estimating eq. (5) on rolling subs-samples, the horizontal
axis shows the end year of the corresponding window. Light (dark) shaded areas represent 90 (68) percent
confidence intervals based on Newey-West standard errors. In Fig. 4(d), we show the fraction of the
(conditional) variance of utilization-adjusted-TFP growth which is attributable to the variance of asymmetric
technology shocks across sectors. In column 2 we show the impact responses estimated on rolling windows
(of fixed length of thirty years) of the relative price of non-tradables (PN

it /P
H
it ), see Fig. 4(b), and the

terms of trade (PH
it ), see Fig. 4(e), respectively. In column 3, we show time-varying impact responses of

non-traded (LN
it ) and traded (LH

it ) hours worked to an aggregate technology shock, both re-scaled by the
labor compensation share so that the sum response of sectoral hours worked are expressed in percentage
point of total hours. Sample: 17 OECD countries, 1970-2017, annual data.

error variance decomposition estimated over rolling sub-samples reveals that the contribu-

tion of asymmetric technology shocks to the variance of aggregate technology improvements

has increased substantially over time from 10% the first thirty years to 40% over the recent

period. Column 2 shows further evidence pointing out the increasing importance of asym-

metric technology shocks across sectors. We plot impact responses of the relative price of

non-tradables and the terms of trade to an aggregate technology shock over rolling windows.

Because technology improvements are not uniformly distributed across sectors and instead

are concentrated toward traded industries, a technology shock produces an excess demand

for non-traded goods which appreciates the relative price of non-tradables as displayed by

Fig. 4(b). Conversely, an excess supply on the traded goods market shows up which leads

to a depreciation in the terms of trade as can be seen in Fig. 4(e). As shown in Fig.

4(b), the appreciation in the relative price of non-tradables tends to be more pronounced

while Fig. 4(e) reveals that the terms of trade depreciate more over time. The greater

appreciation in the relative price of non-tradables and the more pronounced depreciation

in the terms of trade suggest that aggregate technology shocks are increasingly driven by

asymmetric technology improvements between sectors.

The decline in both non-traded and traded hours worked shrinks. By increas-

ing the share of expenditure spent on non-tradables, the appreciation in the relative price

of non-tradables displayed by Fig. 4(b) has a strong expansionary effect on labor demand

19



in the non-traded sector. By amplifying the appreciation in non-traded goods prices, the

growing variance share of asymmetric technology shocks, as displayed by Fig. 4(d), should

increase the impact response of non-traded hours worked to aggregate technology shocks.

In accordance with this hypothesis, Fig. 4(c) shows that the decline in non-traded hours

worked shrinks over time. However, by giving rise to greater incentives to shift labor toward

the non-traded sector, the greater appreciation in the relative price of non-tradables should

lead to larger negative values for the response of traded hours worked to a technology im-

provement. Fig. 4(f) shows that it is not the case as the decline in traded hours worked also

shrinks over time. Such a finding is driven by two factors. First, as detailed later in section

4.2, the terms of trade depreciation stimulates labor demand in the traded sector which

partly offsets the incentives to shift labor toward the non-traded sector. This factor is not

sufficient on its own to generate the time-increasing impact response of LH . As shown in

section 4.4, it is only once we allow for technological change biased toward labor that the

model can generate the response of traded hours worked displayed by Fig. 4(f).

3 Open Economy Model with Tradables and Non-Tradables

We consider an open economy with an infinite horizon which is populated by a constant

number of identical households and firms, both having perfect foresight. Like Kehoe and

Ruhl [2009], Bertinelli et al. [2022], Chodorow-Reich et al. [2023], the country is large

enough on world good markets to influence the price of its export goods so that exports

are price-elastic. We assume that the open economy takes the world interest rate, r?, and

the world output as given.4 Our setup is in line with our empirical strategy which aimed

at estimating the dynamic adjustment of a representative OECD economy, the technology

shocks being uncorrelated across countries. The open economy produces a traded good

(denoted by the superscript H) which can be exported, consumed or invested and also

imports consumption and investment goods (denoted by the superscript F ). The economy

produces a non-traded good, denoted by the superscript N , for domestic absorption only.

The foreign good is chosen as the numeraire. Time is continuous and indexed by t. We

provide more details about the model in Online Appendices N and O.

3.1 Firms

We denote value added in sector j by Y j(t). Both the traded and non-traded sectors

use physical capital (inclusive of capital utilization chosen by households), denoted by

K̃j(t) ≡ uK,j(t)Kj(t), and labor, Lj(t), according to a constant returns-to-scale technology

4Neither the world interest rate nor the world output are found empirically to respond significantly to a
country-level technology shock. Monacelli and Perotti [2010] compare numerical results obtained in a small
open economy with those obtained under a two-country structure and find that the effects are only slightly
different quantitatively.
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described by a CES production function:

Y j(t) =

[
γj

(
Aj(t)Lj(t)

)σj−1

σj +
(
1− γj

) (
Bj(t)K̃j(t)

)σj−1

σj

] σj

σj−1

, (6)

where 0 < γj < 1 is the weight of labor in the production technology and σj is the elasticity

of substitution between capital and labor in sector j = H,N . We allow for labor- and

capital-augmenting efficiency denoted by Aj(t) and Bj(t). Factor-augmenting productivity

is made up of a symmetric component (across sectors) denoted by the subscript S and an

asymmetric component denoted by the subscript D:

Aj(t) =
(
Aj

S(t)
)η (

Aj
D(t)

)1−η
, Bj(t) =

(
Bj

S(t)
)η (

Bj
D(t)

)1−η
, (7)

where the elasticity of factor-augmenting productivity w.r.t. its symmetric component, de-

noted by η, captures the share of technology improvements which are uniformly distributed

between sectors. The VAR-based decomposition of technology shocks into a symmetric

and an asymmetric component imposes that only the symmetric component of utilization-

adjusted-TFP must improve at the same rate across sectors. By contrast, the variations

in the symmetric component of factor-augmenting productivity can differ across sectors,

thus explaining why we do not drop the superscript j = H,N for Aj
S and Bj

S . Because

capital-augmenting productivity has a symmetric and an asymmetric component, capital

technology utilization rate must also have both a symmetric and asymmetric component:

uK,j(t) =
(
uK,j
S (t)

)η (
uK,j
D (t)

)1−η
, (8)

which ensures that symmetric and asymmetric components of TFP are well-defined.

Both sectors are assumed to be perfectly competitive and thus choose capital and labor

services by taking prices P j as given. The movements in capital and labor across sectors

are subject to frictions which imply that the capital rental cost and the wage rate equal to

Rj(t) and W j(t), respectively, are sector-specific:

P j(t)γj
(
Aj(t)

)σj−1

σj
(
Lj(t)

)− 1

σj
(
Y j(t)

) 1

σj ≡ W j(t), (9a)

P j(t)
(
1− γj

) (
Bj(t)

)σj−1

σj
(
uK,j(t)Kj(t)

)− 1

σj
(
Y j(t)

) 1

σj = Rj(t). (9b)

Demand for inputs can be rewritten in terms of their respective cost in value added; for

labor, we have sjL(t) = γj
(
Aj(t)/yj(t)

)σj−1

σj where yj(t) = Y j(t)/Lj(t). Applying the same

logic for capital and denoting the ratio of labor to capital income share by Sj(t) ≡ sjL(t)

1−sjL(t)
,

we have:

Sj(t) ≡ sjL(t)

1− sjL(t)
=

γj

1− γj
FBTCj(t)

(
uK,j(t)Kj(t)

Lj(t)

) 1−σj

σj

, (10)

where FBTCj(t) =
(
Bj(t)/Aj(t)

) 1−σj

σj is utilization-adjusted-factor-biased-technological-

change. According to our own estimates and the evidence documented in the literature,
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e.g., Chirinko and Mallick [2017], Oberfield and Raval [2021], capital and labor are gross

complements in production, i.e., σj < 1. An increase in FBTCj means that technological

change is biased toward labor which has an expansionary on labor demand in sector j and

thus on the labor income share sjL(t).

3.2 Technology Frontier

Following Caselli and Coleman [2006] and Caselli [2016], firms within each sector j = H,N

must decide about the split of utilization-adjusted-TFP, Zj(t), between labor- and capital-

augmenting efficiency (i.e., Aj(t) and Bj(t)) along a technology frontier:


γjZ

(
Aj(t)

)σ
j
Z
−1

σ
j
Z +

(
1− γjZ

) (
Bj(t)

)σ
j
Z
−1

σ
j
Z




σ
j
Z

σ
j
Z
−1

≤ Zj(t), (11)

where Zj(t) > 0 is the height of the technology frontier, 0 < γjZ < 1 is the weight of labor

efficiency in utilization-adjusted-TFP and σj
Z > 0 corresponds to the elasticity of substi-

tution between labor- and capital-augmenting productivity. Firms choose a mix of labor

and capital efficiency so as to minimize the unit cost for producing. The unit cost mini-

mization requires that the contribution of labor-augmenting productivity to technological

change in sector j collapses to the LIS, i.e., sjL = γjZ

(
Aj(t)
Zj(t)

)σ
j
Z
−1

σ
j
Z (see Online Appendix D).

Inserting this equality into the log-linearized version of the technology frontier (11) shows

that technological change in sector j is a factor-income-share-weighted sum of changes in

factor-augmenting efficiency:

Ẑj(t) = sjLÂ
j(t) +

(
1− sjL

)
B̂j(t). (12)

The structure imposed by eq. (12) on technology improvement is essential as it ensures that

technology shocks identified in the empirical part by making use of the utilization-adjusted-

Solow residual can potentially be factor-biased. Our approach based on the technological

frontier thus gives rise to a clear mapping between factor-augmenting technology shocks

(i.e., shocks to Aj(t) and Bj(t)) we consider in the theoretical part and shocks to utilization-

adjusted TFP (i.e., shocks to Zj(t)) in the empirical part.

Totally differentiating (7), plugging the outcome into (12) and using the fact that ag-

gregate technology improvement is a value-added-share-weighted-average of sectoral tech-

nology improvements (see eq. (2)), shows that utilization-adjusted-aggregate-TFP growth

can be decomposed into a symmetric and an asymmetric component across sectors:

ẐA(t) = ηẐA
S (t) + (1− η) ẐA

D(t). (13)

Note that ẐA
S (t) = ẐH

S (t) = ẐN
S (t) while ÂH

S (t) 6= ÂN
S (t), B̂H

S (t) 6= B̂N
S (t). In the quan-

titative analysis, we will explore the effect of an increase in the asymmetric component

captured by higher values of 1 − η. It is worth mentioning that 1 − η is not modelled as
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a shock and instead is a parameter which captures the changing nature of technological

change as the economy is hit by shocks to the symmetric and asymmetric components of

factor-augmenting productivity.

3.3 Households

At each instant the representative household consumes traded and non-traded goods de-

noted by CT (t) and CN (t), respectively, which are aggregated by means of a CES function:

C(t) =

[
ϕ

1
φ
(
CT (t)

)φ−1
φ + (1− ϕ)

1
φ
(
CN (t)

)φ−1
φ

] φ
φ−1

, (14)

where 0 < ϕ < 1 is the weight of the traded good in the overall consumption bundle and φ

corresponds to the elasticity of substitution between traded goods and non-traded goods.

The traded consumption index CT (t) is defined as a CES aggregator of home-produced

traded goods, CH(t), and foreign-produced traded goods, CF (t):

CT (t) =

[(
ϕH

) 1
ρ
(
CH(t)

) ρ−1
ρ +

(
1− ϕH

) 1
ρ
(
CF (t)

) ρ−1
ρ

] ρ
ρ−1

, (15)

where 0 < ϕH < 1 is the weight of the home-produced traded good and ρ corresponds to

the elasticity of substitution between home- and foreign-produced traded goods.

The representative household supplies labor to the traded and non-traded sectors, de-

noted by LH(t) and LN (t), respectively, which are assumed to be imperfect substitutes (see

e.g., Horvath [2000]):

L(t) =

[
ϑ
−1/εL
L

(
LH(t)

) εL+1

εL + (1− ϑL)
−1/εL

(
LN (t)

) εL+1

εL

] εL
εL+1

, (16)

where 0 < ϑL < 1 parametrizes the weight attached to the supply of hours worked in

the traded sector and εL is the elasticity of substitution between sectoral hours worked.

Like labor, we generate imperfect capital mobility by assuming that traded KH(t) and

non-traded KN (t) capital stock are imperfect substitutes:

K(t) =

[
ϑ
−1/εK
K

(
KH(t)

) εK+1

εK + (1− ϑK)−1/εK
(
KN (t)

) εK+1

ε

] εK
εK+1

, (17)

where 0 < ϑK < 1 is the weight of capital supply to the traded sector in the aggregate

capital index K(.) and εK measures the ease with which sectoral capital can be substituted

for each other and thereby captures the degree of capital mobility across sectors.

The representative agent is endowed with one unit of time, supplies a fraction L(t) as

labor, and consumes the remainder 1 − L(t) as leisure. Denoting the time discount rate

by β > 0, at any instant of time, households derive utility from their consumption and

experience disutility from working and maximize the following objective function:

U =

∫ ∞

0
Λ (C(t), L(t)) e−βtdt, (18)
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where we consider the utility specification proposed by Shimer [2009]:

Λ (C,L) ≡ C1−σV (L)σ − 1

1− σ
, if σ 6= 1, V (L) ≡

(
1 + (σ − 1) γ

σL
1 + σL

L
1+σL
σL

)
. (19)

These preferences are characterized by two crucial parameters: σL is the Frisch elasticity of

labor supply, and σ > 0 determines the substitutability between consumption and leisure;

if σ > 1, the marginal utility of consumption is increasing in hours worked. The inverse of

σ collapses to the intertemporal elasticity of substitution for consumption. When we let σ

equal to one, the felicity function is additively separable in consumption and labor,

Households supply labor L(t) and capital services K(t) and, in exchange, receive an

aggregate wage rate W (t) and an aggregate capital rental rate RK(t). Households choose

the level of capital utilization in sector j, which includes both a symmetric and an asym-

metric component, i.e., uK,j
S (t) and uK,j

D (t) (see eq. (8)). Both components of the capital

utilization rate collapse to one at the steady-state. The capital utilization adjustment costs

are assumed to be an increasing and convex function of the capital utilization rate uK,j
c (t):

CK,j
c (t) = ξj1,c

(
uK,j
c (t)− 1

)
+

ξj2,c
2

(
uK,j
c (t)− 1

)2
, c = S,D, j = H,N, (20)

where the subscript c = S (c = D) refers to the symmetric (asymmetric) component and

ξj2,c > 0 is a free parameter; letting ξj2,c → ∞ implies that uK,j
c is fixed at unity.

Households can accumulate internationally traded bonds (expressed in foreign good

units), N(t), that yield net interest rate earnings of r?N(t). The household’s flow budget

constraint below states that real disposable income can be saved by accumulating traded

bonds, Ṅ(t), can be consumed, PC(t)C(t), invested, PJ(t)J(t), or cover capital utilization

adjustment costs:

Ṅ(t) +PC(t)C(t) + PJ(t)J(t) +
∑

j=H,N

P j(t)
(
CK,j
S (t) + CK,j

D (t)
)
νK,j(t)K(t)

= r?N(t) +W (t)L(t) +RK(t)K(t)
∑

j=H,N

αj
K(t)

(
uK,j
S (t)

)η (
uK,j
D (t)

)1−η
, (21)

where PC(t) (PJ(t)) is the consumption (investment) price index; we denote the share of

sectoral capital in the aggregate capital stock by νK,j(t) = Kj(t)/K(t) and the capital

compensation share in sector j = H,N by αj
K(t) = Rj(t)Kj(t)

RK(t)K(t)
.

Installation of new investment goods involves convex costs, assumed to be quadratic.

Thus, total investment J(t) differs from effectively installed new capital:

J(t) = I(t) +
κ

2

(
I(t)

K(t)
− δK

)2

K(t), (22)

where the parameter κ > 0 governs the magnitude of adjustment costs to capital accumu-

lation. Denoting the fixed capital depreciation rate by 0 ≤ δK < 1, aggregate investment,

I(t), gives rise to capital accumulation according to the dynamic equation:

K̇(t) = I(t)− δKK(t). (23)
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As in Fernández de Córdoba and Kehoe [2000], the investment good inclusive of installation

expenditure, J(t), is (costlessly) produced by using traded and non-traded inputs, i.e.,

JT (t) and JN (t), which are aggregated by means of a CES technology with an elasticity

of substitution denoted by φJ . The traded investment good (inclusive of installation) costs

is a CES aggregator of home-produced traded inputs, JH(t), and foreign-produced traded

inputs, JF (t), with an elasticity of substitution ρJ .

Households choose consumption, worked hours, capital utilization rates, investment in

physical capital and traded bonds by maximizing lifetime utility (18) subject to (21) and

(23). Denoting by λ and Q′ the co-state variables associated with the budget constraint and

law of motion of physical capital, the first-order conditions characterizing the representative

household’s optimal plans are:

C(t)−σV (t)σ = PC(t)λ(t), (24a)

C(t)1−σV (t)σγL(t)
1

σL = λ(t)W (t), (24b)

Q(t) = PJ(t)

[
1 + κ

(
I(t)

K(t)
− δK

)]
, (24c)

λ̇(t) = λ (β − r?) , (24d)

Q̇(t) = (r? + δK)Q(t)−
{ ∑

j=H,N

αj
K(t)uK,j(t)RK(t)

−
∑

j=H,N

P j(t)
(
CK,j
S (t) + CK,j

D (t)
)
νK,j(t)− PJ(t)

∂J(t)

∂K(t)

}
, (24e)

Rj(t)

P j(t)
η
uK,j(t)

uK,j
S (t)

= ξj1,S + ξj2,S

(
uK,j
S (t)− 1

)
, j = H,N, (24f)

Rj(t)

P j(t)
(1− η)

uK,j(t)

uK,j
D (t)

= ξj1,D + ξj2,D

(
uK,j
D (t)− 1

)
, j = H,N, (24g)

and the transversality conditions limt→∞ λ̄N(t)e−βt = 0 and limt→∞Q(t)K(t)e−βt = 0. To

derive (24c) and (24e), we used the fact that Q(t) = Q′(t)/λ(t). We impose β = r? in

order to generate an interior solution which implies that when new information about a

shock arrives, λ jumps to fulfill the intertemporal solvency condition and remains constant

afterwards.

Once households have chosen consumption, they allocate optimally a share 1 − αC of

their consumption expenditure to non-traded goods:

1− αC(t) =
PN (t)CN (t)

PC(t)C(t)
= (1− ϕ)

(
PN (t)

PC(t)

)1−φ

. (25)

According to eq. (25), as long as φ < 1, as evidence suggests, a depreciation in non-traded

goods prices PN (t) drives down the share of expenditure allocated to non-traded goods

while an appreciation in PN (t) increases 1− αC . This assumption ensures that symmetric

technology shocks have a negative impact on LN (t) while asymmetric technology improve-

ments have a strong expansionary effect on non-traded hours worked, in accordance with
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our empirical findings. However, the assumption φ < 1 alone without frictions into the

movements of inputs leads the model to considerably overstate the shift of productive re-

sources to the non-traded sector. To generate the reallocation of productive we estimate

empirically, especially labor, we allow for capital adjustment costs which mitigate the in-

vestment boom in the non-traded sector (and thus the shift of labor toward this sector)

following a technology shock. The second source of frictions originates from labor and

capital mobility costs across sectors as captured by 0 < εL < ∞ and 0 < εK < ∞:

LN/L = (1− ϑL)
(
WN/W

)εL KN/K = (1− ϑK)
(
RN/RK

)εK , (26)

where mobility costs are larger when εL and εK take lower values.

The third source of frictions comes from home bias in the domestic traded good. This

assumption implies that the rise in imports is mitigated following a technology improvement

compared with a situation where home- and foreign-produced traded goods would be perfect

substitutes. The mechanism rests on the terms of trade depreciation caused by the technol-

ogy shock which leads households to substitute home- for foreign-produced traded goods.

For the terms of trade to depreciate, the price-elasticity of the demand for home-produced

traded goods must be larger than one. A sufficient condition for this is ρ > 1
αH where αH

is the home content of consumption expenditure in traded goods. Home bias ensures that

this condition can be fulfilled for values of ρ falling in the range of empirical estimates.

Because the demand for home-produced traded goods has also a foreign component (i.e.,

exports), the condition is less stringent, i.e., φX +αHρ > 1 where φX is the price-elasticity

of exports.5 This condition ensures that the terms of trade depreciate whether technology

improves at the same rate across sectors, i.e., ẐH(t) = ẐN (t), or is concentrated within

traded industries, i.e., ẐH(t) > ẐN (t). Intuitively, when (domestic and/or foreign) demand

for home-produced traded goods is elastic enough w.r.t. the terms of trade, it is optimal

for traded firms to lower prices to sell additional units of the home-produced traded good

because the decline in PH is covered by the fall in the marginal cost. By stimulating the

demand for home-produced traded goods, the terms of trade depreciation amplifies the rise

in the share of tradables (i.e., αC takes higher values) when technology improves at the

same rate in both sectors, or mitigates the decline in αC when technology improvements

are concentrated within traded industries. The terms of trade depreciation thus either am-

plifies the labor inflow in the traded sector or mitigates the labor outflow experienced by

traded industries.

5This condition is derived by abstracting from physical capital otherwise the model would be analytically
untractable. Since we are interested in impact effects and capital is a state variable which remains unchanged
on impact, abstracting from physical capital serves our purpose. Analytical derivations are available from
the authors upon request.
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3.4 Model Closure and Equilibrium

Market clearing conditions and the current account. To fully describe the equilib-

rium, denoting exports of home-produced goods by XH , we impose goods market clearing

conditions for non-traded and home-produced traded goods:

Y N (t) = CN (t) + JN (t) +
(
CK,N
S (t) + CK,N

D (t)
)
KN (t), (27a)

Y H(t) = CH(t) + JH(t) +XH(t) +
(
CK,H
S (t) + CK,H

D (t)
)
KH(t), (27b)

where investment expenditure are inclusive of installation costs (thus explaining why we use

J instead of I to refer to investment) and exports are assumed to be a decreasing function

of the terms of trade, PH :

XH(t) = ϕX

(
PH(t)

)−φX , (28)

where ϕX > 0 is a scaling parameter and φX is the price-elasticity of exports. Using

the properties of constant returns to scale in production, PC(t)C(t) =
∑

g P
g(t)Cg(t) and

PJ(t)J(t) =
∑

g P
g(t)Jg(t) (with g = F,H,N), and market clearing conditions (27), the

current account equation (21) can be rewritten as a function of the trade balance:

Ṅ(t) = r?N(t) + PH(t)XH(t)−MF (t), (29)

where MF (t) = CF (t) +GF (t) + JF (t) stands for imports.

Setting the dynamics of factor-augmenting productivity. We drop the time

index below to denote steady-state values. Eq. (12) shows that technology improve-

ments are driven by the dynamics of labor- and capital-augmenting efficiency, i.e., Ẑj(t) =

sjLÂ
j(t)+

(
1− sjL

)
B̂j(t). In the same spirit as Gaĺı [1999], we abstract from trend growth

and consider a technology shock that increases permanently utilization-adjusted-TFP.6 Be-

cause we want to assess the ability of the model to reproduce the response of hours we

estimate empirically, we generate the same technology adjustment we get after a per-

manent increase in utilization-adjusted-TFP of 1% in the long-run. Since we consider

symmetric and asymmetric technology shocks, we have to set the dynamics of labor- and

capital-augmenting efficiency for both shocks. Denoting the factor-augmenting efficiency

by Xj
c = Aj

c, B
j
c for symmetric (c = S) and asymmetric technology shocks (c = D), re-

spectively, the adjustment of Xj
c (t) toward its long-run level Xj

c expressed in percentage

deviation from initial steady-state is governed by the following continuous time process:

X̂j
c (t) = X̂j

c + e−ξjX,ct −
(
1− xjc

)
e−χj

X,ct, Xj
c = Aj

c, B
j
c , c = S,D, j = H,N, (30)

6We assume that the economy starts from an initial steady-state and is hit by a permanent technology
improvement like in the empirical part where we estimate the deviation of hours relative to its initial
steady-state following a permanent increase in utilization-adjusted-TFP. In the same spirit as Gaĺı [1999],
the accumulation of permanent technology shocks gives rise to a unit root in the time series for utilization-
adjusted-aggregate-TFP, an assumption we use implicitly to identify a permanent technology shock in the
empirical part. We do not characterize the convergence of the economy toward a balanced growth path
which is supposed to exist, in line with the theoretical findings by Kehoe et al. [2018] who let the labor
intensity of production vary across sectors.
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where xjc = X̂j
c (0) − X̂j

c , and both parameters ξjX,c > 0 and χj
X,c > 0 measure the speed

at which productivity closes the gap with its long-run level. When ξjX,c 6= χj
X,c (with

c = S,D), the above law of motion allows us to generate a hump-shaped adjustment of

factor-augmenting productivity in accordance with the non-monotonic adjustment found

in the data. Letting time tend toward infinity into (30) leads to X̂j
c (∞) = X̂j

c where

X̂j
c is the steady-state (permanent) change in factor-augmenting efficiency in percentage.

Inserting (30) into the log-linearized version of the technology frontier allows us to recover

the dynamics of utilization-adjusted-TFP in sector j, i.e., Ẑj
c (t) = sjLÂ

j
c(t)+

(
1− sjL

)
B̂j

c(t),

which converges toward its new higher steady-state level.

Solving the model. The adjustment of the open economy toward the steady state

is described by a dynamic system which comprises two equations that are functions of K(t),

Q(t), and the vector of factor-augmenting productivity VS(t) =
(
AH

S (t), BH
S (t), AN

S (t), BN
S (t)

)

and VD(t) =
(
AH

D(t), BH
D (t), AN

D(t), BN
D (t)

)
:

K̇(t) = Υ (K(t), Q(t), VS(t), VD(t)) , Q̇(t) = Σ (K(t), Q(t), VS(t), VD(t)) . (31)

Linearizing the dynamic equations (31) in the neighborhood of the steady-state and in-

serting the law of motion of symmetric and asymmetric components of factor-augmenting

efficiency (30) leads to a system of first-order linear differential equations which can be

solved by applying standard methods. In Online Appendix P, we detail the application

of the continuous time adaptation by Buiter [1984] of the solution method pioneered by

Blanchard and Kahn [1980].

4 Quantitative Analysis

In this section, we take the model to the data. For this purpose we solve the model

numerically.7 Therefore, first we discuss parameter values before turning to the effects of

symmetric and asymmetric technology shocks across sectors and contrasting them with

responses estimated empirically after technology shocks.

4.1 Calibration

Calibration strategy. At the steady-state, capital utilization rates, uK,j , collapse to one

so that K̃j = Kj . We consider an initial steady-state with Hicks-neutral technological

change and normalize Aj = Bj = Zj to 1. To ensure that the initial steady-state with

CES production functions is invariant when σj is changed, we normalize CES production

functions by choosing the initial steady-state in a model with Cobb-Douglas production

functions as the normalization point. Once we have calibrated the initial steady-state

with Cobb-Douglas production functions, we assign values to σj in accordance with our

7Technically, the assumption β = r? requires the joint determination of the transition and the steady
state since the constancy of the marginal utility of wealth implies that the intertemporal solvency condition
depends on eigenvalues’ and eigenvectors’ elements, see e.g., Turnovsky [1997].
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estimates and the CES economy is endogenously calibrated to reproduce the ratios of the

Cobb-Douglas economy.

To calibrate the reference model that we use to normalize the CES economy, we have

estimated a set of ratios and parameters for the seventeen OECD economies in our dataset,

see Table 8 relegated to Online Appendix J.1. Our reference period for the calibration is

1970-2017. Because we calibrate the reference model to a representative OECD economy,

we take unweighted average values of ratios and parameters which are summarized in Table

1. Among the 25 parameters that the model contains, 13 have empirical counterparts while

the remaining 12 parameters plus initial conditions must be endogenously calibrated to

match ratios. For the purposes of calibration, we add government spending, G(t), made up

of spending on non-traded goods, GN , and on home- and foreign-produced traded goods,

GH and GF , i.e., G(t) ≡ PN (t)GN (t)+PH(t)GH(t)+GF (t) = T (t), where T (t) is lump-sum

taxes.

Twelve parameters plus initial conditions must be set to target ratios. Pa-

rameters ϕ and ι, are set to 0.51 and 0.32 to target a tradable content of consumption and

investment expenditure of αC = 43% and αJ = 32%, respectively. Parameters ϕH , ιH are

set to 0.71 and 0.49 to target a home content of consumption and investment expenditure in

tradables of αH = 66% and αH
J = 42%, respectively. We set ϑL and ϑK to 0.38 and 0.39 to

target a weight of labor supply and capital supply to the traded sector of LH/L = 36% and

KH/K = 39%, respectively. We choose a value of 0.062 for the capital depreciation rate

δK to target an investment-to-GDP ratio of ωJ = 23%. We choose values for G, GN and

GH to target a ratio of government spending to GDP of ωG = 20% (= G/Y ), a tradable

and home-tradable share of government spending of ωGT = 16% (= 1− (PNGN/G)), and

ωGH = 12% (= PHGH/G); initial conditions are chosen so as trade is balanced. Because

uK,j = 1 at the steady-state, two parameters related to adjustment cost functions of capital

utilization, i.e., ξH1 and ξN1 , are set to be equal to real capital rental rates in the traded and

the non-traded sector, i.e., RH/PH = 0.088 and RN/PN = 0.072, respectively.

Six parameters are assigned values which are taken directly or estimated

from our own data. We choose the model period to be one year. In accordance with the

last column of Table 1, the world interest rate, r?, which is equal to the subjective time

discount rate, β, is set to 2.7%. In line with mean values shown in columns 11 and 12 of

Table 1, the shares of labor income in traded and non-traded value added, sHL and sNL , are

set to 0.63 and 0.69, respectively, which leads to an aggregate labor income share of 66%.

We have estimated empirically the degree of labor mobility between sectors, εL, for one

country at a time. As shown in Online Appendix J.2 where we derive a structural equation,

we pin down εL by running the regression in panel format on annual data of the percentage

change in the hours worked share of sector j on the percentage change in the relative share
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of value added paid to labor in sector j over 1970-2017. The degree of labor mobility across

sectors is set to 0.8, in line with the average of our estimates (see column 17 of Table 1).

This value is close to the value of 1 (estimated by Horvath [2000] on U.S. data) commonly

chosen in the literature allowing for imperfect mobility of labor. We have also estimated

the degree of mobility of capital across sectors by running the regression of the percentage

change in Kj
it/Kit on the percentage change in the relative share of value added paid to

capital in sector j over 1970-2017. We choose a degree of capital mobility across sectors of

0.15, in line with the average of our estimates (see column 18 of Table 1).

To pin down the elasticity of substitution between traded and non-traded consumption

goods φ, we use the optimal allocation of consumption expenditure between CT and CN (see

eq. (25)) and run the regression of the logged share of non-tradables on logged PN (t)/PC(t).

Time series for 1 − αC(t) are constructed by using the market clearing condition for non-

tradables. Building on our panel data estimates, the elasticity of substitution φ between

traded and non-traded goods is set to 0.35 (see column 13 of Table 1), since this value

corresponds to our panel data estimates, see Online Appendix J.5. This value is close to

the estimated elasticity by Stockman and Tesar [1995] who report a value of 0.44 by using

cross-section data for the year 1975.

Seven parameters are taken from external research works. As pointed out

recently by Best et al. [2020], there exists no consensus on a reasonable value for the

intertemporal elasticity of substitution for consumption as estimates in the literature range

between 0 and 2. We choose a value of σ = 2 which implies that consumption and leisure

are substitutes and the intertemporal elasticity of substitution for consumption is equal to

0.5. In line with the estimates recently documented by Peterman [2016], we set the Frisch

elasticity of labor supply σL to 3. We choose the value of parameter κ which captures

the magnitude of capital adjustment costs so that the elasticity of I/K with respect to

Tobin’s q, i.e., Q/PJ , is equal to the value implied by estimates in Eberly et al. [2008]. The

resulting value of κ is equal to 17.

In line with the empirical findings documented by Bems [2008] who finds that the

non-tradable content of investment expenditure is stable in OECD countries, we set the

elasticity of substitution, φJ , between JT and JN to 1. We set the elasticity of substitution

in consumption (investment), ρ (ρJ), between home- and foreign-produced traded goods

(inputs) to 1.3 (see columns 14-15 of Table 1) which fits estimates by Bertinelli et al. [2022]

who find a value of 1.3 for ρ = ρJ for OECD countries which is close to the value of 1.5

chosen by Backus et al. [1994]. Assuming that all countries have the same elasticities,

since the price elasticity of exports is a weighted average of ρ and ρJ , we set φX = 1.3 (see

column 16 of Table 1). A value larger than one is in line with the structural estimates of

the price elasticities of aggregate exports documented by Imbs and Mejean [2015].
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Table 1: Data to Calibrate the Two-Sector Open Economy Model

Tradable share Home share Labor Share

GDP Cons. Inv. Gov. Labor Capital XH CH IH GH LISH LISN

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
0.36 0.43 0.32 0.20 0.36 0.39 0.13 0.66 0.42 0.12 0.63 0.69

Elasticities Aggregate ratios

φ ρ ρJ φX εL εK σH σN LIS I/Y G/Y r?

(13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)
0.35 1.30 1.30 1.30 0.80 0.15 0.81 0.86 0.66 0.23 0.20 0.027

Notes: Columns 1-5 show the GDP share of tradables, the tradable content of consumption, investment and government
expenditure, the tradable content of hours. Column 6 gives the ratio of exports of final goods and services to GDP;
columns 7 and 8 show the home share of consumption and investment expenditure in tradables and column 9 shows
the content of government spending in home-produced traded goods; LISj stands for the labor income share in sector
j = H,N while LIS refers to the aggregate LIS; I/Y is the investment-to-GDP ratio and G/Y is government spending
as a share of GDP. The real interest rate is the real long-term interest rate calculated as the nominal interest rate on 10
years government bonds minus the rate of inflation which is the rate of change of the Consumption Price Index.

Calibrating the CES economy. To calibrate the CES economy, we proceed as

follows. First, we choose the same values for the thirteen parameters which have empirical

counterparts as above, except for the labor income shares which are now endogenously

calibrated. Thus in addition to σ, σL, κ, φJ , ρ, ρJ , φX , r?, εL, εK , φ, we have to choose

values for the elasticity of substitution between capital and labor for tradables and non-

tradables, σH and σN . We estimate σH and σN over 1970-2017 on panel data so as to have

consistent estimates in accordance with our classification of industries as tradables and

non-tradables and sample composition. In line with our panel data estimates, we choose

σH = 0.81 and σN = 0.86 (see columns 19 and 20 of Table 1).

Given the set of elasticities above, the remaining parameters are set so as to maintain the

steady-state of the CES economy equal to the normalization point. Therefore, we calibrate

the model with CES production functions so that sixteen parameters ϕ, ι, ϕH , ιH , ϑL, ϑK ,

δK , G, GN , GH , N0, K0, Z
H , ZN , γH , γN are endogenously set to target 1− ᾱC , 1− ᾱJ ,

ᾱH , ᾱH
J , L̄N/L̄, K̄N/K̄, ω̄J , ω̄G, ω̄GN , ω̄GH , ῡNX , K̄, ȳH , ȳN , s̄HL , s̄NL , respectively, where

a bar indicates that the ratio is obtained from the Cobb-Douglas economy. In addition,

we have to set the dynamic processes of factor-augmenting-efficiency and capital utilization

rates.

Share η of symmetric technology shocks across sectors. Before setting the

dynamic processes of symmetric and asymmetric technology shocks, we have to calibrate

the share η of symmetric technology shocks across sectors. By using the fact that the

adjustment in utilization-adjusted-aggregate-TFP, ẐA(t), following an aggregate technology

shock must collapse to its adjustment driven by symmetric and asymmetric technology

shocks, we choose the value of η minimizing the discrepancy between these two adjustments.

We find a value of η = 0.6, see Online Appendix J.8 for more details.

Capital utilization adjustment costs. We set the magnitude of the adjustment cost

in the capital utilization rate, i.e., ξj2,c, in eqs. (24f)-(24g), so as to account for empirical
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responses of uK,j
S (t) and uK,j

D (t), conditional on symmetric and asymmetric technology

shocks across sectors, respectively. We set ξH2,S = 0.5 and ξN2,S = 0.6 when technology shocks

are symmetric and ξH2,D = 0.03 and ξN2,D = 0.5 when technology shocks are asymmetric

between sectors.

Factor-augmenting efficiency. Since the response of hours in Fig. 2(e) we estimate

empirically is conditional on the dynamic process of the technology shock shown in Fig.

2(a), we have to generate a shock which displays the same dynamic properties and is

also consistent with the productivity differential shown in Fig. 2(b). Moreover, because

our empirical findings show that technology shocks are factor-biased, we calibrate (the

symmetric and asymmetric components of) the adjustment in factor-augmenting efficiency

described by eq. (30). But we have only estimates of utilization-adjusted-TFP and thus

we have to first recover the dynamics of factor-augmenting technology improvements in the

data by adopting a wedge analysis, in the same spirit as Caselli and Coleman [2006]. To

avoid confusion, we add below the superscript ‘data’ to make the distinction with numerical

estimates. As detailed in Online Appendix J.10, the log-linearized versions of labor (relative

to capital) demand (10) and of the technology frontier (12) can be solved for deviations of

Aj,data
c (t) and Bj,data

c (t) relative to their initial values:

Âj,data
c (t) = Ẑj,data

c (t)−
(
1− sjL

)
Γj,data(t), (32a)

B̂j,data
c (t) = Ẑj,data

c (t) + sjLΓ
j,data(t), (32b)

where we have set

Γj,data(t) ≡
[(

σj

1− σj

)
Ŝj,data
c (t)− k̂j,datac (t)− ûK,j,data

c (t)

]
.

We plug estimated values for σj and empirically estimated responses for Sj,data
c (t) =

sj,dataL,c (t)

1−sj,dataL,c (t)
, kj,datac (t), uK,j,data

c (t) following a symmetric (c = S) or asymmetric (c = D)

technology shock across sectors into above equations to infer the dynamics of Aj,data
c (t) and

Bj,data
c (t). Then, we choose parameters xjc, ξ

j
X,c, χ

j
X,c in eq. (30) so as to reproduce the dy-

namics of Aj,data
c (t) and Bj,data

c (t). Calibrated shocks to Aj
c(t) and Bj

c(t) give rise to the dy-

namic adjustment in utilization-adjusted-TFP in sector j Ẑj
c (t) = sjLÂ

j
c(t)+

(
1− sjL

)
B̂j

c(t)

(see eq. (12)). While Online Appendix J.11 shows the fit of the calibrated technology shock

processes to the data for Ẑj
c (t) and utilization-adjusted-factor-biased productivity, Online

Appendix J.10 shows the values chosen to calibrate the shocks to Âj
c(t) and B̂j

c(t).

4.2 Decomposition of Model’s Performance

In this subsection, we analyze the role of the model’s ingredients in driving the effects of

a permanent technology improvement on hours. We show that the ability of the model to

generate the decline in hours (on impact) by -0.15% we estimate empirically depends on

the two-sector dimension and the open economy aspect of the setup.
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Our baseline model includes four sets of elements. The first set is related to the biased-

ness of technology improvements toward traded industries together with the gross comple-

mentarity between traded and non-traded goods (i.e., φ < 1). The second set of elements

is related to barriers to factors’ mobility which include labor mobility costs and costs of

switching capital from one sector to another (i.e., 0 < εL < ∞ and 0 < εK < ∞). The

third set of factors is related to trade openness, as reflected into imperfect substitutabil-

ity between home- and foreign-produced traded goods (i.e., 0 < ρ < ∞, 0 < ρJ < ∞,

0 < φX < ∞) which influences the extent of foreign borrowing. The fourth set of elements

is related to an endogenous intensity in the use of physical capital (i.e., 0 < ξj2,c < ∞), and

technology improvements which are factor-biased at a sector level (i.e., Âj
c(t) 6= B̂j

c(t)).

To understand (and quantify) the role of each element, we first consider the simplest

version of our model and add one ingredient at a time. This restricted version shown in

column 7 of Table 2 collapses to the international RBC model by Fernández de Córdoba

and Kehoe [2000] (FK henceforth) who consider a small open economy setup with tradables

and non-tradables together with capital adjustment costs. In column 6, we allow for both

labor and capital mobility costs across sectors. In column 5, we assume that home- and

foreign-produced traded goods are imperfect substitutes. In column 2, we allow for CES

production functions, FBTC and endogenous capital utilization. This model collapses to

our baseline setup. We will discuss later the effects of symmetric and asymmetric technology

shocks which are displayed by columns 3 and 4.

Table 2 reports the impact effect of selected variables, including total hours worked,

L(t), traded and non-traded hours worked, LH(t) and LN (t), the hours worked share of

tradables, νL,H(t), the relative price of non-tradables and the terms of trade, P (t) and

PH(t). To further illustrate the transmission mechanism, we also show the adjustment in

the real value added share of tradables, dνY,H(t), the value added share of non-tradables

at current prices, dωY,N (t), and the current account, CA(t). For comparison purposes, the

first column displays the impact response of the corresponding variable which is estimated

empirically by means of local projections which should be contrasted with the responses

computed numerically shown in columns 2,5,6,7.

While we normalize the technology improvement to 1% in the long-run, panel A of

Table 2 shows the adjustment of aggregate, traded and non-traded utilization-adjusted-

TFP on impact. As shown in columns 2, 5, 6, 7, all model variants generate an increase in

utilization-adjusted-aggregate-TFP by 0.94% on impact in line with the evidence and give

rise to a technology improvement in tradables and non-tradables of 1.66% and 0.56% close

to our estimates.

First ingredient: Barriers to factors’ mobility. In column 7 of Table 2, we report

results from a restricted version of the baseline model where we consider a two-sector small
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open economy model with capital adjustment costs which collapses to the FK model. In

this model’s version, home- and foreign-produced traded goods are perfect substitutes so

that terms of trade are exogenous (and constant over time). Labor and capital can move

freely across sectors. Production functions are Cobb-Douglas so that technological change

is Hicks-neutral. We also abstract from endogenous capital utilization rates.

Contrasting the model’s predictions shown in column 7 with empirically estimated values

reported in column 1, the restricted version of the model substantially overstates the decline

in total hours worked. Intuitively, as long as home- and foreign-produced goods are perfect

substitutes, it is optimal to import traded goods and reallocate labor (and capital) toward

the non-traded sector. Because labor and capital are not subject to mobility costs, the

hours worked share of tradables falls dramatically by -0.33 percentage point of total hours

worked, thus leading the restricted model to generate a decline in traded hours worked by

-0.57 ppt of total hours worked while we empirically find a fall by -0.04 ppt only. The

corollary of the shift of resources toward the non-traded sector and the surge of imports

is that the open economy runs a large current account deficit, see panel E. Under these

assumptions, households find it optimal to lower hours worked (see the first line of panel

B) by -0.7%, a magnitude which is more than four time larger than the decline we estimate

empirically (i.e., -0.15%) because the model considerably overstates the current account

deficit (-0.38 ppt of GDP instead of -0.03 ppt of GDP).

In column 6, we consider the same model as in column 7 except that we allow for both

labor and capital mobility costs. The frictions into the movements of factors substantially

mitigate the shift of productive resources toward the non-traded sector. In particular,

as shown in the last line of panel B, the decline in the hours worked share of tradables

shrinks from -0.33 ppt of total hours worked (column 7) to -0.14 ppt (column 6). Because

less productive resources move toward the non-traded sector, households must give up a

significant share of the rise in leisure, thus resulting in a shrinking decline in total hours

worked to meet the demand for non-traded goods. The fall in hours by -0.42% is still too

large compared with what we estimate empirically (i.e., -0.15%).

Second ingredient: Imperfect substitutability between home- and foreign-

produced traded goods. As shown in column 5, the ability of the model to account

for the evidence improves once we allow for imperfect substitutability between home- and

foreign-produced traded goods. More specifically, as households are getting more reluctant

to substitute imported goods for domestic goods, there is a shift of demand toward home-

produced traded goods. The reallocation of labor toward non-traded industries further

shrinks from -0.14 ppt to -0.06 ppt of total hours worked (see the fourth row of panel

B). Therefore the fall in traded hours worked is significantly mitigated because as shown

in the second row of panel C, the terms of trade depreciate by -1.15% (close to what
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Table 2: Impact Effects of a Technology Improvement on Hours

Data CES: FBTC and uK CD: IM & TOT CD: IML & IMK CD: PM

LP AGG SYM ASYM AGG AGG AGG

(1) (2) (3) (4) (5) (6) (7)

A.Technology

Aggregate technology, dZA(t) 0.93 0.94 1.19 0.58 0.95 0.95 0.95

T technology, dZH(t) 1.53 1.66 1.06 2.57 1.66 1.66 1.66

N technology, dZN (t) 0.55 0.56 1.26 -0.50 0.56 0.56 0.56

T capital utilization, duK,H(t) -0.24 -0.11 0.09 -1.81 0.00 0.00 0.00

N capital utilization, duK,N (t) 0.12 0.03 0.11 0.00 0.00 0.00 0.00

B.Hours

Hours, dL(t) -0.15 -0.07 -0.40 0.28 -0.26 -0.42 -0.70

Traded Hours, dLH(t) -0.04 -0.03 -0.11 -0.02 -0.15 -0.28 -0.57

Non-Traded Hours, dLN (t) -0.11 -0.05 -0.30 0.29 -0.12 -0.14 -0.13

Hours Share of Tradables, dνL,H(t) 0.01 -0.00 0.03 -0.11 -0.06 -0.14 -0.33

C.Relative Prices

Relative price of N, d(PN/PH)(t) 1.05 1.63 -0.43 4.69 1.56 2.11 1.15

Terms of trade, dPH(t) -1.15 -1.09 -0.44 -1.99 -0.93 0.00 0.00

D.VA Shares

VA share of T (constant prices) dνY,H(t) 0.18 0.23 -0.02 0.47 0.22 0.14 -0.08

VA share of N (current prices) dωY,N (t) 0.05 0.13 -0.07 0.57 0.13 0.34 0.34

E.Current Account

Current Account, dCA(t) -0.03 -0.02 -0.06 0.04 -0.02 -0.18 -0.38

Notes: This table shows impact effects of a 1% permanent increase in utilization-adjusted-aggregate-TFP in the baseline

model (columns 2-4) and in restricted versions of the model (columns 5-7). ’T’ refers to traded industries while ’N’ refers

to non-tradables. ’VA’ refers to value added. In column 1, we show impact responses of corresponding variables that

we estimate empirically by means of local projections. Columns 2, 5, 6, 7 show impact effects we estimate numerically.

Column 3 (4) shows numerical results following a (an) symmetric (asymmetric) technology shock across sectors which

increases utilization-adjusted-aggregate-TFP by 1% in the long-run.

we estimate empirically) which stimulates the demand for home-produced traded goods.

Imports increase less which results in a smaller current account deficit (i.e., -0.02 ppt of

GDP) close to the evidence (see panel E). Because the economy must meet the demand

for home-produced traded goods, the fall in labor supply further shrinks from -0.42% to

-0.26%.

Third ingredient: Factor-biased technological change. The model’s predictions

square well with our evidence once we let technological change be factor-biased. As shown

in panel B, labor no longer shifts toward the non-traded sector (see the fourth row) while

the decline in total hours worked is much less pronounced than in restricted versions of the

model. Intuitively, once we let sectoral goods to be produced by means of CES production

functions and because technological change is biased toward labor in the traded sector,

traded production becomes more labor intensive which prevents labor from shifting toward

non-traded industries and thus mitigates the decline in traded hours worked. The baseline

model generates a fall in LH(t) by -0.03 ppt of total hours worked close to what we estimate

empirically (i.e., -0.04 ppt). Although our model slightly understates the fall in total hours

(-0.07% vs. -0.15% in the data) because it understates the decline in non-traded hours on

impact, the model reproduces well the dynamics of hours worked as shown later.

Fourth ingredient: mix of symmetric and asymmetric technology shocks. So
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far, we have seen that the model must include frictions into the movement of inputs across

sectors to account for the labor effects of a permanent technology improvement. We now

highlight the necessity to consider a mix of symmetric and asymmetric technology shocks.

To stress this aspect, columns 3 and 4 of Table 2 show the impact effects of symmetric and

asymmetric technology shocks separately.8

We first focus on the effects of a symmetric technology shock displayed by column

3. As shown in panel A, technology improvements are uniformly distributed between the

traded and the non-traded sector. As can be seen in the first row of panel B, a symmetric

technology shock generates a decline in hours worked by -0.40% close to what we estimate

empirically (-0.47% in the data). Intuitively, a symmetric technology shock across sectors

lowers the marginal cost in both sectors which leads both traded and non-traded firms to

cut prices. Lower prices put downward pressure on wages which generates a dramatic fall

in labor supply. A symmetric technology shock also gives rise to a current account deficit

which amplifies the decline in total hours worked.

In line with the evidence, the fall in total hours worked mostly originates from the

non-traded sector. Because the elasticity of substitution between traded and non-traded

goods is smaller than one (i.e., φ < 1), the depreciation in non-traded goods prices lowers

the share of expenditure allocated to non-traded goods (see the second row of panel D) and

depresses labor demand in the non-traded sector. The terms of trade depreciation further

tilts the demand toward traded goods which leads to a shift of labor toward the traded

sector, as captured by dνL,H(0) = 0.03 ppt.

Asymmetric technology shocks generate opposite effects. As shown in the first line of

panel B in column 4, an asymmetric shock produces an increase in hours by 0.28% close

to what we estimate empirically (i.e., 0.31% in the data). In contrast to a symmetric

technology shock, panel A shows that technology improvements are concentrated in the

traded sector. To compensate for the rise in the marginal cost, non-traded firms set higher

prices (see the first row of panel C). The share of non-tradables increases (see the second

row of panel D) which has an expansionary effect on labor demand in the non-traded sector

and leads to a shift of labor away from traded industries (see the last row of panel B).

This results in a decline in traded hours worked which is mitigated by technological change

biased toward labor in the traded sector. In line with empirical findings, the rise in total

hours worked mostly originates from the non-traded sector.

Because technology shocks uniformly distributed across sectors produce a dramatic de-

cline in L(0) and technology shocks concentrated toward the traded sector have an expan-

sionary effect on hours worked, they cannot account separately for the moderate decline in

hours (by -0.15%) we estimate after a permanent technology improvement. Therefore, it is

8Relegated to Online Appendix K for reasons of space, we show impact responses computed numerically
for symmetric and asymmetric technology shocks across restricted versions of the baseline model.
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only once we consider a mix of symmetric and asymmetric technology shocks that we can

account for the effects of an aggregate technology shock on hours worked.

4.3 Dynamic Effects of a Permanent Technology Improvement

While in Table 2, we restrict our attention to impact effects, in Fig. 5, we contrast the-

oretical (displayed by solid black lines with squares) with empirical (displayed by solid

blue lines) dynamic responses with the shaded area indicating the 90% confidence bounds.9

We also contrast theoretical responses from the baseline model with the predictions of

a restricted model which imposes Hicks-neutral technological change (HNTC henceforth)

shown in dashed red lines. As shown in Fig. 5(a), both the baseline model and its restricted

version experience the same technology improvement.

Dynamics. As displayed by Fig. 5(c), both models generate a decline in hours worked.

While the technology shock produces a current account deficit in the short-run of the same

magnitude, see Fig. 5(j), only the baseline model with technological change biased toward

labor can account for the dynamics of total hours worked. The reason for this is that as

shown in Fig. 5(e), the model imposing HNTC overstates the decline in LH by generating a

strong reallocation of labor away from traded industries as displayed by Fig. 5(f). This shift

is caused by the concentration of technology improvements within traded industries, see Fig.

5(b), which in turn leads non-traded industries to set higher prices. As the appreciation

in the relative price of non-tradables builds up over time, as displayed by Fig. 5(k), more

labor shifts toward non-traded industries as households allocate a greater share of their

expenditure to non-traded goods.

However, the so-called deindustrialization movement reflected into the decline in the

hours worked share of tradables is gradual and shows up only in the long-run in the data.

The reason is that the reallocation of productive resources across sectors is subject to

frictions. First, the terms of trade depreciation displayed by Fig. 5(l) caused by the rise in

the value added share of tradables, mitigates the rise in the share of non-tradables. Second,

as shown in Fig. 5(g), the technology improvement produces a differential between the

non-traded and the aggregate wage rate as a result of labor mobility costs which further

hamper the reallocation of labor. Third, as shown in Fig. 5(h) and Fig. 5(i), traded output

becomes more labor intensive than non-traded output, especially in the short-run, which

hampers the shift of labor away from traded industries. It is only once we allow for these

three elements that the model can account for the dynamics of total hours worked, see Fig.

5(c).

9For reasons of space, we relegate to Online Appendix J.11 the dynamics of utilization-adjusted-TFP,
capital utilization rates and FBTC for tradables and non-tradables following a symmetric and an asymmetric
technology shock together with an aggregate technology shock.
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Figure 5: Theoretical vs. Empirical Responses Following a Technology Shock. Notes:
ZH(t)/ZN (t) is utilization-adjusted-TFP of tradables relative to non-tradables. ’LP (data)’ refers to the
solid blue line which displays point estimate from local projections with shaded areas indicating 90% con-
fidence bounds; ’Baseline (FBTC)’ refers to the thick solid black line with squares which displays model
predictions in the baseline scenario with capital utilization rates together with factor-biased technologi-
cal change (FBTC), while ’Restricted (HNTC)’ refers to the dashed red line which shows predictions of
a model with Cobb-Douglas production functions which amount to imposing Hicks-neutral technological
change (HNTC) and abstracting from endogenous capital utilization.

4.4 Time-Varying Impact Effects of a Permanent Technology Shock

The vanishing decline in hours after a permanent technology shock. The main

objective of our paper is to rationalize the time-increasing impact response of hours worked

to a 1% permanent technology improvement we document empirically as shown in the blue

line in Fig. 6(a). To assess the ability of our open economy model with tradables and

non-tradables to account for the reduction in the decline in hours we estimate empirically,

we keep the same calibration and estimate the impact response of hours worked to a 1%

permanent technology improvement by letting the share of asymmetric technology shocks

1− η increase over time in line with our empirical estimates over rolling windows (see Fig.

4(d)). Online Appendix J.12 details our calibration strategy and displays calibrated values.
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(a) Technology and Total
Hours Worked

(b) Technology and Traded
Hours Worked

(c) Technology and
Non-Traded Hours Worked

Figure 6: Time-Varying Impact Effects of a Technology Shock. Notes: The figure shows impact
responses of total, traded and non-traded hours worked to a 1% permanent increase in utilization-adjusted
aggregate TFP. The solid blue line shows the impact response we estimate empirically on rolling sub-periods
by using Jordà’s [2005] single-equation method. Shaded areas indicate the 90 percent confidence bounds
based on Newey-West standard errors. The solid black line shows the impact response we compute numer-
ically by letting the share of technology improvements driven by asymmetric technology shocks increase in
accordance with the values taken from the FEVD we estimate on rolling windows and shown in Fig. 4(d).
The horizontal axis shows the end year of the corresponding window and the vertical line displays the point
estimate of the impact effect of technology on hours worked.

As shown in the black line in Fig. 6(a), as we lower the share of technology shocks

uniformly distributed across sectors from 90% to 60%, the baseline model can generate

the shrinking contractionary effect of technology improvements on hours we estimate em-

pirically (see the blue line). Intuitively, because asymmetric technology shocks increase

labor supply, their increasing importance (partly) offsets the negative effect of symmetric

technology shocks on hours.

Sectoral decomposition of the time-varying response of hours worked. In Fig.

6(b) and Fig. 6(c), we investigate the ability of the baseline model’s predictions shown

in the black line to account for the shrinking contractionary effect (on impact) of a 1%

permanent technology improvement on both traded and non-traded hours worked. As it

stands out, the model reproduces well the time-increasing impact response of LH(t) as it

generates a shrinking decline from -0.076 ppt (-0.086 ppt in the data) the first thirty years

to -0.027 ppt (-0.024 ppt in the data) the last thirty years. The performance of the model

relies upon one key ingredient which is FBTC.

Relegated to Online Appendix K.2 for reasons of space, a model imposing HNTC would

produce a time-decreasing impact response of LH , traded hours worked declining on impact

by -0.11 ppt over 70-99 and by -0.15 ppt over 88-17, because asymmetric technology shocks

reallocate labor toward non-traded industries and exert a strong negative impact on LH .

By allowing for technological change strongly biased toward labor in the traded sector

which neutralizes the incentives to shift labor away from traded industries in the short-

run, the baseline model can account for the shrinking contractionary effect of a technology

improvement on LH . We may notice that the baseline model can also generate the time-

increasing impact response of LN in line with the data as the black line lies within the

confidence bounds of the empirical point estimate.
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5 Conclusion

In this paper, we investigate the effects of technology improvements on hours across time.

We find empirically that a 1% permanent increase in utilization-adjusted-aggregate-TFP

produces a decline in hours which gradually vanishes over time. To rationalize the de-

cline in hours and its disappearance, we decompose technology shocks into symmetric and

asymmetric technology improvements. Because symmetric technology shocks have a strong

negative impact on hours and drive the lion’s share of the variations in technology im-

provements, hours worked fall in OECD countries when technology improves. Conversely

asymmetric technology shocks are found empirically to significantly increase hours. There-

fore, their growing contribution to the variations in utilization-adjusted-aggregate-TFP we

document empirically can potentially rationalize the reduction in the decline in hours after

a permanent technology improvement.

To test our assumptions, we simulate an open economy model with tradables and non-

tradables and investigate the overall effect on hours of symmetric and asymmetric tech-

nology shocks. The model can generate the magnitude of the decline in hours worked we

estimate empirically once we include barriers to factors’ mobility, home bias, and factor-

biased technological change. When we increase the contribution of asymmetric shocks to

technology improvements from 10% to 40%, the model can generate the shrinking contrac-

tionary effect of a permanent technology improvement on both total and sectoral hours, in

line with our estimates. This performance crucially relies upon the assumption of techno-

logical change biased toward labor in the traded sector.

Our findings raise an important question: What is the main driver behind the rising

importance of asymmetric technology shocks? In a longer version of the paper, we extend

our two-sector open economy setup to endogenous technology decisions. Our results show

that more than 70% of the progression of asymmetric technology shocks is driven by the

greater exposition of traded industries to the international stock of knowledge. Because

the stock of knowledge is found empirically to have a significant effect on technology in

traded industries only, the combined effect of the increase in the world stock of ideas

and the growing intensity of traded technology in the international stock of knowledge

has amplified the dispersion of technology improvements between the traded and the non-

traded sector and has further increased the variance share driven by asymmetric technology

improvements.

References
Alexopoulos, Michelle (2011) Read All about It!! What Happens Following a Technology Shock? American
Economic Review, 101(4), 1144-1179.

Backus, David K, Patrick J, Kehoe, and Finn E. Kydland (1994) Dynamics of the Trade Balance and the Terms
of Trade: The J-Curve? American Economic Review, 84(1), 84-103.

Bajzik, Jozef, Tomas Havranek, Zuzana Irsova, and Jiri Schwarz (2020) Estimating the Armington Elasticity:
The Importance of Study Design and Publication Bias. Journal of International Economics, 127(C).

40



Barnichon, Régis (2010). Productivity and Unemployment over the Business Cycle. Journal of Monetary Eco-
nomics, 57(8), pp. 1013-25.

Basu, Susanto, Miles S. Kimball, John G. Fernald (2006) Are Technology Improvements Contractionary? Amer-
ican Economic Review, 96(5), 1418-48.

Basu, Susanto (1996) Procyclical Productivity: Increasing Returns or Cyclical Utilization? The Quarterly Jour-
nal of Economics, 111(3), 719-751.

Bems, Rudolfs (2008) Aggregate Investment Expenditures on Tradable and Nontradable Goods. Review of Eco-
nomic Dynamics, 4, 852-883.

Benati, Luca (2008) The ”Great Moderation” in the United Kingdom. Journal of Money, Credit and Banking,
40(1), pp. 121-147.

Bertinelli, Luisito, Olivier Cardi, and Romain Restout (2022) Labor Market Effects of Technology Shocks Biased
toward the Traded Sector. Journal of International Economics, vol. 138(C).

Best, Michael Carlos, James S. Cloyne, E. Ilzetzki, H. J. Kleven (2020) Estimating the Elasticity of Intertemporal
Substitution Using Mortgage Notches. Review of Economic Studies, 87(2), 656-690.

Blanchard, Olivier J. and Charles M. Kahn (1980) The Solution of Linear Difference Models underRational
Expectations. Econometrica, 48(5), pp. 1305-1311.

Buiter, Willem H. (1984) Saddlepoint Problems in Continuous Time Rational Expectations Models: A General
Method and some Macroeconomic Examples. Econometrica, 52, pp. 665-80.

Cantore, Cristiano, Miguel León-Ledesma, Peter McAdam, and Alpo Willman (2014) Shocking Stuff: Technology,
Hours, And Factor Substitution. Journal of the European Economic Association, 12(1), 108-128.

Cantore, Cristiano, Filippo Ferroni, and Miguel León-Ledesma (2017) The Dynamics of Hours Worked and
Technology. Journal of Economic Dynamics and Control, 82, 67-82.

Caselli, Francesco (2016) Technology Differences over Time and Space. Princeton University Press.

Caselli, Francesco, and Wilbur John Coleman II (2006) The World Technology Frontier. American Economic
Review, 96(3), 499-522.

Chang, Yongsung, and Jay H. Hong (2006) Do Technological Improvements in the Manufacturing Sector Raise
or Lower Employment? American Economic Review, 96 (1), 352-368.

Chari, Varadarajan V., Kehoe, Patrick J. and Ellen R., McGrattan (2008) Are Structural VARs with Long-Run
Restrictions Useful in Developing Business Cycle Theory? Journal of Monetary Economics, 55(8), 1337-1352.
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Figure 7: Testing Competing Theories Notes: In all panels, we plot the impact response of the corresponding variable
to a 1% permanent increase in utilization-adjusted-TFP which has been estimated on rolling windows of fixed length of T = 30 years.
Figures 8(a), 7(e), 7(d), 7(b) show the response of the short-term interest rate, the real wage, employment, and utilization-adjusted-
factor-biased-technological-change to a 1% permanent increase in utilization-adjusted-TFP on rolling windows. We first identify the
permanent technology shock by estimating a VAR model which includes utilization-adjusted-aggregate-TFP together with a set of
variables and impose long-run restrictions. In a second step, we estimate the impact response of the short-term interest rate by means
of local projections over the sub-period of interest. Fig. 7(c) plots values of the elasticity of substitution between capital and labor
for production. The values are estimated on rolling windows of fixed length of 30 years. Solid lines represent point estimates and light
(dark) shaded areas represent 90 (68) percent confidence intervals. Vertical axis measures deviation from the pre-shock trend/level in
percent. Sample: 17 OECD countries, 1970-2017.

A Competing Interpretations of the Shrinking Decline in
Hours after Technology Shocks

In this section, we test the four competing interpretations which have been put forward by the
literature to rationalize the vanishing decline in hours after technology shocks in the United States.
None of these competing interpretations find some support in the data for our panel of seventeen
OECD countries over 1970-2017. We first summarize our empirical findings and next we detail our
empirical strategy and results.

A.1 Can Existing Theories Rationalize the Vanishing Decline in Hours
after a Technology Shock in OECD Countries? Summary of the
Evidence

First, as shown in Fig. 7(a), we do not find that monetary policies are significantly more accommo-
dating with technology shocks in industrialized countries. Second, our evidence displayed by Fig.
7(b) reveals that technology shocks are not biased toward capital as our measure of FBTC does not
decline and instead is essentially flat in OECD countries; moreover, the elasticity of substitution
between capital and labor has not increased but has remained stable over time, see Fig. 7(c). Third,
our estimates shown in Fig. 7(d) reveal that the response of employment to a technology shock re-
mains muted on impact. In addition, as documented in Online Appendix A.5, on average, in OECD
countries, the relative volatility of employment has remained fairly stable which is not surprising
since the evidence gathered by Gali and Van Rens in their online appendix of indicates that most of
the OECD countries did not experience the decline in labor market frictions observed in the United
States. Fourth, as shown in Fig. 7(e), we find a significant time-declining response of the real wage
to technology shocks which is hard to reconcile with the assumption of a rising performance pay.
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Figure 8: Testing the Assumption of More Pro-Cyclical Monetary Policies in OECD coun-
tries Notes: Fig. 8(a) shows that response of the short-term interest rate to a 1% permanent increase in utilization-adjusted-TFP
before (dashed red line) and after (blue line) 1992. Solid and dashed lines represent point estimates and light (dark) shaded areas
represent 90 (68) percent confidence intervals. Vertical axis measures deviation from the pre-shock trend/level in percent. We first
identify the permanent technology shock by estimating a VAR model which includes utilization-adjusted-aggregate-TFP together with
a set of variables and impose long-run restrictions. In a second step, we estimate the impact response of the short-term interest rate
by means of local projections over the sub-period of interest. In Fig. 8(b), we estimate the impact response of the short-term interest
rate to a technology shock on rolling windows of fixed time length of 30 years. Sample for both panels: 17 OECD countries, 1970-2017.

A.2 Has Monetary Policy been More Pro-Cyclical?

By using U.S. data, Gali and Gambetti [2009] document evidence which reveals that hours decline
less on impact after a permanent increase in labor productivity in the post-1984 period than in
the pre-1984 period. To rationalize the shrinking contractionary effect of technology shocks on
hours worked, the authors put forward the change in the monetary policy rule reflected by more
accommodating US monetary policy. Intuitively, in a pioneer article, Gali [1999] investigates the
effect of productivity shock by assuming that money supply is fixed. Because a technology shock
generates an excess supply on the goods market and prices are sticky, hours must decline to bring
the goods market back to equilibrium. Dotsey [1999] points out that once we calibrate the model
with sticky prices by considering the Taylor rule estimated by Clarida, Gali and Gertler [1999], then
a productivity shock produces an increase in hours instead of a decline. Broadly speaking, as the
monetary policy is getting more accommodating after a technology shock, the decline in hours will
vanish over time.

Gali and Gambetti [2009] hypothesize that a more pro-cyclical monetary policy could potentially
account for the vanishing decline in hours after a technology shock: “as discussed in Gaĺı, López-
Salido, and Vallés (2003), the Fed’s greater focus on inflation stabilization should automatically
lead to a greater accommodation of changes in potential output resulting from technology shocks”.
To test this hypothesis for our panel of OECD countries, we have estimated the response of the
short-term nominal interest rate (deflated by the foreign prices as foreign goods are the numeraire
in our open economy setup) to a 1% permanent increase in utilization-adjusted-TFP, as displayed
in Fig 8 for our panel of seventeen OECD countries. In the left panel, we estimate the responses
over two sub-periods, say over 70-92 and 93-17. We choose 1992 as the cutoff year for the whole
sample because the Great Moderation occurs in the post-1992 period for European countries which
account for three-fourth of our sample, see e.g., Benati [2008] for the U.K. and González Cabanillas
and Ruscher [2008] for the euro area.

Inspection of Fig. 8(a) reveals that the interest rate is unresponsive on impact and peaks at
0.2 ppt after 4 years following a technology shock of 1% over the period 70-92 as shown in the
dashed red line. As displayed by the blue line, the interest rate is unresponsive at all horizons
to a 1% permanent increase in utilization-adjusted-TFP in the post-1992 period. Since we are
interested in the impact effect of a technology shock on hours, we have assessed the effect of a
permanent technology improvement on the short-term interest rate on impact on rolling windows
of 30 years. Inspection of Fig. 8(b) reveals that the interest rate is unresponsive on impact to a
permanent technology improvement. Although the point estimate for the impact response of the
interest rate displays a slight downward trend, it remains insignificant whatever the period which is
considered. To conclude, overall, the evidence does not show that monetary policy is significantly
more accommodating with permanent technology shocks over time.

A.3 Is the Real Wage More Elastic to Productivity?

Nucci and Riggi [2013] put forward the development of performance-related pay schemes in the
United States from the mid-80s to rationalize the shrinking contractionary effect of technology
shocks on hours worked. The authors assume that workers can choose hours and labor efforts.
The labor compensation is made up of two components, i.e., the standard wage rate per hour and
the wage rate per unit of effort. The latter wage component captures the performance-related pay
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Figure 9: Testing the Assumption of Increasing Elasticity of Real Wages to ProductivityNotes:
Fig. 9(a) shows that response of the real wage rate to a 1% permanent increase in utilization-adjusted-TFP before (dashed red line)
and after (blue line) 1992. Solid and dashed lines represent point estimates and light (dark) shaded areas represent 90 (68) percent
confidence intervals. Vertical axis measures deviation from the pre-shock trend/level in percent. We first identify the permanent
technology shock by estimating a VAR model which includes utilization-adjusted-aggregate-TFP together with a set of variables and
impose long-run restrictions. In a second step, we estimate the impact response of the real wage by means of local projections over the
sub-period of interest. In Fig. 9(b), we estimate the impact response of the real wage to a technology shock on rolling windows of fixed
time length of 30 years. Sample for both panels: 17 OECD countries, 1970-2017.

scheme. The development of performance-related pay schemes is modelled by assuming a higher
elasticity of the flexible component of labor compensation w.r.t. the business cycle (say economic
conditions which include a technology improvement).

The implication of assuming a larger fraction of the labor compensation being driven by a shift
towards the performance pay is that a 1% permanent technology improvement leads to a reduction
in the decline in hours. More specifically, an increase in performance pay will lead firms to adjust the
worker’s performance instead of hours. Thus a higher wage flexibility will result in a smaller decline
in hours after a positive technology shock because firms find it profitable to reduce worker efforts
(because efforts are observable). An another implication is that a technology shock increases the
wage rate and this increase is larger when the performance pay tends to rise as the wage rate is more
elastic to productivity. Nucci and Riggi [2013] document some evidence for the U.S. showing that
there has been a change in the pay structure in the last 1970s. The incidence of performance-pay
jobs has risen from 30% in the pre-1984 period to 60% for the post-1984 period. This large increase
in performance pay stands in sharp contrast with the evolution in Europe. As stressed by Lucifora
and Origo [2022], in Europe, data from the European Working Conditions Survey show that the
share of employees whose earnings partly depend on some form of performance-related pay slightly
increased between 2005 and 2015 (from 19% to 23%). Because three-fourths of our sample is made
up of European countries, we might expect a small impact of the development of performance pay
schemes.

By increasing the elasticity of the flexible component of the wage rate to the business cycle,
including technology shocks, the development of the performance pay scheme should result in a
larger increase in the wage rate following a technology shock. To test this prediction, we have
estimated the response of the wage rate over two sub-periods, i.e., before and after 1992. Fig. 9(a)
reveals that the wage rate increases by 0.9% on impact following a technology shock of 1% in the pre-
1992 period while the wage rate increases by only 0.2% on impact in the post-1992 period. Inspection
of Fig. 9(b) which plots the impact response of the wage rate on rolling sub-samples, reveals that the
elasticity of the wage rate to technology declines over time while the development of performance
pay schemes should produce the opposite. While Nucci and Riggi [2013] convincingly demonstrate
that the rise in the flexible component of labor compensation should have contributed to reduce
the decline in hours after a technology shock in the U.S., this explanation cannot rationalize the
vanishing decline in hours after a technology shock we document for OECD countries. One reason
to this is that the development of performance-pay related schemes has been much less pronounced
in European countries.

A.4 Does FBTC Vary across Time?

In this subsection, we test the assumption for our panel of seventeen OECD countries put forward by
Cantore et al. [2017] related to the greater substitutability between capital and labor in production
over time to explain the gradual vanishing decline in hours after technology shocks in the United
States. Intuitively, the authors put forward technological biased toward capital to rationalize the
decline in hours after a technology shocks and assume that the elasticity of substitution between
capital and labor in production (which is smaller than one) increases over time thus reducing the
extent of technological change biased toward capital. The starting point is that labor-augmenting
productivity growth generates technological change biased toward capital as long as the elasticity of
substitution between capital and labor in production is smaller than one, as evidence suggests. By
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(a) Response of
utilization-adjusted-FBTC: 70-92

vs. 93-17

(b) Response of
utilization-adjusted-FBTC:

Rolling Windows

Figure 10: Are Technology Shocks Factor-Biased and if Yes, Does FBTC Vary across Time?
Notes: Fig. 10(a) shows that response of utilization-adjusted-factor-biased technological change (FBTC) to a 1% permanent increase
in utilization-adjusted-TFP before (dashed red line) and after (blue line) 1992. Solid and dashed lines represent point estimates
and light (dark) shaded areas represent 90 (68) percent confidence intervals. Vertical axis measures deviation from the pre-shock
trend/level in percent. We first identify the permanent technology shock by estimating a VAR model which includes utilization-
adjusted-aggregate-TFP together with a set of variables and impose long-run restrictions. In a second step, we estimate the impact
response of utilization-adjusted-FBTC by means of local projections over the sub-period of interest. In Fig. 10(b), we estimate the
impact response of utilization-adjusted-FBTC to a technology shock on rolling windows of fixed time length of 30 years. Sample for
both panels: 17 OECD countries, 1970-2017.
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(a) Elasticity of Substitution
between Capital and Labor for
Tradables: Rolling Windows
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(b) Elasticity of Substitution
between Capital and Labor for

Non-Tradables: Rolling
Windows

Figure 11: Did the Elasticity of Substitution between Capital and Labor Increase over Time
in OECD countries? Notes: In Fig. 11, we estimate the elasticity of substitution between capital and labor in production
for the traded (see Fig. 11(a)) and the non-traded sector on rolling windows of fixed time length of 30 years. The empirical strategy to
estimate the elasticity of substitution between capital and labor is detailed in section J.6. Sample for both panels: 17 OECD countries,
1970-2017.

producing a negative impact on labor demand, technological change biased toward capital lowers
hours worked after a technology shock. As the elasticity of substitution between capital and labor
converges toward a value of one, technological change turns out to be less biased toward capital
which mitigates the decline in hours worked.

The objective is to test this assumption for our panel of seventeen OECD countries. First, in
Fig. 10, we investigate whether technological change is biased toward capital. We construct time
series for utilization-adjusted-FBTC by using the ratio of the demand for labor to the demand
for capital (expressed in elasticity terms) as detailed in section F.1. An increase (a decline) in
our measure of utilization-adjusted-FBTC implies that technological change is biased toward labor
(capital). As displayed by Fig. 10(a), technological change is biased toward labor in the short-run
before 1992 (see the dashed red line) while the response of FBTC is muted at all horizons after
1992. When we estimate the impact response of utilization-adjusted-FBTC on rolling windows, we
find that the response slightly declines over time. To conclude, in contrast to the hypothesis by
Cantore et al. [2017] for the US that technological change is biased toward capital, we find that
technological change is biased toward labor for our panel of OECD countries and thus cannot lower
hours. Besides the fact that technological change biased toward labor has a positive impact on
hours, the fact that technological change tends to be less biased toward labor over time will tend
to put downward pressure on the hours and thus cannot explain the gradual disappearance of the
decline in hours.

To test the assumption that the elasticity of substitution between capital and labor increases
over time, we have estimated the elasticities for the traded and the non-traded sector, i.e., σH and
σN , by using cointegration methods, see section J.6 which details the empirical strategy, and we
have estimated the elasticity σj over rolling windows of fixed time length. Inspection of Fig. 11(a)
and Fig. 11(b) reveals that σH and σN are constant over time for our panel of seventeen OECD
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Table 3: Standard Errors: Raw Series

Volatility
of Employment

1970-1992 1993-2017
AUS 0.031 0.041
AUT 0.047 0.031
BEL 0.039 0.032
CAN 0.041 0.035
DEU 0.029 0.065
DNK 0.016 0.026
ESP 0.077 0.088
FIN 0.032 0.066
FRA 0.038 0.026
GBR 0.037 0.032
IRL 0.052 0.079
ITA 0.012 0.045
JPN 0.011 0.029
NLD 0.043 0.056
NOR 0.050 0.042
SWE 0.034 0.028
USA 0.023 0.033
Mean 0.037 0.045

Notes: Sample: 17 OECD countries, 1970-2017, annual data. The figures show the
standard deviation of employment for the seventeen OECD countries of our sample
over two sub-periods. To stick to the standard cut-off considered by the literature for
the U.S., we show the figures for 1970-84 and 1985-2017, respectively

countries.
To conclude, our evidence for our panel of 17 OECD countries reveals that technology improve-

ments tend to be biased toward labor and the biasedness toward labor slightly declines over time. In
addition, the elasticity of substitution between capital and labor is constant over time. Therefore,
technological change biased toward capital and a time increasing σ does not square with the data
for OECD countries and cannot rationalize the reduction in the decline of hours.

A.5 Did Labor Market Frictions Decline over Time in OECD Countries?

To rationalize the vanishing decline in hours after technology shocks in the U.S., Gaĺı and Van
Rens [2021] put forward the reduction of labor market frictions which have led firms to adjust
increasingly employment to the expense of hours. The reduction of labor market frictions should
be reflected in smaller values in the job separation rate. The online appendix B.2 of Gaĺı and Van
Rens [2021] provides international evidence to check whether labor market frictions have declined
over time in OECD countries by comparing the 1985-90 period with the 2002-2007 period. Only the
U.S. and Ireland have experienced a decline in the labor turnover as captured by a decline in the
separation rate. The remaining OECD countries experience no change or an increase. Therefore,
the assumption of a reduction in labor market frictions cannot rationalize the vanishing decline in
hours in OECD countries.

While the decline in the job turnover may have been the main driver of the reduction in labor
market frictions in the U.S., the liberalization of the labor market could reduce frictions. However,
only a few countries such as Italy and Spain have significantly reduced the level of employment
protection legislation. In this regard, we have computed the volatility of employment (relative to
the volatility of output) and compared the values between 70-92 and 93-17, see Table 3. In line with
the evidence documented by Gaĺı and Van Rens [2021], the volatility of employment has increased
over time in the United States. It has also increased in nine additional countries of our sample
but the relative volatility of employment has declined in seven remaining OECD countries. If we
consider the country mean, the relative volatility of employment has remained relatively stable on
average.

Finally, following a positive technology shock, firms meet their demand by decreasing
hours since employment takes time to adjust. Because a decline in hiring costs affects
employment (which adjusts gradually because it is a state variable), the line of explanation
based on the reduction of hiring frictions cannot account for the time-increasing impact
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response of hours to a technology shock we document as it only operates at the intensive
margin.

B Response of Total Hours Worked to a Technology Shock
across Variants of the RBC Model

To discipline and guide our empirical investigation, we derive below a formal expression for
the equilibrium level of total hours worked which enables us to discuss the link between
technology and labor.

B.1 The Framework

Households. We assume non-separable preferences between consumption and leisure in
the lines of Shimer [2009]:

Λ ≡ C1−σV (L)σ − 1

1− σ
, if σ 6= 1, V (L) ≡

(
1 + (σ − 1) γ

σL
1 + σL

L
1+σL
σL

)
(33)

and

Λ ≡ logC − γ
σL

1 + σL
L

1+σL
σL , if σ = 1. (34)

These preferences are characterized by two crucial parameters: σL is the Frisch elasticity of
labor supply, and σ > 0 determines the substitutability between consumption and leisure;
it is worthwhile noticing that if σ > 1, the marginal utility of consumption is increasing in
hours worked. Such preferences imply that the Frisch elasticity of labor supply is constant.

Households can accumulate internationally traded bonds (expressed in foreign good
units), Nt, that yield net interest rate earnings of r?Nt. Denoting lump-sum taxes by Tt,
household’s flow budget constraint states that real disposable income (on the RHS of the
equation below) can be saved by accumulating traded bonds, consumed, PC,tCt, invested,
PJ,tJt or is used to cover adjustment costs of capital utilization:

Ṅt +PC,tCt + PJ,tJt +
∑

j=H,N

P j
t C

K,j
t νK,j

t Kt

= r?Nt +WtLt − Tt +RK
t Kt

∑

j=H,N

αj
K,tu

K,j
t , (35)

where we denote the share of sectoral capital in the aggregate capital stock by νK,j
t = Kj

t /Kt

and the capital compensation share in sector j = H,N by αj
K,t =

Rj
tK

j
t

RK
t Kt

.

Partial derivatives of (33) w.r.t. C and L read:

ΛC = C−σV (L)σ, (36a)

ΛL = −C1−σσV (L)σ−1γL
1

σL , (36b)

ΛCL = −ΛL (σ − 1)

C
, (36c)

where ΛC = ∂Λ
∂C and ΛL = ∂Λ

∂L . According to eq. (36c), the marginal utility of consumption
is increasing in labor supply as long as σ > 1, i.e., if consumption and leisure are gross
substitutes.

The representative household chooses Ct and Lt so as to maximize his/her lifetime
utility with an instantaneous utility given by (33) subject to (35) and K̇t = It − δKKt.
Because we are only interested in investigating the role of each ingredient in influencing the
impact response of total hours worked, we will restrict ourselves to optimal decisions about
consumption and labor supply:

ΛC (Ct, Lt) = PC,tλt, (37a)

−ΛL (Ct, Lt) = Wλt, (37b)
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where ΛC = C−σV (L)σ and −ΛL = C1−σσγL1/σLV (L)σ−1.
First, eliminating the marginal utility of wealth λ from (37b) by using (37a), i.e., λ = ΛC

PC
,

leads to

−ΛL

ΛC
=

σ

σ − 1

CVL

V
=

W

PC
,

where VL = ∂V (L)
∂L = (σ − 1) γL

1
σL . Rearranging the FOC for consumption (37a), i.e.,

Ct =
(
ΛC
V σ

)− 1
σ
, and plugging the latter equation into the above equation leads allows us to

rearrange the optimal decision on total hours worked (37b) as follows:

γL
1

σL
t =

Wt

PC,t

(ΛC,t)
1
σ

σ
. (38)

Firms. Both the traded and non-traded sectors use physical capital (inclusive of capital
utilization), denoted by K̃j

t = uK,j
t Kj

t , and labor, Lj , according to a constant returns-to-
scale technology described by a CES production function:

Y j
t =

[
γj

(
Aj

tL
j
t

)σj−1

σj
+
(
1− γj

) (
Bj

t K̃
j
t

)σj−1

σj

] σj

σj−1

, (39)

where 0 < γj < 1 is the weight of labor in the production technology, respectively, σj is
the elasticity of substitution between capital and labor in sector j = H,N , and Aj

t and Bj
t

are labor- and capital-augmenting efficiency.
We denote the wage rate and capital rental rate by W j and Rj which are sector-specific

as we allow for labor and capital mobility costs. Because goods and factor markets are
perfect competitive and the production function displays constant returns to scale, these
assumptions imply that the elasticity of value added w.r.t. labor and capital is equal to the
cost of these factors in value added:

∂Y j

∂Lj

Lj

Y j
= sjL,

∂Y j

∂Kj

Kj

Y j
= 1− sjL, (40)

where sjL = W jLj

P jY j is the labor income share. Dividing the demand for labor by the de-
mand for capital leads to a relationship between the labor income share in sector j and
technological change biased toward labor (last term on the RHS):

sjL,t

1− sjL,t
=

γj

1− γj

(
uK,j
t kjt

) 1−σj

σj

(
Bj

t

Aj
t

) 1−σj

σj

. (41)

When the term
(
Bj

t

Aj
t

) 1−σj

σj

increases, firms tilt their demand toward labor, thus leading to

a rise in the labor income share.
Equilibrium level of total hours worked. Using the fact W jLj = sjLP

jY j and

summing across sectors leads to
∑

j W
jLj =

∑
j s

j
LP

jY j = WL. Denoting the aggregate
labor income share by sL, by definition, we have WL = sLY where Y is nominal GDP.
Making use of this expression to eliminate the wage rate from the labor supply decision
and solving leads to the equilibrium level for total hours worked:

γL
1+σL
σL

t = sL,t
Yt
PC,t

(ΛC,t)
1
σ

σ
. (42)

Column 4 of Table 4 shows the impact response of total hours worked for the baseline
model (11th row) which is contrasted with the responses from ten restricted versions of
the baseline model. Across all variants, we consider a permanent increase in utilization-
adjusted-aggregate-TFP by 1% and we assume that technology adjusts instantaneously to
its new long-run level.
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B.2 Quantifying the role of each ingredient across baseline model’s vari-
ants

In Table 4, we consider eleven variants of a RBCmodel to investigate the role of each element
for the link between hours and technology. In each variant, we assume that aggregate
utilization-adjusted aggregate TFP increases by 1% initially and remains permanently to
this level. When we consider a two-sector economy, we assume that traded and non-traded
technology improves by 1.7% and 0.6% respectively, in line with our evidence. When we
relax the assumption of Hicks-neutral technological change (HNTC henceforth), we let
technological change to be biased toward labor in the traded sector (by 1.60%) and the
non-traded sector (by 0.29%), in line with our estimates.

Response of hours to technology improvements in a closed economy setup.
In order to understand the role played by each element we first assume that the production
function is Cobb-Douglas and technological change is Hicks-neutral (i.e., Aj(t) = Bj(t) =
Zj(t)). We assume that capital utilization rate is fixed. In a closed economy model where
households consume one unique final good, the consumption price index PC collapses to
1. Assuming that the parameter σ is equal to one, the equilibrium level for hours worked

(42) collapses to: γL(t)
1

σL = W (t)C(t)−1. By increasing the wage rate, a technology shock
encourages agents to supply more labor through the substitution channel. A technology
shock also produces a positive wealth effect which encourages households to consume more
goods and more leisure and to lower their labor supply.

As is well-known, in a closed economy, a technology shock leads to an increase in
hours worked on impact which is necessary to meet higher demand for consumption and
investment goods. As shown in the first row of Table 4, total hours worked increase by
0.075%. When we consider a two-sector closed economy model which produces goods and
services, the relative price of leisure collapses to the real consumption wage denoted WC(t).
As shown in the second row of Table 4, a technology improvement further increases total
hours worked by 0.11%. Intuitively, in line with the evidence, technology improvements are
more pronounced in Manufacturing than in Services which leads the latter sector to charge
higher prices to compensate for its higher marginal cost. Because goods and services are
complements, the appreciation in the relative price of services disproportionately increases
the share of services in total expenditure which leads labor to shift toward the service sector.
Since worker experience mobility costs, firms in the service sector must pay higher wages
which amplifies the substitution effect and further increases labor supply.

Moving from a closed to a small open economy. We now assume that the economy
has perfect access to world capital markets. For pedagogical purposes, we consider first a
one-sector economy with no capital adjustment costs. As shown in the third row of Table
4, total hours worked decline dramatically in a small open economy by -0.492%. Intuitively,
because domestic goods and foreign goods are perfect substitutes, the open economy finds
it optimal to work less and import goods and services from abroad by running a current
account deficit. As shown in the last column Table 4, consumption increases less once we
allow for capital adjustment costs (see the fourth row), leading labor supply to fall less (i.e.,
by -0.418%) because domestic capital and foreign bonds are no longer perfect substitutes
in the short-run which mitigates the current account deficit.

Moving from a one-sector to a two sector open economy. We now consider
an economy which produces traded goods that can be exported and non-traded goods for
domestic absorption only. The decline in labor supply by -0.348% is less pronounced than
in a one-sector small open economy because the economy must produce non-traded goods
which cannot be imported from abroad. While traded hours worked decline by almost the
same amount as in one-sector economy, labor now shifts toward non-traded industries. Note
that by raising the marginal revenue product of labor, the appreciation in the relative price
of non-tradables increases the wage rate which leads agents to supply more labor.

As shown in the sixth row, when we allow for labor mobility costs. hours worked fall
by a smaller magnitude, i.e., by -0.219%. Intuitively, in a model where workers experience
switching costs, less labor can move toward the non-traded sector. Therefore workers must
reduce their labor supply by a smaller magnitude so that the production of non-traded
goods meets additional demand.
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Moving from a small to a semi-small open economy. We now assume that home-
and foreign-produced traded goods are imperfect substitutes. As shown in the seventh
row of Table 4, total hours worked decline less following a technology improvement, i.e.,
L̂(0) = −0.111. Intuitively, households are now reluctant to substitute foreign- for home-
produced traded which in turn leads the traded sector to produce more to meet higher
demand. Because the open economy reduces its imports, the decline in hours worked must
be less pronounced. As displayed by the eight row of Table 4, capital mobility costs further
mitigate the magnitude of the decline in total hours worked.

Factor-biased technological change and preferences. We now add a new element
by allowing production to be more intensive in one specific input. Under the assumptions of
perfectly competitive markets and constant returns to scale in production, labor is paid its
marginal product. Denoting the labor income share by sjL, the marginal revenue product

of labor, sjL
P jY j

Lj , must equate the wage rate W j . The same logic applies at an aggregate

level, i.e., sL
Y
L = W where sL is the aggregate labor income share (LIS henceforth) and

Y is GDP at current prices. Plugging labor demand sL
Y
L = W into labor supply (38) to

eliminate W and solving leads to the equilibrium level of total hours worked:

γL(t)
1+σL
σL = sL(t)

Y (t)

PC(t)

(ΛC(t))
1
σ

σ
. (43)

If we assume that production functions are of the CES type and technological change
is factor-biased, the aggregate LIS varies following a permanent technology improvement
which in turn influences the equilibrium level of total hours worked. Column 4 in the ninth
row indicates that technological change biased toward labor mitigates the magnitude of the
decline in hours worked from -0.093% to -0.074%. Formally, technological change biased
toward labor is reflected into an increase in sL , as captured by term on the RHS of eq. (43)
which raises the marginal revenue product of labor, pushes up labor demand and increases
wages.

More specifically, technological change biased toward labor implies that production in
both sectors turns out to be more intensive in labor which has an expansionary effect on
hours worked.10 In the tenth row, we assume that consumption and leisure are substitutes
so that the coefficient of relative risk aversion σ collapses to two. The decline in total
hours worked is more pronounced, passing from -0.074% to -0.105%. Because the marginal
utility of consumption declines more rapidly as consumption increases, households allocate
a greater share of their additional wealth to leisure time which amplifies the decline in total
hours worked. In the last row, we allow for an endogenous capital utilization at a sectoral
level. The decline in L slightly shrinks at -0.106%. On one hand, capital utilization falls
substantially in the traded sector because technological change is strongly biased toward
labor which has a negative impact on traded hours worked. On the other hand, capital
utilization increases in the non-traded sector because non-traded prices appreciate which
has a positive effect on non-traded hours worked. The latter effect more than offsets the
former.

C Unit Cost for Producing

In this section, we derive the expression for the unit cost for producing.
Both sectors are assumed to be perfectly competitive and thus choose capital and labor

by taking prices as given:

max
K̃j

t ,L
j
t

Πj
t = max

Kj
t ,L

j
t

{
P j
t Y

j
t −W j

t L
j
t −Rj

t K̃
j
t

}
. (44)

Because we assume labor and capital mobility costs, the value of marginal products in the
traded and non-traded sectors equalizes while costly labor mobility implies a differential in

10The effect looks small because an aggregate technology shock is a mix of symmetric and asymmet-
ric technology shocks. Although asymmetric technology improvements are strongly biased toward labor,
symmetric technology shocks which are predominant and biased toward capital.
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wage rates and capital rental rates across sectors:

P j
t γ

j
(
Aj

t

)σj−1

σj
(
Lj
t

)− 1

σj
(
Y j
t

) 1

σj ≡ W j
t , (45a)

P j
t

(
1− γj

) (
Bj

t

)σj−1

σj
(
k̃jt

)− 1

σj
(
yjt

) 1

σj ≡ Rj
t , (45b)

where we denote by k̃jt ≡ K̃j
t /L

j
t the capital-labor ratio for sector j = H,N , and yjt ≡ Y j

t /L
j
t

value added per hours worked described by

yjt =

[
γj

(
Aj

t

)σj−1

σj
+
(
1− γj

) (
Bj

t k̃
j
t

)σj−1

σj

] σj

σj−1

. (46)

Dividing (45a) by (45b) leads to a positive relationship between the relative cost of
labor and the capital-labor ratio in sector j:

W j

R
=

γj

1− γj

(
Bj

Aj

) 1−σj

σj

(
K̃j

Lj

) 1

σj

, (47)

where K̃j = uK,jKj . We manipulate (47) To to determine the conditional demands for
both inputs:

Lj = K̃j

(
γj

1− γj

)σj (
Bj

Aj

)1−σj (
W j

R

)−σj

, (48a)

K̃j = Lj

(
1− γj

γj

)σj (
Bj

Aj

)σj−1(
W j

R

)σj

. (48b)

Inserting eq. (48a) (eq. (48b) resp.) in the CES production function (39) and solving for
Lj (K̃j resp.) leads to the conditional demand for labor (capital resp.):

γj
(
AjLj

)σj−1

σj =
(
Y j

)σj−1

σj
(
γj
)σj

(
W j

Aj

)1−σj (
Xj

)−1
, (49a)

(
1− γj

) (
BjK̃j

)σj−1

σj
=

(
Y j

)σj−1

σj

(
R

Bj

)σj (
Xj

) σj

1−σj , (49b)

where Xj is given by:

Xj =
(
γj
)σj (

Aj
)σj−1 (

W j
)1−σj

+
(
1− γj

)σj (
Bj

)σj−1
R1−σj

. (50)

Total cost is equal to the sum of the labor and capital cost:

Cj = W jLj +RK̃j . (51)

Inserting conditional demand for inputs (49) into total cost (51), we find that Cj is ho-
mogenous of degree one with respect to value added:

Cj = cjY j , with cj =
(
Xj

) 1

1−σj , (52)

where the unit cost for producing is:

cj =

[
(
γj
)σj

(
W j

Aj

)1−σj

+
(
1− γj

)σj
(

R

Bj

)1−σj
] 1

1−σj

. (53)
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D Technology Frontier and FBTC

Following Caselli and Coleman [2006] and Caselli [2016], the menu of possible choices of
production functions is represented by a set of possible (Aj , Bj) pairs. These pairs are
chosen along the technology frontier which is assumed to take a CES form:


γjZ

(
Aj(t)

)σ
j
Z
−1

σ
j
Z +

(
1− γjZ

) (
Bj(t)

)σ
j
Z
−1

σ
j
Z




σ
j
Z

σ
j
Z
−1

≤ Zj(t), (54)

where Zj > 0 is the height of the technology frontier, 0 < γjZ < 1 is the weight of labor effi-

ciency along the technology frontier and σj
Z > 0 corresponds to the elasticity of substitution

between labor and capital efficiency. Log-linearizing (54) leads to

0 = γjZ
(
Aj(t)

)σ
j
Z
−1

σ
j
Z Âj(t) +

(
1− γjZ

) (
Bj(t)

)σ
j
Z
−1

σ
j
Z B̂j(t),

B̂j(t)

Âj(t)
= − γjZ

1− γjZ

(
Bj(t)

Aj(t)

) 1−σ
j
Z

σ
j
Z . (55)

Firms choose Aj and Bj along the technology frontier so as to minimize the unit cost
function described by (53) subject to (54) which holds as an equality. Differentiating (53)
w.r.t. Aj and Bj (while keeping W j and Rj fixed) leads to:

ĉj(t) = −
(
γj
)σj

(
W j(t)

Aj(t)

)1−σj (
cj(t)

)σj−1
Âj(t)−

(
1− γj

)σj
(
Rj(t)

Bj(t)

)1−σj (
cj(t)

)σj−1
B̂j(t).

(56)

Using the fact that
(
γj
)σj

(
W j(t)
Aj(t)

)1−σj (
cj(t)

)σj−1
= sjL(t), eq. (56) can be rewritten as

−sjLÂ
j(t) −

(
1− sjL

)
B̂j(t) = ĉj(t). Setting this equality to zero and inserting (55) leads

to:

γjZ
1− γjZ

(
Bj(t)

Aj(t)

) 1−σ
j
Z

σ
j
Z =

sjL(t)

1− sjL(t)
≡ Sj(t). (57)

Solving (57) for sjL leads to:

sjL = γjZ

(
Aj

Zj

)σ
j
Z
−1

σ
j
Z . (58)

Inserting (58) into (55) allows us to rewrite the log-linearized version of the technology
frontier as follows:

Ẑj
t = sLÂ

j
t +

(
1− sjL

)
B̂j

t . (59)

E Sectoral Decomposition of Aggregate TFP

We consider an open economy which produces domestic traded goods, denoted by a super-
script H, and non-traded goods, denoted by a superscript N . The foreign-produced traded
good is the numeraire and its price is normalized to 1. We consider an initial steady-state
where prices are those at the base year so that initially real GDP, denoted by YR, and the
value added share at constant prices, denoted by νY,j , collapse to nominal GDP (i.e., Y )
and the value added share at current prices, respectively.

Summing value added at constant prices across sectors gives real GDP:

YR,t = PHY H
t + PNY N

t , (60)

where PH and PN stand for the price of home-produced traded goods and non-traded
goods, respectively, which are kept fixed since we consider value added at constant prices.
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Log-linearizing (60), and denoting the percentage deviation from initial steady-state by
a hat leads to:

ŶR,t = νY,H Ŷ H
t +

(
1− νY,H

)
Ŷ N
t , (61)

where νY,H = PHY H

Y is the value added share of home-produced traded goods evaluated
at the initial steady-state. We drop the time index below as long as it does not cause
confusion.

Sectoral goods are produced from CES production functions (39). Log-linearizing (39)
and invoking the property of constant returns to scale together with the assumptions of
perfect competition in goods and factor market are perfectly competitive, i.e., inserting eq.
(40), leads to:

Ŷ j
t = sL

(
Âj

t + L̂j
t

)
+
(
1− sjL

)(
B̂j

t + ûK,j
t + K̂j

t

)
. (62)

We assume that firms choose a mix of labor- and capital-augmenting efficiency, Aj and
Bj , along a technology frontier whose height is measured by capital-utilization-TFP. The
technology frontier is described by eq. (54). Inserting the log-linearized version of the tech-
nology frontier (59) implies that the log-linearized version of the CES production function
(62) now reads:

Ŷ j
t = Ẑj

t + sLL̂
j
t +

(
1− sjL

)(
ûK,j
t + K̂j

t

)
. (63)

Since TFP growth, ˆTFP
j
t , includes both technology improvement Ẑj

t and the adjustment

in capital utilization
(
1− sjL

)
ûK,j
t , the change in value added can be rewritten as follows:

Ŷ j
t = ˆTFP

j
t + sjLL̂

j
t +

(
1− sjL

)
K̂j

t . (64)

Summing capital income and labor income across sectors and denoting the aggregate
capital rental rate by R and the aggregate wage rate by W implies:

∑

j

W j
t L

j
t = WtLt, (65a)

∑

j

Rj
tK

j
t = RtKt,

∑

j

Rj
t K̃

j
t = RtK̃t, (65b)

where K̃j = uK,jKj and K̃ = uKK. Log-linearizing (65a)-(65b) while keeping factor prices
constant and dividing by nominal GDP leads to:

sLL̂t =
∑

j

νY,jsjLL̂
j
t , (66a)

(1− sL) K̂t =
∑

j

νY,j
(
1− sjL

)
K̂j

t . (66b)

Inserting (64) into (61) allows us to rewrite the percentage deviation of real GDP as
follows:

ŶR,t =
∑

j

νY,j
[

ˆTFP
j
t + sjLL̂

j
t +

(
1− sjL

)
K̂j

t

]
. (67)

Making use of (66a) and (66b), eq. (67) can be rewritten in the following form:

ŶR,t = ˆTFP
A
t + sLL̂t +

(
1− sjL

)
K̂j

t , (68)

where
ˆTFP

A
t = νY,H ˆTFP

H
+
(
1− νY,H

)
ˆTFP

N
. (69)

Log-linearizing
∑

j R
j
t K̃

j
t = RtK̃t w.r.t. u

K,j and divided by nominal GDP leads to:

(1− sL) û
K
t =

∑

j

(
1− sjL

)
νY,j ûK,j

t . (70)
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Inserting the definition of TFP growth

ˆTFP
j
t = Ẑj +

(
1− sjL

)
ûK,j
t , (71)

and using (70) allows us to rewrite (69) as follows:

ẐA = νY,HẐH +
(
1− νY,H

)
ẐN . (72)

F Recovering and Calibrating the Dynamics of FBTC at a
Sectoral Level

In this section, we detail the methodology to construct time series for capital-utilization-
adjusted-FBTC in sector j = H,N and we detail how we choose parameters to account
for the dynamics of both symmetric and asymmetric components of factor-augmenting
efficiency Aj

c(t) and Bj
c(t) (with c = S,D, j = H,N) we estimate empirically.

F.1 Construction of Time Series for FBTC at a Sectoral Level

The starting point is the ratio of the labor to the capital income share in sector j given by
eq. (10) which can be solved for capital-utilization-adjusted-FBTC in sector j:

FBTCj
t ≡

(
Bj

t

Aj
t

) 1−σj

σj

= Sj
t

1− γj

γj

(
kjt

)− 1−σj

σj
(
uK,j
t

)− 1−σj

σj
, (73)

where uK,j
t is constructed by using the formula (91).

Since we normalize CES production functions so that the relative weight of labor and
capital is consistent with the labor and capital income share in the data, solving for γj

leads to:

γj =

(
Āj

ȳj

) 1−σj

σj

s̄jL, (74a)

1− γj =

(
B̄j ūK,j k̄j

ȳj

) 1−σj

σj (
1− s̄jL

)
. (74b)

Dividing (74a) by (74b) leads to:

S̄j =
γj

1− γj

(
B̄j ūK,j k̄j

Āj

) 1−σj

σj

, (75)

where variables with a bar are averaged values of the corresponding variables over 1970-
2017.

The methodology adopted to calculate γj amounts to using averaged values as the
normalization point to compute time series for FBTC:

(
Bj

t /B̄
j

Aj
t/Ā

j

) 1−σj

σj

=
Sj
t

S̄j

(
kjt
k̄j

)− 1−σj

σj
(
uK,j
t

ūK,j

)− 1−σj

σj

. (76)

Factor-Biased Technological Change (FBTC). Within each sector, we allow for
labor- and capital-augmenting efficiency to increase at different rates so that technological
change can potentially be factor-biased. To investigate empirically whether technological
change is biased toward capital or labor, we have to constuct time series for FBTC within
sector j = H,N . We draw on Caselli and Coleman [2006] and Caselli [2016] to construct
time series for FBTC which must be adjusted with the capital utilization rate. Using (76),
our measure of capital-utilization-adjusted-FBTC, denoted by FTBCj

it, reads

FBTCj
it =

(
Bj

it/B̄
j
i

Aj
it/Ā

j
i

) 1−σ
j
i

σ
j
i

=
Sj
it

S̄j
i

(
kjit
k̄ji

)− 1−σ
j
i

σ
j
i

(
uK,j
it

ūK,j
i

)− 1−σ
j
i

σ
j
i

, (77)
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where a bar refers to averaged values of the corresponding variable over 1970-2017. To
construct time series for FBTCj

it, we plug time series for the ratio of the labor to the

capital income share, Sj
t = sjL,it/

(
1− sjL,it

)
, the capital-labor ratio, kjit, the capital uti-

lization rate defined later, uK,j
it . We also plug values for σj

i we have estimated for each
country of our sample, see sectionJ.6 for a detailed exposition of our empirical strategy.
As shown in Table 1, we find values for σj

i smaller than one for the whole sample (and
most of countries/sectors), thus corroborating the gross complementarity between capital
and labor documented by Oberfield and Raval [2021], Chirinko and Mallick [2017]. When
FBTCj

it increases, technological change is biased toward labor while a fall indicates that
technological change is biased toward capital. To compute aggregate FBTC, we calculate
the labor compensation share weighted sum of sectoral FBTC adjusted with the capital

income share, i.e., ˆFBTC
A
it =

∑
j=H,N αj

L,i

(
1− sjL,i

)
ˆFBTC

j
it.

To get estimates of σj at a sectoral level, following Antràs [2004], we run the regression
of logged real value added per hours worked on the logged real wage in this sector with
country-specific linear trends over 1970-2017. Since all variables display unit root process,
we use the fully modified OLS (FMOLS) procedure for cointegrated panel proposed by
Pedroni [2000] to estimate the cointegrating relationship. Columns 17 and 18 of Table 8
report estimates for σH and σN we use to recover FBTC from (76). FMOLS estimated
values for the whole sample, i.e., σH = 0.81 and σN = 0.86, reveal that capital and labor
are gross complements in both sectors.11

G Identification of Technology Shocks

In this section we detail the identification strategy of technology shocks.
Empirical identification of technology shocks. To identify a permanent technology

improvement, we consider a vector of n observables X̂it = [Ẑit, V̂it] where Ẑit consists of the
first difference of the (logarithm of the) utilization-adjusted TFP (as defined in eq. (1)) and
V̂it denotes the n − 1 variables of interest (in growth rate) detailed later. Let us consider
the following reduced form of the VAR(p) model:

C(L)X̂it = ηit, (78)

where C(L) = In −∑p
k=1CkL

k is a p-order lag polynomial and ηit is a vector of reduced-
form innovations with a variance-covariance matrix given by Σ. We estimate the reduced
form of the VAR model by panel OLS regression with country and time fixed effects which
are omitted in (83) for expositional convenience. The matrices Ck and Σ are assumed to be
invariant across time and countries and all VARs have two lags. The vector of orthogonal
structural shocks εit = [εZit, ε

V
it ] is related to the vector of reduced form residuals ηit through:

ηit = A0εit, (79)

which implies Σ = A0A
′
0 with A0 the matrix that describes the instantaneous effects of

structural shocks on observables. The linear mapping between the reduced-form innovations
and structural shocks leads to the structural moving average representation of the VAR
model:

X̂it = B(L)A0εit, (80)

where B(L) = C(L)−1. Let us denote A(L) = B(L)A0 with A(L) =
∑∞

k=0AkL
k. To

identify a permanent technology improvement, εZit, we use the restriction that the unit root
in utilization-adjusted TFP originates exclusively from technology shocks which implies
that the upper triangular elements of the long-run cumulative matrix A(1) = B(1)A0 must
be zero. Once the reduced form has been estimated using OLS, structural shocks can then
be recovered from εit = A(1)−1B(1)ηit where the matrix A(1) is computed as the Cholesky
decomposition of B(1)ΣB(1)′.

11Online Appendix J.6 provides more details about our empirical strategy to estimate σj . All FMOLS
estimated coefficients are positive and statistically significant except the estimated value for σH for Ireland
which is negative. As in Antràs [2004], we alternatively run the regression of the ratio of value added to
capital stock at constant prices on the real capital cost R/P j in sector j and replace the inconsistent estimate
for σH obtained from labor demand with that obtained from the demand of capital.
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Table 5: Sample Range for Empirical and Numerical Analysis

Country Code Period Obs.
Australia (AUS) 1970 - 2017 48
Austria (AUT) 1970 - 2017 48
Belgium (BEL) 1970 - 2017 48
Canada (CAN) 1970 - 2017 48
Germany (DEU) 1970 - 2017 48
Denmark (DNK) 1970 - 2017 48
Spain (ESP) 1970 - 2017 48
Finland (FIN) 1970 - 2017 48
France (FRA) 1970 - 2017 48
Great Britain (GBR) 1970 - 2016 47
Ireland (IRL) 1970 - 2017 48
Italy (ITA) 1970 - 2017 48
Japan (JPN) 1973 - 2015 43
Netherlands (NLD) 1970 - 2017 48
Norway (NOR) 1970 - 2017 48
Sweden (SWE) 1970 - 2017 48
United States (USA) 1970 - 2017 48
Total number of obs. 810
Main data sources EU KLEMS & OECD STAN
Notes: Column ’period’ gives the first and last observa-
tion available. Obs. refers to the number of observations
available for each country.

H Data Description for Empirical Analysis

Sources: Our primary sources for sectoral data are the OECD and EU KLEMS databases.
We use data from EU KLEMS ([2011], [2017]) March 2011 and July 2017 releases. The
EU KLEMS dataset covers all countries of our sample, with the exceptions of Canada and
Norway. For these two countries, sectoral data are taken from the Structural Analysis
(STAN) database provided by the OECD ([2011], [2017]). For both EU KLEMS and STAN
databases, the March 2011 release provides data for eleven 1-digit ISIC-rev.3 industries
over the period 1970-2007 while the July 2017 release provides data for thirteen 1-digit-
rev.4 industries over the period 1995-2017.

The construction of time series for sectoral variables over the period 1970-2017 in-
volves two steps. First, we identify tradable and non-tradable sectors. The methodology
adopted to classify industries as tradables or non-tradables is described in section L.2. We
map the ISIC-rev.4 classification into the ISIC-rev.3 classification in accordance with the
concordance Table 6. Once industries have been classified as traded or non-traded, for
any macroeconomic variable X, its sectoral counterpart Xj for j = H,N is constructed by
adding the Xk of all sub-industries k classified in sector j = H,N as follows Xj =

∑
k∈j Xk.

Second, series for tradables and non-tradables variables from EU KLEMS [2011] and OECD
[2011] databases (available over the period 1970-2007) are extended forward up to 2017 us-
ing annual growth rate estimated from EU KLEMS [2017] and OECD [2017] series (available
over the period 1995-2017).

Construction of sectoral variables. Once industries have been classified as traded or
non-traded, we construct sectoral variables by taking time series from EU KLEMS ([2011],
[2017]) and OECD STAN ([2011], [2017]) databases. These two databases provide data,
for each industry and year, on value added at current and constant prices, permitting the
construction of sectoral deflators of value added, as well as details on labor compensation
and hours worked data, allowing the construction of sectoral wage rates. Time and countries
are indexed by subscripts i and t below while the sector is indexed by the superscript
j = H,N .

All quantity variables are scaled by the working age population (15-64 years old).
Source: OECD ALFS Database for the working age population (data coverage: 1970-
2017). We describe below the construction for the sectoral data employed in the main text
(mnemonics are given in parentheses):

• Sectoral value added, Y j
it: sectoral value added at constant prices in sector j =

H,N (VA QI). Series for sectoral value added in current (constant) prices are con-
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Table 6: Summary of Sectoral Classifications

Sector ISIC-rev.4 Classification ISIC-rev.3 Classification
(sources: EU KLEMS [2017] and OECD ([2017]) (sources: EU KLEMS [2011] and OECD ([2011])

Industry Code Industry Code
Agriculture, Forestry and Fishing A Agriculture, Hunting, Forestry and Fishing AtB
Mining and Quarrying B Mining and Quarrying C

Tradables Total Manufacturing C Total Manufacturing D
(H) Transport and Storage H Transport, Storage and Communication I

Information and Communication J
Financial and Insurance Activities K Financial Intermediation J
Electricity, Gas and Water Supply D-E Electricity, Gas and Water Supply E
Construction F Construction F
Wholesale and Retail Trade, Repair

Non of Motor Vehicles and Motorcycles G Wholesale and Retail Trade G
Tradables Accommodation and Food Service Activities I Hotels and Restaurants H
(N) Real Estate Activities L Real Estate, Renting and Business Services K

Professional, Scientific, Technical,
Administrative and Support Service Activities M-N
Community Social and Personal Services O-U Community Social and Personal Services LtQ

structed by adding value added in current (constant) prices for all sub-industries k
in sector j = H,N , i.e., P j

itY
j
it =

∑
k P

j
k,itY

j
k,it (P̄

j
itY

j
it =

∑
k P̄

j
k,itY

j
k,it where the bar

indicates that prices P j are those of the base year), from which we construct price
indices (or sectoral value added deflators), P j

it. Sources: EU KLEMS ([2011], [2017])
and OECD STAN ([2011], [2017]) databases.

• Sectoral value added share, νY,jit , is constructed as the ratio of value added at

constant prices in sector j to GDP at constant prices, i.e., Y j
it/(Y

H
it +Y N

it ) for j = H,N .

• Relative price of non-tradables, Pit. Normalizing base year price indices P̄ j to 1,
the relative price of non-tradables, Pit, is constructed as the ratio of the non-traded
value added deflator to the traded value added deflator (i.e., Pit = PN

it /P
H
it ). The

sectoral value added deflator P j
it for sector j = H,N is calculated by dividing value

added at current prices (VA) by value added at constant prices (VA QI) in sector j.
Sources: EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases.

• Terms of trade, TOTit = PH
it /P

H,?
it , is computed as the ratio of the traded value

added deflator of the home country i, PH
it , to the geometric average of the traded value

added deflator of the seventeen trade partners of the corresponding country i, PH,?
it ,

the weight being equal to the share αM,k
i of imports from the trade partner k. We use

the traded value added deflator to approximate foreign prices as it corresponds to a
value-added concept. The Direction of Trade Statistics (DOTS, IMF) gives the share

of imports αM,k
i of country i by trade partner k for all countries of our sample over

1970-2017. The traded value added deflator PH
it is calculated by dividing value added

at current prices (VA) by value added at constant prices (VA QI) in sectorH. Sources:
EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) for PH . Prices of

foreign goods and services are calculated as follows: PH,?
it = Πk 6=i

(
PH,k
t

)αM,k
i

. While

the seventeen trade partners of a representative home country do not fully account
for the totality of trade between country i and its trade partners k 6= i, it covers 58%
of total trade on average for a representative OECD country of our sample. Source:
Direction of Trade Statistics [2017]. Period: 1970-2017 for all countries except for
Belgium (1997-2017).

• Sectoral hours worked, Lj
it, correspond to hours worked by persons engaged in sec-

tor j (H EMP). Likewise sectoral value added, sectoral hours worked are constructed
by adding hours worked for all sub-industries k in sector j = H,N , i.e., Lj

it =
∑

k L
j
k,it.

Sources: EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases.

• Sectoral labor share, νL,jit , is constructed as the ratio of hours worked in sector j
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to total hours worked, i.e., Lj
it/(L

H
it + LN

it ) for j = H,N .

• Sectoral nominal wage, W j
it is calculated as the ratio of the labor compensation

(compensation of employees plus compensation of self-employed) in sector j = H,N
(LAB) to total hours worked by persons engaged (H EMP) in that sector. ources:
EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases.

• Relative wage, W j
it/Wit, is constructed as the ratio of the nominal wage in the sector

j to the aggregate nominal wage W .

• Labor income share (LIS), sjL,it, is constructed as the ratio of labor compensation
(compensation of employees plus compensation of self-employed) in sector j = H,N
(LAB) to value added at current prices (VA) of that sector. Sources: EU KLEMS
([2011], [2017]) and OECD STAN ([2011], [2017]) databases.

We detail below the data construction for aggregate variables (mnemonics are in paren-
theses). For all variables, the reference period is running from 1970 to 2017:

• Real gross domestic product, YR,it, is the sum of traded and non-traded value
added at constant prices. Sources: EU KLEMS ([2011], [2017]) and OECD STAN
([2011], [2017]) databases.

• Total hours worked, Lit, are total hours worked by persons engaged (H EMP). By
construction, total hours worked is the sum of traded and non-traded hours worked.
Sources: EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases.

• Real consumption wage, WC,it = Wit/PC,it, is constructed as the nominal aggre-
gate wage divided by the consumer price index (CPI). Source: OECD Prices and
Purchasing Power Parities Database [2017] for the consumer price index. The nom-
inal aggregate wage is calculated by dividing labor compensation (LAB) by total
hours worked by persons engaged (H EMP). Sources: EU KLEMS ([2011], [2017])
and OECD STAN ([2011], [2017]) databases.

• Aggregate total factor productivity, TFPit, is constructed as the Solow resid-
ual from constant-price domestic currency series of GDP, capital, LIS sL,i, and total
hours worked. We compute the overall capital stock by adopting the perpetual inven-
tory approach, using constant-price investment series taken from the OECD’s Annual
National Accounts, see the next section I. The aggregate LIS, sL, i, is the ratio of
labor compensation (compensation of employees plus compensation of self-employed)
(LAB) to GDP at current prices (VA) in sector averaged over the period 1970-2017
(except Japan: 1973-2015). Sources: EU KLEMS ([2011], [2017]) and OECD STAN
([2011], [2017]) databases.

I Construction of Utilization-Adjusted-TFP Time Series at
a Sectoral Level

We construct time-varying capital utilization time series using the procedure discussed in
Imbs [1999] to construct our own series of utilization-adjusted-TFP. We assume perfectly
competitive factor and product markets. We abstract from capital adjustment costs and
capital mobility costs across sectors. Both the traded and non-traded sectors use physical
capital, Kj , and labor, Lj , according to constant returns to scale production functions
which are assumed to take a CES form:

Y j
t =

[
γj

(
Aj

tL
j
t

)σj−1

σj
+
(
1− γj

) (
Bj

tu
K,j
t Kj

t

)σj−1

σj

] σj

σj−1

. (81)

We denote the capital utilization rate by uK,j
t . Because more intensive capital use depreci-

ates the capital more rapidly, we assume the following relationship between capital use and
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depreciation:

δjK,t = δK

(
uK,j
t

)φK

, (82)

where δK is the capital depreciation rate and φK is the parameter which must be determined.
At the steady-state, we have uK,j = 1 and thus capital depreciation collapses to δK which is
assumed to be symmetric across sectors. Firms also choose Aj and Bj along the technology
frontier that we assume to be Cobb-Douglas without loss of generality:

Zj
t =

(
Aj

t

)sjL,t
(
Bj

t

)1−sjL,t
. (83)

While in the main text, we assume that the technology frontier is CES and above we assume

it is Cobb-Doublas, it leads to the same outcome, i.e., Ẑj
t = sjLÂ

j
t +

(
1− sjL

)
B̂j

t .

Denoting the capital rental cost by Rt = PJ,t (δK,t + r?) , and the labor cost by W j
t ,

firms choose the capital stock, capital utilization and labor so as the maximize profit:

Πj
t = P j

t Y
j
t −W j

t L
j
t −RtK

j
t . (84)

Profit maximization leads to first order conditions on Kj , uK,j , Lj :

P j
t

(
1− γj

) (
Bj

tu
K,j
t

)σj−1

σj
(
Kj

t

)− 1

σj
(
Y j
t

) 1

σj
= Rt, (85a)

P j
t

(
1− γj

) (
Bj

tK
j
t

)σj−1

σj
(
uK,j
t

)− 1

σj
(
Y j
t

) 1

σj
= PJ,tδKφK

(
uK,j
t

)φK−1
Kj , (85b)

P j
t γ

j
(
Aj

t

)σj−1

σj
(
Lj
t

)− 1

σj
(
Y j
t

) 1

σj
= W j

t . (85c)

Multiplying both sides of the first equality by Kj and dividing by sectoral value added
leads to the capital income share:

1− sjL,t =
(
1− γj

)
(
Bj

tu
K,j
t Kj

t

Y j
t

)σj−1

σj

. (86)

By using the definition of the capital income share above and inserting the expression
for the capital rental cost, first-order conditions can be rewritten as follows:

(
1− sjL

) P j
t Y

j
t

PJ,tK
j
t

= (δK,t + r?) , (87a)

(
1− sjL

) P j
t Y

j
t

PJ,tK
j
t

= δK,tφK , (87b)

sjL,t
P j
t Y

j
t

Lj
t

= W j
t . (87c)

Evaluating (87a) and (87b) at the steady-state and rearranging terms leads to:

(r? + δK) = δKφK , (88)

which allows us to pin down φK . We let the capital depreciation rate δK and the real
interest rate r? (long-run interest rate minus CPI inflation rate) vary across countries to
compute φK .

In the line of Garofalo and Yamarik [2002], we use the value added share at current
prices to allocate the aggregate capital stock to sector j:

Kj
t = ωY,j

t Kt, (89)

where Kt is the aggregate capital stock at constant prices and ωY,j
t =

P j
t Y

j
t

PtYR,t
is the value

added share of sector j = H,N at current prices. The methodology by Garofalo and
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Yamarik [2002] is based on the assumption of perfect mobility of capital across sectors and
a small discrepancy in the LIS across sectors, i.e., sHL ' sNL . Inserting (89) into (87a)-(87b),
first order conditions on Kj and uK,j now read as follows:

(
1− sjL,t

) PtYR,t

PJ,tKt
= (δK,t + r?) , (90a)

(
1− sjL,t

) PtYR,t

PJ,tKt
= δK,tφK . (90b)

Solving (90b) for uK,j
t leads to:

uK,j
t =




(
1− sjL,t

)

δKφK

PtYR,t

PJ,tKt




1
φK

, (91)

where φK = r?+δK
δK

(see eq. (88)). Dropping the time index to denote the steady-state
value, the capital utilization rate is:

uK,j =




(
1− sjL

)

δKφK

PYR
PJK




1
φK

. (92)

Dividing (91) by (92) leads to the capital utilization rate relative to its steady-state:

uK,j
t

uK,j
=

[(
1− sjL,t

1− sjL

)
PtYR,t

PYR

PJK

PJ,tKt

] 1
φK

, (93)

We denote total factor productivity in sector j = H,N by TFPj which is defined as
follows:

TFPj
t =

Y j
t

[
γj

(
Lj
t

)σj−1

σj
+ (1− γj)

(
Kj

t

)σj−1

σj

] σj

σj−1

. (94)

Log-linearizing (94), the Solow residual is:

ˆTFP
j
t = Ŷ j

t − sjLL̂
j
t −

(
1− sjL

)
K̂j

t . (95)

Log-linearizing the production function (81) shows that the Solow residual can alternatively
be decomposed into utilization-adjusted TFP and capital utilization correction:

ˆTFP
j
t = Ẑj

t +
(
1− sjL

)
ûK,j
t , (96)

where utilization-adjusted TFP denoted by Zj is equal to:

Ẑj
t = sjLÂ

j
t +

(
1− sjL

)
B̂j

t . (97)

Construction of time series for sectoral capital stock, Kj
t . To construct the

series for the sectoral capital stock, we proceed as follows. We first construct time series for
the aggregate capital stock for each country in our sample. To construct Kt, we adopt the
perpetual inventory approach. The inputs necessary to construct the capital stock series
are a i) capital stock at the beginning of the investment series, K1970, ii) a value for the
constant depreciation rate, δK , iii) real gross capital formation series, It. Real gross capital
formation is obtained from OECD National Accounts Database [2017] (data in millions of
national currency, constant prices). We construct the series for the capital stock using the
law of motion for capital in the model:

Kt+1 = It + (1− δK)Kt. (98)
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for t = 1971, ..., 2017. The value of δK is chosen to be consistent with the ratio of capital
depreciation to GDP observed in the data and averaged over 1970-2017:

1

48

2017∑

t=1970

δKPJ,tKt

Yt
=

CFC

Y
, (99)

where PJ,t is the deflator of gross capital formation series, Yt is GDP at current prices,
and CFC/Y is the ratio of consumption of fixed capital at current prices to nominal GDP
averaged over 1970-2017. Deflator of gross capital formation, GDP at current prices and
consumption of fixed capital are taken from the OECD National Account Database [2017].
The second column of Table 7 shows the value of the capital depreciation rate obtained by
using the formula (99). The capital depreciation rate averages to 5%.

To have data on the capital stock at the beginning of the investment series, we use the
following formula:

K1970 =
I1970

gI + δK
, (100)

where I1970 corresponds to the real gross capital formation in the base year 1970, gI is
the average growth rate from 1970 to 2017 of the real gross capital formation series. The
system of equations (98), (99) and (100) allows us to use data on investment to solve for the
sequence of capital stocks and for the depreciation rate, δK . There are 49 unknowns: K1970,
δK , K1971, ..., and K2017, in 49 equations: 47 equations (98), where t = 1971, ..., 2017, (99),
and (100). Solving this system of equations, we obtain the sequence of capital stocks and
a calibrated value for depreciation, δK . Following Garofalo and Yamarik [2002], the gross
capital stock is then allocated to traded and non-traded industries by using the sectoral
value added share, see eq. (89).

Construction of time series for sectoral TFPs. Sectoral TFPs, TFPj
t , at time t

are constructed as Solow residuals from constant-price (domestic currency) series of value
added, Y j

t , capital stock, K
j
t , and hours worked, Lj

t , by using eq. (95). The LIS in sector
j, sjL, is the ratio of labor compensation (compensation of employees plus compensation
of self-employed) to nominal value added in sector j = H,N , averaged over the period
1970-2017 (except Japan: 1973-2015). Data for the series of constant price value added
(VA QI), current price value added (VA), hours worked (H EMP) and labor compensation
(LAB) are taken from the EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017])
databases.

Construction of time series for real interest rate, r?. The real interest rate
is computed as the real long-term interest rate which is the nominal interest rate on 10
years government bonds minus the rate of inflation which is the rate of change of the
Consumption Price Index (CPI). Sources: OECD Economic Outlook Database [2017] for
the long-term interest rate on government bonds and OECD Prices and Purchasing Power
Parities Database [2017] for the CPI. Data coverage: 1970-2017 except for IRL (1990-2017)
and KOR (1983-2017). The first column of Table 7 shows the value of the real interest rate
which averages 2.7% over the period 1970-2017.

Construction of time series for capital utilization, uK,j
t . To construct time series

for the capital utilization rate, uK,j
t , we proceed as follows. We use time series for the real

interest rate, r? and for the capital depreciation rate, δK to compute φ = r?+δK
δK

(see eq.
(88)). Once we have calculated φ for each country, we use time series for the LIS in sector j,
sjL,t, GDP at current prices, PtYR,t = Yt, the deflator for investment, PJ,t, and times series

for the aggregate capital stock, Kt to compute time series for uK,j
t by using the formula

(91).
Construction of time series for utilization-adjusted TFP, Zj

t . According to (96),
capital utilization-adjusted sectoral TFP expressed in percentage deviation relative to the
steady-state reads:

Ẑj
t = ˆTFP

j
t −

(
1− sjL

)
ûK,j
t ,

lnZj
t − ln Z̄j

t =
(
lnTFPj

t − ln ¯TFP
j
t

)
−
(
1− sjL

)(
lnuK,j

t − ln ūK,j
t

)
. (101)
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Table 7: Data on Real Interest Rate (r?) and Fixed Capital Depreciation Rate (δK)

Country r? δK
AUS 0.028 0.058
AUT 0.029 0.040
BEL 0.031 0.041
CAN 0.031 0.100
DEU 0.022 0.062
DNK 0.044 0.036
ESP 0.020 0.048
FIN 0.024 0.043
FRA 0.031 0.031
GBR 0.023 0.042
IRL 0.033 0.029
ITA 0.025 0.050
JPN 0.017 0.061
NLD 0.028 0.035
NOR 0.025 0.102
SWE 0.029 0.038
USA 0.025 0.026

OECD 0.027 0.050

The percentage deviation of variable Xt from initial steady-state is denoted by X̂t = lnXt−
ln X̄t where we let the steady-state vary over time; the time-varying trend ln X̄t is obtained
by applying a HP filter with a smoothing parameter of 100 to logged time series. To

compute ˆTFP
j
t , we take the log of TFPj

t and subtract the trend component extracted from

a HP filter applied to logged TFPj
t , i.e., lnTFP

j
t − ln ¯TFP

j
t . The same logic applies to uK,j

t .
Once we have computed the percentage deviation lnZj

t − ln Z̄j
t , we reconstruct time series

for lnZj
t :

lnZj
t =

(
lnZj

t − ln Z̄j
t

)
+ ln Z̄j

t . (102)

The construction of time series of logged sectoral TFP, lnTFPj
t , capital utilization-adjusted

sectoral TFP, lnZj
t , is consistent with the movement of capital utilization along the business

cycle.

J Data for Calibration

J.1 Non-Tradable Content of GDP and its Demand Components

Table 8 shows the non-tradable content of GDP, consumption, investment, government
spending, labor and labor compensation (columns 1 to 6). The home content of consumption
and investment expenditure in tradables and the home content of government spending are
reported in columns 8 to 10. Column 7 shows the ratio of exports to GDP. Columns 11
and 12 shows the labor income share in the traded and non-traded sector. Columns 13-14
display the investment-to-GDP ratio and government spending in % of GDP, respectively.
Our sample covers the 17 OECD countries displayed by Table 5. The reference period
for the calibration of labor variables is 1970-2017 while the reference period for demand
components is 1995-2014 due to data availability, as detailed below. When we calibrate
the model to a representative economy, we use the last line which shows the (unweighted)
average of the corresponding variable.

Aggregate ratios. Columns 13-14 show the investment-to-GDP ratio, ωJ and gov-
ernment spending as a share of GDP, ωG. To calculate ωJ , we use time series for gross
capital formation at current prices and GDP at current prices, both obtained from the
OECD National Accounts Database [2017]. Data coverage: 1970-2017 for all countries.
To calculate ωG, we use time series for final consumption expenditure of general govern-
ment (at current prices) and GDP (at current prices). Source: OECD National Accounts
Database [2017]. Data coverage: 1970-2017 for all countries. We consider a steady-state
where trade is initially balanced and we calculate the consumption-to-GDP ratio, ωC by
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using the accounting identity between GDP and final expenditure:

ωC = 1− ωJ − ωG. (103)

As displayed by the last line of Table 8, investment expenditure (see column 13) and
government spending (see column 14) as a share of GDP average to 23% and 20%.

Non-traded demand components. Online Appendix of Cardi and Restout [2023]
details the construction of time series for non-traded government consumption, GN

t , non-
traded consumption, CN

t , and non-traded investment, JN
t by using the World Input-Output

Databases ([2013], [2016]). Columns 2 to 4 show non-tradable content of consumption (i.e.,
1−αC), investment (i.e., 1−αJ), and government spending (i.e., ωGN ), respectively. These
demand components have been calculated by adopting the methodology described in Online
Appendix F of Cardi and Restout [2023]. Sources: World Input-Output Databases ([2013],
[2016]). Data coverage: 1995-2014 except for NOR (2000-2014). The non-tradable content
of consumption, investment and government spending shown in column 2 to 4 of Table 8
averages to 57%, 69% and 84%, respectively.

In the empirical analysis, we use data from EU KLEMS ([2011], [2017]) and OECD
STAN ([2011], [2017]) databases for constructing sectoral value added over the period run-
ning from 1970 to 2017. Since the demand components for non-tradables are computed
over 1995-2014 by using the WIOD dataset, to ensure that the value added is equal to the
sum of its demand components, we have calculated the non-tradable content of value added
shown in column 1 of Table 8 as follows:

ωY,N = =
PNY N

Y
,

= ωC (1− αC) + ωJ (1− αJ) + ωGNωG, (104)

where 1 − αC and 1 − αJ are the non-tradable content of consumption and investment
expenditure shown in columns 2 and 3, ωGN is the non-tradable content of government
spending shown in column 4, ωC and ωJ are consumption- and investment-to-GDP ratios,
and ωG is government spending as a share of GDP.

Non-tradable content of hours worked and labor compensation. To calculate
the non-tradable share of labor shown in column 5 and labor compensation shown in col-
umn 6, we split the eleven industries into traded and non-traded sectors by adopting the
classification detailed in section L.2. Details about data construction for sectoral output
and sectoral labor are provided above. We calculate the non-tradable share of labor com-
pensation as the ratio of labor compensation in the non-traded sector (i.e., WNLN ) to
overall labor compensation (i.e., WL). Sources: EU KLEMS ([2011], [2017]) and OECD
STAN ([2011], [2017]) databases. Data coverage: 1970-2017 for all countries (except Japan:
1973-2015). The non-tradable content of labor and labor compensation, shown in columns
5 and 6 of Table 8, average to 64% and 63% respectively.

Home content of consumption and investment expenditure in tradables.
Online Appendix of Cardi and Restout [2023] details the construction of time series for
the home content of consumption and investment in traded goods by using data taken
from WIOD which allows to differentiate between domestic demand for home- and foreign-
produced goods. Columns 8 to 9 of Table 8 show the home content of consumption and
investment in tradables, denoted by αH and αH

J in the model. These shares are obtained
from time series calculated by using the formulas derived in Online Appendix F of Cardi
and Restout [2023]. Sources: World Input-Output Databases [2013], [2016]. Data cover-
age: 1995-2014 except for NOR (2000-2014). Column 10 shows the content of government
spending in home-produced traded goods. Taking data from the WIOD dataset, time series
for ωGH are constructed by using the formula in Online Appendix F of Cardi and Restout
[2023]. Data coverage: 1995-2014 except for NOR (2000-2014). As shown in the last line of
columns 8 and 9, the home content of consumption and investment expenditure in traded
goods averages to 66% and 42%, respectively, while the share of home-produced traded
goods in government spending averages 12%. Since the non-tradable content of govern-
ment spending averages 84% (see column 4), the import content of government spending is
4% only.
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Since we set initial conditions so that the economy starts with balanced trade, export
as a share of GDP, ωX , shown in column 7 of Table 8 is endogenously determined by the
import content of consumption, 1− αH , investment expenditure, 1− αH

J , and government
spending, ωGF , along with the consumption-to-GDP ratio, ωC , the investment-to-GDP
ratio, ωJ , and government spending as a share of GDP, ωG. More precisely, dividing the
current account equation at the steady-state by GDP, Y , leads to an expression that allows
us to calculate the GDP share of exports of final goods and services produced by the home
country:

ωX =
PHXH

Y
= ωCαC

(
1− αH

)
+ ωJαJ

(
1− αH

J

)
+ ωGωGF , (105)

ωGF = 1 − ωGN,D − ωGH,D . The last line of column 7 of Table 8 shows that the export to
GDP ratio averages 13%.

Sectoral labor income shares. The labor income share for the traded and non-
traded sector, denoted by sHL and sNL , respectively, are calculated as the ratio of labor
compensation of sector j to value added of sector j at current prices. Sources: EU KLEMS
([2011], [2017]) and OECD STAN ([2011], [2017]) databases. Data coverage: 1970-2017 for
all countries (except Japan: 1973-2015). As shown in columns 11 and 12 of Table 8, sHL
and sNL averages 0.63 and 0.68, respectively.

Estimated elasticities. Columns from 15 to 18 of Table 8 display estimates of the
elasticity of substitution between tradables and non-tradables in consumption, φ, the elas-
ticity of labor supply across sectors, εL, the elasticity of capital supply across sectors, εK ,
the elasticity of substitution between capital and labor in the traded and the non-traded
sector, i.e., σH and σN .

J.2 Estimates of εL: Empirical Strategy and Estimates

Framework. The economy consists of M distinct sectors, indexed by j = 0, 1, ...,M each
producing a different good. Along the lines of Horvath [2000], the aggregate labor index is
assumed to take the form:

L =

[∫ M

0

(
ϑj
)− 1

εL
(
Lj

) εL+1

εL dj

] εL

εL+1

, (106)

The agent seeks to maximize her labor income

∫ M

0
W jLjdj = XL, (107)

for given utility loss; Lj is labor supply to sector j, W j the wage rate in sector j and XL

total labor income. The form of the aggregate labor index (106) implies that there exists
an aggregate wage index W (.), whose expression will be determined later. Thus equation
(107) can be rewritten as follows:

∫ M

0
W jLjdj = WL. (108)

Writing down the Lagrangian and denoting by µ the Lagrangian multiplier to the constraint,
the first-order reads as: (

ϑj
)− 1

εL
(
Lj

) 1

εL L
− 1

εL = µW j . (109)

Left-multiplying both sides of eq. (109) by Lj , summing over the M sectors and using eqs.
(106) and (108) implies that µ = 1

W . Plugging the expression for the Lagrangian multiplier
into (109) and rearranging terms leads to optimal labor supply Lj to sector j:

Lj = ϑj

(
W j

W

)εL

L. (110)

Each sector consists of a large number of identical firms which use labor, Lj , and
physical capital, Kj , according to a constant returns to scale technology described by a
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CES production function. The representative firm faces two cost components: a capital
rental cost equal to Rj , and a wage rate equal to W j , respectively. Since each sector is
assumed to be perfectly competitive, the representative firm chooses capital and labor by
taking prices as given:

max
Kj ,Lj

Πj = max
Kj ,Lj

{
P jY j −W jLj −RjKj

}
. (111)

First-order conditions lead to the demand for labor and capital which read as follows:

sjL
P jY j

Lj
= W j , (112a)

(
1− sjL

) P jY j

Kj
= Rj . (112b)

Inserting labor demand (112a) into labor supply to sector j (110) and solving leads the
share of sector j in aggregate labor:

Lj

L
=

(
ϑj
) 1

εL+1

(
sjLP

jY j

∫M
0 sjLP

jY jdj

) εL

εL+1

, (113)

where we combined (108) and (112a) to rewrite the aggregate wage as follows:

W =

∫M
0 sjLP

jY jdj

L
. (114)

We denote by βj the fraction of labor’s share of value added accumulating to labor in sector
j:

βj =
sjLP

jY j

∑M
j=1 s

j
LP

jY j
. (115)

Using (115), the labor share in sector j (113) can be rewritten as follows:

Lj

L
=

(
ϑj
) 1

εL+1
(
βj

) εL

εL+1 . (116)

Introducing a time subscript and taking logarithm, eq. (116) reads as:

ln

(
Lj

L

)

t

=
1

εL + 1
lnϑj +

εL

εL + 1
lnβj

t . (117)

Totally differentiating (117), denoting the rate of growth of the variable with a hat,
including country fixed effects captured by country dummies, fi, sector dummies, fj , and
common macroeconomic shocks by year dummies, ft, leads to:

L̂j
it − L̂it = fi + ft + γiβ̂

j
it + νjit, (118)

where

L̂it =
M∑

j=1

βj
i,t−1L̂

j
i,t. (119)

and

βj
it =

sjL,iP
jY j

it∑M
j=1 s

j
L,iP

j
itY

j
it

, (120)

where sjL,i is the labor income share in sector j in country i which is averaged over 1970-2017.

Y j is value added.
Elasticity of labor supply across sectors. We use panel data to estimate (118)

where γi =
εLi

εLi +1
and βj

it is given by (115). The LHS term of (118) is calculated as the

difference between changes (in percentage) in hours worked in sector j, L̂j
i,t, and in total
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Table 10: Estimates of Elasticity of Labor Supply across Sectors (ε)

Country Elasticity of labor supply
across Sectors (εL)

AUS 0.480a
(3.84)

AUT 1.096a
(3.08)

BEL 0.599a
(3.66)

CAN 0.362a
(4.24)

DEU 0.998a
(3.62)

DNK 0.273b
(2.55)

ESP 0.950a
(3.84)

FIN 0.417a
(4.52)

FRA 1.309a
(3.03)

GBR 0.616a
(4.14)

IRL 0.105a
(3.17)

ITA 1.628a
(3.14)

JPN 0.961a
(3.67)

NLD 0.221b
(2.25)

NOR 0.166a
(2.77)

SWE 0.547a
(4.57)

USA 2.889b
(2.03)

Countries 17
Observations 794
Data coverage 1971-2017
Country fixed effects yes
Time dummies yes
Time trend no

Notes: a, b and c denote significance at 1%, 5% and 10% levels.
Heteroskedasticity and autocorrelation consistent t-statistics
are reported in parentheses.

hours worked, L̂i,t. The RHS term βj corresponds to the fraction of labor’s share of value

added accumulating to labor in sector j. Denoting by P j
t Y

j
t value added at current prices

in sector j = H,N at time t, βj
t is computed as

sjLP
j
t Y

j
t∑N

j=H sjLP
j
t Y

j
t

where sjL is the LIS in sector

j = H,N defined as the ratio of the compensation of employees to value added in the
jth sector, averaged over the period 1970-2017. Because hours worked are aggregated by
means of a CES function, percentage change in total hours worked, L̂i,t, is calculated as

a weighted average of sectoral hours worked percentage changes, i.e., L̂t =
∑N

j=H βj
t−1L̂

j
t .

The parameter we are interested in, say the degree of substitutability of hours worked across
sectors, is given by εLi = γi/(1 − γi). In the regressions that follow, the parameter γi is
assumed to be different across countries when estimating εLi for each economy (γi 6= γi′ for
i 6= i′).

To construct L̂j and β̂j we combine raw data on hours worked Lj , nominal value added
P jY j and labor compensation W jLj . All required data are taken from the EU KLEMS
([2011], [2017]) and OECD STAN ([2011], [2017]) databases. The sample includes the 17
OECD countries mentioned above over the period 1971-2017 (except for Japan: 1974-2015).

Table 10 reports empirical estimates that are consistent with εL > 0. All values are
statistically significant at 10%. Since the estimated value for ε is not statistically significant
for Norway, we run the same regression as in eq. (118) but use output instead of value added
to construct β̂j . We find a value of 0.17, as reported in column 17 of Table 10, and this
estimated value is statistically significant. Overall, we find that εL ranges from a low of 0.1
of Ireland and 0.2 for Norway to a high of 2.89 for the United States.
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J.3 Estimates of εK: Empirical Strategy and Estimates

Framework. The economy consists of M distinct sectors, indexed by j = 0, 1, ...,M each
producing a different good. Along the lines of Horvath [2000], the aggregate capital index
is assumed to take the form:

K =

[∫ M

0

(
ϑj
K

)− 1

εK
(
Kj

) εK+1

εK dj

] εK

εK+1

, (121)

The agent seeks to maximize capital income

∫ M

0
RjKjdj = XK , (122)

for given utility level K(.); Kj is capital supply to sector j, Rj the capital rental rate
in sector j and XK total capital income. The form of the aggregate capital index (121)
implies that there exists an aggregate capital rental rate index RK (.), whose expression
will be determined later. Thus equation (122) can be rewritten as follows:

∫ M

0
RjKjdj = RKK. (123)

Writing down the Lagrangian and denoting by µK the Lagrangian multiplier to the con-
straint, the optimal decision for capital supply to sector j reads as follows:

(
ϑj
K

)− 1

εK
(
Kj

) 1

εK K
− 1

εK = µKRj . (124)

Left-multiplying both sides of eq. (124) by Kj , summing over the M sectors and using
eqs. (121) and (123) implies that µK = 1

RK . Plugging the expression for the Lagrangian
multiplier into (124) and rearranging terms leads to optimal capital supply Kj to sector j:

Kj = ϑj
K

(
Rj

RK

)εK

K. (125)

Each sector consists of a large number of identical firms which use labor, Lj , and
physical capital, Kj , according to a constant returns to scale technology described by a
CES production function. The representative firm faces two cost components: a capital
rental cost equal to Rj , and a wage rate equal to W j , respectively. Since each sector is
assumed to be perfectly competitive, the representative firm chooses capital and labor by
taking prices as given:

max
Lj ,Kj

Πj = max
Lj ,Kj

{
P jY j −W jLj −RjKj

}
. (126)

First-order conditions lead to the demand for labor and capital which can be rewritten as
follows:

sjL
P jY j

Lj
= W j , (127a)

(
1− sjL

) P jY j

Kj
= Rj . (127b)

Inserting labor demand (127a) into capital supply to sector j (125) and solving leads
the share of sector j in aggregate labor:

Kj

K
=

(
ϑj
K

) 1

εK+1




(
1− sjL

)
P jY j

∫M
0

(
1− sjL

)
P jY jdj




εK

εK+1

, (128)

where we combined (123) and (127a) to rewrite the aggregate capital rental rate as follows:

RK =

∫M
0

(
1− sjL

)
P jY jdj

K
. (129)
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We denote by βK,j the ratio of capital income in sector j to overall capital income:

βK,j =

(
1− sjL

)
P jY j

∑M
j=1

(
1− sjL

)
P jY j

. (130)

Using (130), the share of capital in sector j (128) can be rewritten as follows:

Kj

K
=

(
ϑj
K

) 1

1+εK
(
βK,j

) εK

εK+1 . (131)

Introducing a time subscript and taking logarithm, eq. (131) reads as:

ln

(
Kj

K

)

t

=
1

εK + 1
lnϑj

K +
εK

εK + 1
lnβK,j

t . (132)

We denote the rate of growth of the variable with a hat. We totally differentiate (132)
and include country fixed effects captured by country dummies, gi, sector dummies, gj , and
common macroeconomic shocks captured by year dummies, gt:

K̂j
it − K̂it = gi + gt + gj + γKi β̂K,j

it + νK,j
it , (133)

We use panel data to estimate (133). We run the regression of the percentage change in
the share of capital in sector j on the percentage change in the capital income share of
sector j relative to the aggregate economy. Intuitively, when the demand for capital rises
in sector j, βK,j increases which provides incentives for households to shift capital toward
this sector. To calculate βK,j

it for sector j, in country i at time t, we proceed as follows:

K̂it =
M∑

j=1

βK,j
i,t−1K̂

j
i,t. (134)

and

βK,j
it =

(
1− sjL,i

)
P j
itY

j
it

∑M
j=1

(
1− sjL,i

)
P j
itY

j
it

, (135)

where
(
1− sjL,i

)
is the capital income share in sector j in country i which is averaged over

1970-2017. Y j is value added and P j is the value added deflator.
Data: Source and Construction. We take capital stock series from the EU KLEMS

[2011] and [2017] databases which provide disaggregated capital stock data (at constant
prices) at the 1-digit ISIC-rev.3 level for up to 11 industries, but only for thirteen countries
of our sample which include Australia, Canada, Denmark, Finland, Great-Britain, Italy,
the Netherlands, Spain, the United States, over the entire period 1970-2017, plus Austria
(1976-2017), France (1978-2017), Japan (1973-2006), Korea (1970-2014). In efforts to have
time series of a reasonable length, we exclude Belgium (1995-2017) and Sweden (1993-2017)
because the period is too short while Ireland, and Norway do not provide disaggregated
capital stock series. To construct K̂j

it and β̂K,j
it we combine raw data on capital stock Kj ,

nominal value added P jY j and labor compensation W jLj to calculate 1− sjL.
Degree of capital mobility across sectors. We use panel data to estimate (133)

where γKi =
εK,i

εK,i+1 and βK,j
it is given by (135). Table 11 reports empirical estimates that

are consistent with εK > 0. We average positive values for εK and exclude negative values
as they are inconsistent. We find an average value for εK of 0.15 which suggests high capital
mobility costs across sectors in OECD countries.

J.4 Estimates of εS and εU : Empirical Strategy and Estimates

Framework. The economy consists of M distinct sectors, indexed by j = 0, 1, ...,M each
producing a different good. Along the lines of Horvath [2000], the aggregate skilled labor
index is assumed to take the form:

S =

[∫ M

0

(
ϑj
S

)− 1

εS
(
Lj

) εS+1

εS dj

] εS

εS+1

, (136)
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Table 11: Elasticity of Capital Supply across Sectors (εK)

Country Elasticity of capital supply
across Sectors (εK)

AUS 0.065
(1.10)

AUT 0.178c
(1.71)

BEL 0.229c
(1.69)

CAN 0.107b
(2.50)

DEU 0.041
(0.62)

DNK −0.145a
(−3.88)

ESP −0.045
(−1.01)

FIN 0.101b
(2.38)

FRA 0.090
(1.07)

GBR 0.087c
(1.72)

IRL −0.156a
(−9.54)

ITA −0.028
(−0.54)

JPN 0.597a
(4.59)

NLD 0.034
(0.62)

NOR −0.007
(−0.32)

SWE −0.038
(−0.59)

USA 0.128
(1.43)

Countries 17
Observations 699
Data coverage 1970-2017
Country fixed effects yes
Time dummies yes
Time trend no

Notes: a, b and c denote significance at 1%, 5% and 10% levels. Het-
eroskedasticity and autocorrelation consistent t-statistics are reported in
parentheses.
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The agent seeks to maximize her labor income

∫ M

0
WS,jSjdj = XS , (137)

for given utility loss; Sj is the supply of skilled labor to sector j, WS,j the wage rate paid in
exchange for each hour of skilled labor services in sector j and XS stands for total skilled
labor income. The form of the aggregate skilled labor index (136) implies that there exists
an aggregate wage index WS (.), whose expression will be determined later. Thus equation
(137) can be rewritten as follows:

∫ M

0
WS,jSjdj = WSS. (138)

Writing down the Lagrangian and denoting by µS the Lagrangian multiplier to the con-
straint, the first-order reads as:

(
ϑj
S

)− 1

εS
(
Sj

) 1

εS S
− 1

εS = µSWS,j . (139)

Left-multiplying both sides of eq. (139) by Sj , summing over the M sectors and using
eqs. (136) and (138) implies that µS = 1

WS . Plugging the expression for the Lagrangian
multiplier into (139) and rearranging terms leads to optimal labor supply Sj to sector j:

Sj = ϑj
S

(
WS,j

WS

)εS

S. (140)

We assume that within each sector, there is a large number of identical firms which
produces Y j by using labor Lj and capital Kj according to constant returns to scale in
production. Labor is made up of skilled Sj and unskilled U j workers. The representative
firm faces two cost components: a capital rental cost equal to Rj , a skilled labor wage rate
WS,j , and an unskilled labor wage rate WU,j . Since each sector is assumed to be perfectly
competitive, the representative firm chooses capital and labor by taking prices as given:

max
Kj ,Sj ,Uj

Πj = max
Kj ,Sj ,Uj

{
P jY j −WS,jSj −WU,jU j −RjKj

}
. (141)

Since the production function displays constant returns to scale and using the fact that
factors are paid their marginal product, the demand for labor and capital are: ∂Y j/∂Lj =
W j/P j and ∂Y j/∂Kj = R/P j , respectively; denoting the LIS in sector j by sjL, the demand
for capital and labor can be rewritten as follows:

sjLP
j ∂Y

j

∂Lj

∂Lj

∂Sj
= WS,j , (142a)

sjLP
j ∂Y

j

∂Lj

∂Lj

∂U j
= WU,j , (142b)

(
1− sjL

) P jY j

Kj
= Rj , (142c)

where sjLP
j ∂Y j

∂Lj = W j . By inserting the latter equation into eqs. (142a)-(142b), multiplying
both sides of eq. (142a) by Sj/Lj and both sides of eq. (142b) by U j/Lj leads to:

∂Lj

∂Sj

Sj

Lj
= sjS =

WS,jSj

W jSj
, (143a)

∂Lj

∂U j

U j

Lj
= 1− sjS =

WU,jU j

W jLj
. (143b)

Inserting labor demand for skilled labor, i.e., using (143a) to replace WS,j with sjS
W jLj

Sj ,
into skilled labor supply to sector j (140) and solving leads to the share of sector j in
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aggregate skilled labor:

Sj

S
= ϑj

S

(
S

Sj

sjSs
j
LP

jY j

∫M
0 sjSs

j
LP

jY jdj

)εS

,

Sj

S
=

(
ϑj
S

) 1

εS+1

(
sjSs

j
LP

jY j

∫M
0 sjSs

j
LP

jY jdj

) εS

εS+1

, (144)

where we combined (138) and used the fact that WSS =
∫M
0 WS,jSjdj =

∫M
0 sjSs

j
LP

jY jdj
to rewrite the aggregate skilled labor wage rate as follows:

WS =

∫M
0 sjSs

j
LP

jY jdj

S
. (145)

We denote by βS,j the fraction of skilled labor income in sector j relative to aggregate
skilled labor income:

βS,j =
sjSs

j
LP

jY j

∑M
j=1 s

j
Ss

j
LP

jY j
. (146)

Using (146), the skilled hours worked share in sector j (144) can be rewritten as follows:

Sj

S
=

(
ϑj
S

) 1

εS+1
(
βS,j

) εS

εS+1 . (147)

Introducing a time subscript and taking logarithm, eq. (147) reads as:

ln

(
Sj

S

)

t

=
1

εS + 1
lnϑj

S +
εS

εS + 1
lnβS,j

t . (148)

Totally differentiating (148) and denoting the rate of change of the variable with a hat, we
find that the change in skilled hours worked in sector j caused by labor reallocation across
sectors is driven by the change in the skilled labor income share in sector j:

Ŝj
t − Ŝt = γS β̂S,j

t , (149)

where γS = εS

εS+1
.

We use panel data to estimate (149). Including country fixed effects captured by country
dummies, hi, common macroeconomic shocks by year dummies, ht, sector dummies, hj ,
(149) can be rewritten as follows:

Ŝj
it − Ŝit = hi + hj + ht + γSi β̂

S,j
it + νS,jit , (150)

where γSi =
εSi

εSi +1
and βS,j

it is given by (146); j indexes the sector, i the country, and t

indexes time (i.e., years). The LHS and RHS variables are defined as follows:

Ŝit =
M∑

j=1

βS,j
i,t−1Ŝ

j
i,t. (151)

and

βS,j
it =

sjS,is
j
L,iP

j
itY

j
it∑M

j=1 s
j
S,is

j
L,iP

j
itY

j
it

, (152)

where sjS,i is the share of skilled labor compensation in labor compensation in sector j, in

country i averaged over 1970-2017, sjL,i is the labor income share in sector j in country i

which is averaged over 1970-2017. When exploring empirically (150), the coefficient γS is
alternatively assumed to be identical, i.e., γSi = γS , or to vary across countries. The LHS

term of (150), i.e., Ŝj
it − Ŝit, gives the percentage change in skilled hours worked in sector

j driven by the pure reallocation of skilled labor across sectors.
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The same logic applies to derive the empirical strategy for estimating the degree of labor
mobility of unskilled labor. Including country fixed effects and year dummies:

Û j
it − Ûit = ni + nj + nt + γUi β̂

U,j
it + νU,jit , (153)

where γUi =
εUi

εUi +1
and βU,j

it is given by (155); j indexes the sector, i the country, and t

indexes time (i.e., years). The LHS and RHS variables are defined as follows:

Ûit =

M∑

j=1

βU,j
i,t−1Û

j
i,t. (154)

and

βU,j
it =

sjU,is
j
L,iP

j
itY

j
it∑M

j=1 s
j
U,is

j
L,iP

j
itY

j
it

, (155)

where sjU,i is the share of unskilled labor compensation in labor compensation in sector j,

in country i averaged over 1970-2017. When exploring empirically (153), the coefficient γU

is alternatively assumed to be identical, i.e., γUi = γU , or to vary across countries. The

LHS term of (153), i.e., Û j
it − Ûit, gives the percentage change in unskilled hours worked in

sector j driven by the pure reallocation of unskilled labor across sectors.
Source and Coverage. Time series about high- (denoted by the superscript S),

medium- (denoted by the superscript M), and low-skilled labor (denoted by the superscript
U) are taken from EU KLEMS Database, Timmer et al. [2008]. Data are available for
all countries except Norway. The baseline period is running from 1970 to 2017 but is
different and shorter for several countries as indicated in braces for the corresponding
countries: Austria (1980-2017), Belgium (1980-2017), Canada (1970-2005), Denmark (1980-
2017), Finland (1970-2017), Ireland (2008-2017), Italy (1970-2017), Japan (1973-2017), the
Netherlands (1979-2017), Spain (1980-2017), the United Kingdom (1970-2017), and the
United States (1970-2005). We calculate the share of labor compensation in industry j for
skilled labor as the ratio of the sum of labor compensation of high- and medium-skilled
labor to total labor compensation in sector j, i.e., sjS = WS,jSj+WM,jMj

W jLj .
Estimates. We average consistent positive values which are statistically significant. We

find εS = 0.63 and εU = 1.13. In accordance with the evidence documented by Kambourov
and Manovskii [2009] which reveals that industry (and occupational) mobility declines with
education, our empirical findings reveal that the elasticity of labor supply across sectors is
twice larger for unskilled than skilled workers.

J.5 Elasticity of Substitution in Consumption between Traded and Non-
Traded goods, φ: Empirical Strategy and Estimates

Derivation of the testable equation. To estimate the elasticity of substitution in
consumption, φ, between traded and non-traded goods, we derive a testable equation by

rearranging the demand for non-traded goods, i.e., CN
t = (1− ϕ)

(
PN
t

PC,t

)−φ
Ct, since time

series for consumption in non-traded goods are too short. More specifically, we derive an
expression for the non-tradable content of consumption expenditure by using the market
clearing condition for non-tradables and construct time series for 1 − αC,t by using time
series for non-traded value added and demand components of GDP while keeping the non-
tradable content of investment and government expenditure fixed, in line with the evidence
documented by Bems [2008] for the share of non-traded goods in investment and building
on our own evidence for the non-tradable content of government spending. After verifying
that the (logged) share of non-tradables and the (logged) ratio of non-traded prices to
the consumption price index are both integrated of order one and cointegrated, we run the
regression by adding country and time fixed effects together and including a country-specific
time trend and estimate the coefficient by using a Fully Modified OLS estimator.
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Table 12: Elasticity of Labor Supply across Sectors for Skilled Workers (εS) and for Un-
skilled Workers (εU )

Country Skilled Workers (εS) Unskilled Workers (εU )

AUT 0.975b
(2.55)

1.783
(1.52)

BEL 0.202c
(1.82)

0.551c
(1.86)

CAN 0.386a
(3.65)

0.249c
(1.83)

DNK 0.122
(1.47)

0.250
(1.57)

ESP 0.344a
(2.98)

0.928b
(2.52)

FIN 0.337a
(4.39)

0.506a
(3.38)

GBR 0.553a
(4.33)

0.655a
(2.95)

ITA 0.821a
(3.59)

1.440b
(2.28)

JPN 0.627a
(3.82)

0.892a
(2.57)

NLD 0.065
(0.89)

0.302c
(1.73)

USA 2.546b
(2.11)

4.825
(0.95)

Countries 11 11
Observations 438 438
Data coverage 1970-2017 1970-2017
Country fixed effects yes yes
Time dummies yes yes
Time trend no no

Notes: a, b and c denote significance at 1%, 5% and 10% levels. Het-
eroskedasticity and autocorrelation consistent t-statistics are reported in
parentheses.

Multiplying both sides of CN
t = (1− ϕ)

(
PN
t

PC,t

)−φ
Ct by PN/PC leads to the non-

tradable content of consumption expenditure:

1− αC,t =
PN
t CN

t

PC,tCt
= (1− ϕ)

(
PN
t

PC,t

)1−φ

. (156)

Because time series for non-traded consumption display a short time horizon for most of the
countries of our sample while data for sectoral value added and GDP demand components
are available for all of the countries of our sample over the period running from 1970 to
2017, we construct time series for the share of non-tradables by using the market clearing
condition for non-tradables:

PN
t CN

t

PC,tCt
=

1

ωC,t

[
PN
t Y N

t

Yt
− (1− αJ)ωJ,t − ωGNωG,t

]
. (157)

Since the time horizon is too short at a disaggregated level (for Ij and Gj) for most of the
countries, we draw on the evidence documented by Bems [2008] which reveals that 1−αJ =
PNJN

PJJ
is constant over time; we further assume that PNGN

G = ωGN is constant as well in line
with our evidence. We thus recover time series for the share of non-tradables by using time
series for the non-traded value added at current prices, PN

t Y N
t , GDP at current prices, Yt,

consumption expenditure, gross fixed capital formation, It, government spending, Gt while
keeping the non-tradable content of investment and government expenditure, 1− αJ , and
ωGN , fixed.

Empirical strategy. Once we have constructed time series for 1 − αC,t =
PN
t CN

t
PC,tCt

by

using (156), we take the logarithm of both sides of (156) and run the regression of the
logged share of non-tradables on the logged ratio of non-traded prices to the consumption
price index:

ln (1− αC,it) = fi + ft + αi .t+ (1− φ) ln
(
PN/PC

)
it
+ µit, (158)
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Table 13: Elasticity of Substitution between Tradables and Non-Tradables (φ)

eq. (158)

Whole Sample 0.347a
(6.03)

Countries 17
Observations 810
Data coverage 1970-2017
Country fixed effects yes
Time dummies yes
Time trend no

Notes: a, b and c denote significance
at 1%, 5% and 10% levels. Het-
eroskedasticity and autocorrelation
consistent t-statistics are reported
in parentheses.

where fi captures the country fixed effects, ft are time dummies, and µit are the i.i.d. error
terms. Because parameter ϕ in (156) may display a trend over time, we add country-specific
trends, as captured by αit. It is worth mentioning that PN is the value added deflator of
non-tradables.

Data source and construction. Data for non-traded value added at current prices,
PN
t Y N

t and GDP at current prices, Yt, are taken from EU KLEMS ([2011], [2017]) and
OECD STAN ([2011], [2017]) databases (data coverage: 1970-2017 for all countries, except
Japan: 1973-2015). To construct time series for consumption, investment and government
expenditure as a percentage of nominal GDP, i.e., ωC,t, ωJ,t and ωG,t, respectively, we use
data at current prices obtained from the OECD Economic Outlook [2017] Database (data
coverage: 1970-2017). Sources, construction and data coverage of time series for the share
of non-tradables in investment (1 − αJ) and in government spending (ωGN ) are described
in depth above; PN is the value added deflator of non-tradables. Data are taken from
EU KLEMS ([2011], [2017]) and OECD STAN ([2011], [2017]) databases (data coverage:
1970-2017 for all countries, except for Japan: 1973-2015). Finally, data for the consumer
price index PC,t are obtained from the OECD Prices and Purchasing Power Parities [2017]
database (data coverage: 1970-2017).

Results. Since both sides of (158) display trends, we ran unit root and then cointe-
gration tests. Having verified that these two assumptions are empirically supported, we
estimate the cointegrating relationships by using the fully modified OLS (FMOLS) proce-
dure for cointegrated panel proposed by Pedroni [2000], [2001]. FMOLS estimate of (158) is
reported in Table 13. We find a value for the elasticity of substitution between traded and
non-traded goods in consumption of 0.35 which is close to the estimated value documented
by Stockman and Tesar [1995].

J.6 Estimates of Elasticity of Substitution between Capital and Labor in
Production, σj: Empirical strategy

To estimate the elasticity of substitution between capital and labor, σj , we draw on Antràs
[2004]. We let labor- and capital-augmenting technological change grow at a constant rate:

Aj
t = Aj

0e
ajt, (159a)

Bj
t = Bj

0e
bjt, (159b)

where aj and bj denote the constant growth rate of labor- and capital-augmenting technical
progress and Aj

0 and Bj
0 are initial levels of technology. Inserting first (159a) and (159b)

into the demand for labor and capital, taking logarithm and rearranging gives:

ln(Y j
t /L

j
t ) = α1 +

(
1− σj

)
ajt+ σj ln(W

j
t /P

j
t ), (160a)

ln(Y j
t /K

j
t ) = α2 +

(
1− σj

)
bjt+ σj ln(Rt/P

j
t ), (160b)
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Table 14: FMOLS Estimates of the Sectoral Elasticity of Substitution between Capital and
Labor (σj)

1

1
Tradables (σH) Non-Tradables (σN )

Dependent var.
1

1
ln(Y H/KH) ln(Y H/LH) ln(Y N/KN ) ln(Y N/LN )

Explanatory var. ln(R/PH) ln(WH/PH) ln(R/PN ) ln(WN/PN )
AUS 0.214c

(1.89)
0.516a
(7.29)

0.499a
(3.78)

0.825a
(12.30)

AUT 0.526b
(2.25)

0.954a
(10.70)

0.206
(1.39)

1.213a
(15.03)

BEL −0.078
(−0.52)

0.748a
(11.77)

0.039
(0.49)

1.145a
(11.87)

CAN 0.159
(1.11)

0.888a
(4.83)

0.691a
(6.28)

0.950a
(14.10)

DEU 0.175c
(1.79)

0.720a
(8.64)

0.549a
(9.18)

1.088a
(17.95)

DNK −0.005
(−0.04)

0.555a
(5.82)

0.457a
(6.41)

0.938a
(9.30)

ESP 0.342b
(2.49)

0.979a
(10.59)

0.179c
(1.70)

0.535a
(3.11)

FIN 0.222
(1.26)

0.730a
(3.29)

0.374a
(4.98)

0.837a
(12.21)

FRA 0.215
(1.26)

0.867a
(8.54)

0.119a
(3.21)

1.329a
(6.96)

GBR 0.055
(0.28)

0.611a
(6.96)

0.097
(0.95)

0.580a
(4.77)

IRL 0.652
(13.40)

−0.154
(−0.91)

0.557a
(4.27)

0.819a
(3.94)

ITA 0.440b
(2.30)

0.934a
(13.38)

0.321
(1.50)

0.714a
(6.37)

JPN 0.765a
(10.17)

0.948a
(5.92)

0.553a
(8.61)

0.400b
(2.23)

NLD 0.498a
(4.26)

1.136a
(9.86)

0.230a
(8.29)

0.831a
(7.08)

NOR 0.399a
(3.15)

0.938a
(4.92)

0.547a
(8.87)

0.723a
(7.80)

SWE 0.260
(0.92)

0.643a
(12.91)

0.033
(0.34)

0.801a
(5.89)

USA 0.166
(1.32)

0.923a
(5.61)

0.324a
(5.72)

0.970a
(5.91)

Whole sample 0.294a
(11.47)

0.761a
(31.56)

0.340a
(18.42)

0.865a
(35.61)

Countries 17 17 17 17
Observations 810 810 810 810
Data coverage 1970-2017 1970-2017 1970-2017 1970-2017
Fixed effects yes yes yes yes
Time dummies yes yes yes yes
Time trend yes yes yes yes

Notes: a, b and c denote significance at 1%, 5% and 10% levels. Heteroskedas-
ticity and autocorrelation consistent t-statistics are reported in parentheses.

where α1 =
[
(1− σj) lnAj

0 − σj ln γj
]
and α2 =

[
(1− σj) lnBj

0 − σj ln(1− γj)
]
are con-

stants. Above equations describe firms’ demand for labor and capital respectively.
We estimate the elasticity of substitution between capital and labor in sector j = H,N

from first-order conditions (160a)-(160b) in panel format on annual data. Adding an error
term and controlling for country fixed effects, we explore empirically the following equations:

ln(Y j
it/L

j
it) = α1i + λ1it+ σj

i ln(W
j
it/P

j
it) + uit, (161a)

ln(Y j
it/K

j
it) = α2i + λ2it+ σj

i ln(Rit/P
j
it) + vit, (161b)

where i and t index country and time and uit and vit are i.i.d. error terms. Country fixed
effects are represented by dummies α1i and α2i, and country-specific trends are captured
by λ1i and λ2i. Since all variables display unit root process, we estimate cointegrating
relationships by using the fully modified OLS (FMOLS) procedure for cointegrated panel
proposed by Pedroni [2000].

Estimation of (161a) and (161b) requires data for each sector j = H,N on sectoral
value added at constant prices Y j , sectoral hours worked Lj , sectoral capital stock Kj ,
sectoral value added deflator P j , sectoral wage rate W j and capital rental cost R. Data for
sectoral value added Y H and Y N , hours worked LH and LN , value added price deflators
PH and PN , and, nominal wages WH and WN are taken form the EU KLEMS ([2011],
[2017]) and OECD STAN ([2011], [2017]) databases. To construct the national stock of
capital K, we use the perpetual inventory method with a fixed depreciation rate taken
from Table 7 and the time series of constant prices investment from the OECD Economic
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Outlook [2017] Database. Next, following Garofalo and Yamarik [2002], the capital stock
is allocated to traded and non-traded industries by using sectoral output shares. Finally,
we measure the aggregate rental price of capital R as the ratio of capital income to capital
stock. Capital income is derived as nominal value added minus labor compensation. For
all aforementioned variables, the sample includes the 17 OECD countries over the period
1970-2017 (except for Japan: 1973-2015).

Employing Monte Carlo experiments, León-Ledesma et al. [2010] compare different
approaches for estimating the elasticity of substitution between capital and labor (single
equation based on FOCs, system, linear, non-linear and normalization). Their evidence
suggests that estimates of both the elasticity of substitution and technical change are close
to their true values when the FOC with respect to labor is used. While we take the demand
for labor as our baseline model (i.e. eq. (161a)), Table 14 provides FMOLS estimates of
σj for the demand of both labor and capital. All estimates are positive and statistically
significant exception σH for Ireland. We replace the inconsistent estimate for σj obtained
from labor demand with that obtained from the demand of capital. Columns 17-18 of Table
8 report estimates for σH and σN .

J.7 Estimating the Elasticity of Substitution between Skilled and Un-
skilled Labor

A large span of the literature, see e.g., Acemoglu [2002], Caselli and Coleman [2006], Jones
[2014], assume that skilled and unskilled workers as gross substitutes and choose an elas-
ticity of substitution of 1.5. Havranek et al. [2024] review the estimates documented in
empirical studies and report an elasticity of 4, with a minimum value of 2. Our estimates of
the elasticity of substitution between skilled and unskilled labor over 1970-2017 for eleven
OECD countries of our sample by using cointegration techniques and sectoral data, cor-
roborate the findings by Havranek et al. [2024] as we estimate empirically an elasticity of
σH
L = 2.88 for the traded sector and an elasticity of σH

L = 3.05 for the non-traded sector.
These values suggest that skilled and unskilled labor are gross substitutes in both the traded
and the non-traded sector. In accordance with our estimates, we will assume that skilled
and unskilled labor are gross substitutes in the numerical analysis. As unskilled relative to
skilled labor-augmenting productivity increases (i.e., as AS,j(t)/AU,j(t) rises), the demand
for unskilled labor increases when σj

L > 1 because higher productivity of unskilled lowers
their marginal cost. This in turn lowers the share of the skilled labor income share in sector
j in line with our evidence. We present below our empirical strategy.

To estimate the elasticity of substitution between capital and labor, σj , we draw on
Antràs [2004]. We let labor- and capital-augmenting technological change grow at a constant
rate:

Aj
t = Aj

0e
ajt, (162a)

Bj
t = Bj

0e
bjt, (162b)

where aj and bj denote the constant growth rate of labor- and capital-augmenting technical
progress and Aj

0 and Bj
0 are initial levels of technology.

Each sector consists of a large number of identical firms which use labor, Lj , and physical
capital (inclusive of capital utilization), K̃j , according to a technology described by a CES
production function:

Y j
t =

[
γj

(
Aj

tL
j
t

)σj−1

σj
+
(
1− γj

) (
Bj

t K̃
j
t

)σj−1

σj

] σj

σj−1

, (163)

where 0 < γj < 1 is the weight of labor in the production technology, σj is the elasticity of
substitution between capital and labor in sector j = H,N , and Aj

t and Bj
t are labor- and

capital-augmenting efficiency.
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Optimal demand for labor and capital:

P j
t

∂Y j
t

∂Lj
t

= P j
t γ

j
(
Aj

t

)σj−1

σj
(
Lj
t

)− 1

σj
(
Y j
t

) 1

σj
= W j

t , (164a)

P j
t

∂Y j
t

∂Kj
t

= P j
t

(
1− γj

) (
Bj

t

)σj−1

σj
(
Kj

t

)− 1

σj
(
Y j
t

) 1

σj
= RK,j

t . (164b)

To estimate the elasticity of substitution σj
L between skilled labor (denoted by Sj

it), and

unskilled labor (denoted by U j
it), we adapt the approach proposed by Antràs [2004]. We

let skilled labor- and unskilled labor-augmenting technological change grow at a constant
rate:

AS,j
t = AS,j

0 ea
S,jt, (165a)

Au,j
t = AU,j

0 ea
U,jt, (165b)

where aS,j and aU,j denote the constant growth rate of skilled-labor- and unskilled-labor-
augmenting technical progress and AS,j

0 and AU,j
0 are initial levels of technology.

We assume that efficient labor is a CES aggregator of skilled and unskilled labor:

Aj
tL

j
t =


γjL

(
AS,j

t Sj
t

)σ
j
L
−1

σ
j
L +

(
1− γjL

)(
AU,j

t U j
t

)σ
j
L
−1

σ
j
L




σ
j
L

σ
j
L
−1

, (166)

where 0 < γjL < 1 is the weight of skilled labor in the efficient labor index, σj
L is the

elasticity of substitution between skilled and unskilled labor in sector j = H,N , and AS,j
t

and AU,j
t are skilled labor- and unskilled labor-augmenting efficiency.

Using the fact that P j
t
∂Y j

t

∂Lj
t

= W j
t , see eq. (164a), optimal demand for skilled and

unskilled labor:

P j
t

∂Y j
t

∂Lj
t

∂Lj
t

∂Sj
t

= W j
t γ

j
L

(
AS,j

t

Aj
t

)σLj−1

σ
j
L

(
Sj
t

)− 1

σ
j
L

(
Lj
t

) 1

σ
j
L = WS,j

t , (167a)

P j
t

∂Y j
t

∂Lj
t

∂Lj
t

∂U j
t

= W j
t

(
1− γjL

)(
AU,j

t

Aj
t

)σLj−1

σ
j
L

(
U j
t

)− 1

σ
j
L

(
Lj
t

) 1

σ
j
L = WU,j

t , (167b)

Optimal demand for skilled and unskilled labor can be rewritten as follows:

Sj
t

Lj
t

=
(
γjL

)σj
L

(
AS,j

t

Aj
t

)−(1−σj
L)

(
WS,j

t

W j
t

)−σj
L

, (168a)

U j
t

Lj
t

=
(
1− γjL

)σj
L

(
AU,j

t

Aj
t

)−(1−σj
L)

(
WU,j

t

W j
t

)−σj
L

, (168b)

Inserting first (165a) and (165b) into the demand for labor and capital, taking logarithm
and rearranging gives:

eq.1 ln

(
Sj
t

Lj
t

)
= σj

L ln γjL +
(
σj
L − 1

)(
ajS − aj

)
t− σj

L ln

(
WS,j

t

W j
t

)
, (169a)

eq.2 ln

(
U j
t

Lj
t

)
= σj

L ln
(
1− γjS

)
+
(
σj
L − 1

)(
ajU − aj

)
t− σj

L ln

(
WU,j

t

W j
t

)
. (169b)

where we estimate a coefficient in front of the ratio of wages α3 = −σj
L. We have estimated

both equations.
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Table 15: Elasticity of Substitution between Skilled and Unskilled Labor (σj
L)

Country sector H sector N

AUT 2.178a
(19.13)

2.844a
(11.32)

BEL 4.350a
(13.26)

4.611a
(9.38)

CAN 2.191a
(7.97)

1.810a
(6.95)

DNK 1.733a
(17.91)

4.417a
(2.86)

ESP 2.546a
(19.03)

2.005a
(10.92)

FIN 2.151a
(10.85)

1.870a
(5.83)

GBR n.a. 4.123
(1.32)

ITA n.a. n.a.
JPN 2.743a

(39.23)
2.812a
(35.88)

NLD 2.998b
(1.99)

2.019a
(3.20)

USA 5.066a
(14.83)

3.991a
(10.63)

Countries 11
Observations 479
Data coverage 1970-2017
Country fixed effects yes
Time dummies no
Time trend yes

Notes: a, b and c denote significance at 1%, 5% and 10% levels.
Heteroskedasticity and autocorrelation consistent t-statistics
are reported in parentheses. Estimates for tradables for Great-
Britain and for both tradables and non-tradables for Italy are
not shown as they are negative across all specifications so we
leave the cells blank.

Since the first specification, i.e., eq. (169a), gives better results, we restrict attention to
the estimates obtained from this equation. Table 15 provides estimates for eleven countries
of our sample since data are not available for the rest of the economies. We leave the cells
blank when the estimated coefficient is negative. All estimated coefficients are consistent
with a value of the elasticity of substitution between skilled and unskilled workers which is
larger than one, for both the traded and the non-traded sector. The highest substitutability
between skilled and unskilled workers is obtained for the traded sector in the United States.

J.8 Forecast Error Variance Decomposition

Definition of the FEVD. The IRF is just the VMA representation. The structural form
of the VAR system is A(L)Yt = Bεt. Setting C(L) = A(L)−1B, leads to Yt = C(L)εt.

The forecast error of a variable at time t is the change in the variable that couldn’t have
been forecast between t − 1 and t. This is due to the realization of the structural shocks
in the system, εt. We can compute the forecast error over many different horizons, h. The
forecast error variance at horizon h = 0 for one variable xt of the 2 variable VAR model is:

EtXt −Et−1xt = dxt = C1,1(0)ε1,t + C1,2(0)ε2,t. (170)

The forecast error variances are just the squares of the forecast errors (since the mean
forecast error is zero). Using the fact that V ar(axt) = a2V ar(xt), we have:

V ar(dxt) = (C1,1(0))
2 V ar(ε1,t) + (C1,2(0))

2 V ar(ε2,t) + 2C1,1(0)C1,2(0)Cov(ε1,tε2,t),

= (C1,1(0))
2 V ar(ε1,t) + (C1,2(0))

2 V ar(ε2,t),

Ω1 = (C1,1(0))
2 + (C1,2(0))

2 , (171)

where we used the fact that the the shocks have unit variance V ar(ε1,t) = 1 and shocks are
uncorrelated so that the covariance of structural shocks is zero.
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The fraction of the forecast error variance of variable x due to shock k at horizon h,
denoted φk,h, is then the above divided by the total forecast error variance:

φk(h) =

∑
h(Ck(h))

2V ar(εk,t)∑
k

∑
h(Ck(h))2V ar(εk,t)

. (172)

Therefore, in our case, φk,h is the share of the deviation of utilization-adjusted-TFP caused
by an symmetric technology shock which collapses to 1− η as shown below.

Mapping between η and conditional variance share of symmetric technology
shocks. In the model. We define the variance V ar(xt) = E [xt −E(xt)]

2 or V ar
1
2 = σx =

E [xt −E(xt)]. In the model, aggregate technology has a symmetric and an asymmetric
component:

ZA
t =

(
ZA,S
t

)η (
ZA,D
t

)1−η
. (173)

The expected value is the mean of the variable which collapses to its steady-state. We
denote the steady-state (i.e., the mean) value by dropping the time index. Log-linearizing
(173) and subtracting the mean (i.e., the long-run rate of change) leads to:

ẐA
t − ẐA = η

(
ẐA,S
t − ẐA,S

)
+ (1− η)

(
ẐA,D
t − ẐA,D

)
. (174)

Dividing both sides by ẐA
t − ẐA, denoting the standard deviation of aggregate technology

shocks by σZ , the standard deviation of symmetric technology shocks by σZ,S , and the
standard deviation of asymmetric technology shocks by σZ,D, we get:

1 = η

(
ẐA,S
t − ẐA,S

)

(
ẐA
t − ẐA

) + (1− η)

(
ẐA,D
t − ẐA,D

)

(
ẐA
t − ẐA

) ,

1 =



η1/2

(
ẐA,S
t − ẐA,S

)

(
ẐA
t − ẐA

)



2 (

ẐA
t − ẐA

)

(
ẐA,S
t − ẐA,S

) +



(1− η)1/2

(
ẐA,D
t − ẐA,D

)

(
ẐA
t − ẐA

)



2 (

ẐA
t − ẐA

)

(
ẐA,S
t − ẐA,S

) ,

1 =

[
η1/2

σZ,S

σZ

]2
+

[
(1− η)1/2

σZ,D

σZ

]2
,

1 = η + (1− η) , (175)

where the last line is obtained by assuming that the persistence of technology shocks does
not vary across technology shocks. More specifically aggregate technology shocks, symmet-
ric and asymmetric technology shocks across sectors are governed by the following dynamic
processes

ẐA
t − ẐA =

[
e−ξZt −

(
1− zA

)
e−χZt

]
, (176a)

ẐA,S
t − ẐA,S =

[
e−ξZ,St −

(
1− zA,S

)
e−χZ,St

]
, (176b)

ẐA,D
t − ẐA,D =

[
e−ξZ,Dt −

(
1− zA,D

)
e−χZ,Dt

]
. (176c)

Assuming that the magnitude of the shock (on impact) as captured by zA,S ' zA and
zA,D ' zA and its persistence as captured by ξZ,S ' ξZ , χZ,S ' χZ , and ξZ,D ' ξZ , ξZ,D '
ξZ , χZ,D ' χZ , are similar whether technology improvements are symmetric or asymmetric
across sectors, then the dynamic processes of symmetric and asymmetric technology shocks
are similar to the dynamic process of aggregate TFP shock

(
ẐA,S
t − ẐA,S

)

(
ẐA
t − ẐA

) ' 1,

(
ẐA,D
t − ẐA,D

)

(
ẐA
t − ẐA

) ' 1. (177)

Under the assumption that the underlying dynamic process of technology shocks are similar
in first approximation, then η collapses to the share of the variance of aggregate technology
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improvements on impact (i.e., at time t = 0) driven by symmetric technology shocks across
sectors as measured by φZ,S(0)

φZ,S(0) =
(CZ,S(0))

2V ar(εZ,S(0))

(CZ,S(0))2V ar(εZ,S(0)) + (CZ,S(0))2V ar(εZ,D(0))
,

=
(CZ,S(0))

2

(CZ,S(0))2 + (CZ,D(0))2

=
(
η1/2

)2
= η. (178)

In the data, we have:

VAR
(
εZit

)
=

(
η1/2

)2
VAR

(
εZ,Sit

)
+
(
(1− η)1/2

)2
VAR

(
εZ,Dit

)
. (179)

Or alternatively:

1 = η

(
σZ,S

σZ

)2

+ (1− η)

(
σZ,D

σZ

)2

. (180)

To calibrate our model, we compute the share of technology improvements driven by
asymmetric technological change by using eq. (13) that we repeat for convenience, i.e.,
ẐA(t) = ηẐA

S (t)+(1− η) ẐA
D(t). More specifically, we calculate the share 1−η of asymmet-

ric technology shocks so that response of utilization-adjusted-aggregate-TFP we estimate
empirically following a 1% permanent increase in ZA(t) in the long-run collapses to the
weighted average of its symmetric and asymmetric components ηẐA

S (t) + (1− η) ẐA
D(t)

where ẐA
S (t) and ẐA

D(t) are the endogenous responses of symmetric and asymmetric com-
ponents of utilization-adjusted-aggregate-TFP.

Estimated share of the conditional FEV of aggregate TFP growth attributable
to asymmetric technology shocks vs. inferred share. In Fig. 12(a), we contrast two
different measures of the share of aggregate technology improvements driven by asymmetric
technology shocks. A standard method to quantify the share of technology shocks driven
by the shock to one of its component is to conduct a forecast error variance decomposition
(FEVD). We have performed a FEVD for one country at a time (17 OECD countries) by
estimating the VAR model which includes utilization-adjusted-TFP of tradables relative
to non-tradables, ZH

t /ZN
t , utilization-adjusted-aggregate-TFP, ZA

t , real GDP, YR,t, total
hours worked, Li, the real consumption wage, WC,t. Note that we average the share com-
puted on impact (i.e., at t = 0) and in the long-run (i.e., at t = 10). We show the share of
the variance of aggregate technology improvements driven by asymmetric technology shocks
on the vertical axis of Fig. 12(a). We compare these findings with those that we obtain
when we infer the share of asymmetric technology shocks in driving aggregate technology
improvements by calculating 1−η so that the weighted average of technology improvements
driven by symmetric and asymmetric technology shocks, ηẐA

S (t) + (1− η) ẐA
D(t), collapses

to the endogenous response of ZA(t) to an aggregate technology shock. We have performed
this exercise for one country at a time. Results are shown on the horizontal axis. Overall,
both measures are very close and we find a strong cross country relationship. We number
only four countries out of 17 countries where the difference (between the inferred and the
estimated share) exceeds plus or minus 20% including Austria (+30%), Canada (-23%),
Great Britain (+41%), and the Netherlands (-24%). The cross-country average of the in-
ferred share of asymmetric technology shocks stands at 26% while the cross-country average
of the estimated share of asymmetric technology shocks amounts to 24%.

Estimated share of the conditional FEV of aggregate TFP growth attributable
to asymmetric technology shocks: Whole period vs. sub-periods and whole sam-
ple vs. cross-country analysis. The first row of Table 16 reveals that the conditional
FEV of aggregate TFP growth attributable to asymmetric technology shocks amounts to
25% on impact and stands at 23% in the long-run. Importantly, as shown in the second
and the third row, when we consider two different sub-periods 1970-1992 and 1993-2017,
we find that the conditional FEV of aggregate TFP growth attributable to asymmetric
technology shocks has increased dramatically from 7% to 42.5%. In Table 17, we perform
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Figure 12: Share of Variance of Technology Improvements Driven by Asymmetric Techno-
logical Change: Conditional vs. Inferred vs. Unconditional Variance Decomposition. Notes:
In Fig. 12(a), we contrast two different measures of the share of aggregate technology improvements driven by asymmetric technology
shocks. A standard method to quantify the share of technology shocks driven by the shock to one of its component is to conduct a
forecast error variance decomposition (FEVD). We performed a FEVD for each country of our sample (17 OECD countries) and show
results on the vertical axis. We compare these findings with those we obtain by calculating the share of asymmetric technology shocks
so that response of utilization-adjusted-aggregate-TFP collapses to the weighted average of its symmetric and asymmetric components,

1 − η, see eq. (13) that we repeat for convenience, i.e., ẐA(t) = ηẐA
S (t) + (1 − η) ẐA

D(t). In Fig. 12(b), we contrast the share of
aggregate technological change driven by asymmetric technology improvements which estimated from conditional shocks to utilization-
adjusted-TFP and we contrast the conditional share of asymmetric technology shocks with the unconditional share we estimate directly
from time series by using eq. (182). Sample: 17 OECD countries, annual data, 1970-2017.

Table 16: The Share of the FEV of Aggregate TFP Growth Attributable to Asymmetric
Technology Shocks: 1970-2017 vs. Sub-Periods

t = 0 t = 10
1970 - 2017 0.252 0.232
1970 - 1992 0.074 0.067
1993 - 2017 0.438 0.410

Notes: FEVD: Forecast Error Variance Decomposition. The number
in columns denotes the fraction of the total forecast error variance of
aggregate TFP growth ZA attributable to identified asymmetric tech-
nology shocks across sectors (ZH/ZN ). We consider a forecast horizon
of 1 and 10 years and compute the FEVs in the five-variable VAR model
which includes ZH/ZN , ZA, YR, L and WC , all in growth rate. Sample:
17 OECD countries, 1970-2017, annual data.

the same exercise except that we estimate the share of asymmetric technology shocks driv-
ing the FEV of aggregate TFP growth for one country a time. Denmark, Italy and to a
lesser extent Japan display a low share of asymmetric technology shocks. At the opposite,
Austria, Sweden, Norway display a higher share of asymmetric technology shocks.

J.9 Unconditional Variance Decomposition

The deviation of utilization-adjusted-aggregate-TFP relative to the initial steady-state is
a weighted average of the deviation of utilization-adjusted-sectoral-TFP, i.e., ẐA(t) =
νY,HẐH(t) +

(
1− νY,H

)
ẐN (t). This equation can be rearranged so that the productivity

growth differential shows up, i.e., ẐA(t) = ẐN (t) + νY,H
(
ẐH(t)− ẐN (t)

)
. When technol-

ogy increases by the same amount across sectors, the second term on the RHS vanishes
which leads to the following equality have ẐA(t) = ẐN (t) = ẐH(t) where utilization-
adjusted-TFP collapses to its symmetric component, i.e., ẐA(t) = ẐA

S (t).
Plugging the latter equality into the sectoral decomposition of aggregate technology

improvement, taking the variance leads to the unconditional variance decomposition of
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Table 17: The Share of the FEV of Aggregate TFP Growth Attributable to Asymmetric
Technology Shocks: Cross-Country Analysis

1970 - 2017 1970 - 1992 1993 - 2017
t = 0 t = 10 t = 0 t = 10 t = 0 t = 10

AUS 0.229 0.179 0.020 0.238 0.247 0.194
AUT 0.534 0.501 0.060 0.315 0.454 0.344
BEL 0.050 0.071 0.435 0.173 0.131 0.147
CAN 0.259 0.274 0.255 0.360 0.415 0.356
DEU 0.387 0.291 0.212 0.268 0.220 0.203
DNK 0.098 0.089 0.047 0.070 0.124 0.114
ESP 0.130 0.234 0.274 0.183 0.102 0.129
FIN 0.016 0.074 0.190 0.356 0.028 0.418
FRA 0.059 0.125 0.017 0.216 0.455 0.403
GBR 0.231 0.259 0.206 0.166 0.390 0.423
IRL 0.058 0.045 0.139 0.222 0.282 0.222
ITA 0.000 0.066 0.117 0.264 0.002 0.033
JPN 0.020 0.146 0.097 0.209 0.004 0.393
NLD 0.289 0.224 0.590 0.614 0.230 0.259
NOR 0.814 0.718 0.540 0.350 0.572 0.401
SWE 0.578 0.556 0.128 0.709 0.924 0.833
USA 0.380 0.326 0.735 0.457 0.351 0.402
Panel 0.252 0.232 0.074 0.067 0.438 0.410

Notes: FEVD: Forecast Error Variance Decomposition. The number in columns de-
notes the fraction of the total forecast error variance of aggregate TFP growth ZA

attributable to identified asymmetric technology shocks across sectors (ZH/ZN ). We
consider a forecast horizon of 1 and 10 years and compute the FEVs in the five-
variable VAR model which includes ZH/ZN , ZA, YR, L and WC , all in growth rate.
Sample: 17 OECD countries, 1970-2017, annual data.

technological change:

Var
(
ẐA(t)

)
= Var

(
ẐA
S (t)

)
+
(
νY,H

)2
Var

(
ẐH(t)− ẐN (t)

)
+ 2Cov

(
ẐA
S (t), Ẑ

A
D(t)

)
,

Var′
(
ẐA(t)

)
= Var

(
ẐA
S (t)

)
+
(
νY,H

)2
Var

(
ẐH(t)− ẐN (t)

)
,

1 =
Var

(
ẐA
S (t)

)

Var
(
ẐA(t)

) +
(
νY,H

)2 Var
(
ẐH(t)− ẐN (t)

)

Var′
(
ẐA(t)

) , (181)

where Var′ is the variance of aggregate technological change adjusted with the covariance,
i.e.,

Var′
(
ẐA(t)

)
= Var

(
ẐA(t)

)
− 2Cov

(
ẐA
S (t), Ẑ

A
D(t)

)
. (182)

Using the fact that Var
(
X̂(t)

)
=

[
X̂(t)− X̂

]2
where X = ZA, ZA

S , Z
A
D, the second term on

the RHS of eq. (181) says that the contribution of the variance of asymmetric technology
shocks to the variance of technological change is increasing in both the value added share
of tradables, νH,H , and the dispersion in technology improvements between the traded and
the non-traded sector

By using time series for utilization-adjusted-TFP of tradables and non-tradables, ZH(t)
and ZN (t), and utilization-adjusted-aggregate-TFP, ZA(t), we can compute the share of the

variance of aggregate technological change (adjusted with the covariance), Var′
(
ẐA(t)

)
,

driven by the the variance of asymmetric technological change, Var
(
ẐH(t)− ẐN (t)

)
:

Unconditional Share of Asym. Tech. Change =
(
νY,H

)2 Var
(
ẐH(t)− ẐN (t)

)

Var′
(
ẐA(t)

) , (183)

where νY,H is the value added share of tradables averaged over 1970-2017.
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In Fig. 12(b), we plot the share of asymmetric technological change based on an uncondi-
tional decomposition of the variance of the rate of change of utilization-adjusted-aggregate-
TFP (vertical axis) against the share of technology improvements driven by asymmetric
technology shocks based on the FEVD (horizontal axis). We find a high correlation of the
conditional share of asymmetric technology shocks estimated empirically and the uncon-
ditional share of asymmetric technological change. Overall, both measures are very close
and we find a strong cross country relationship. We quantify some significant differences
for seven countries out of 17 countries. More specifically, the difference (between the cal-
culated and the estimated share) exceeds plus or minus 20% for the following countries:
Australia (+26%), Austria (-27%), Canada (+30%), Denmark (+21%), Finland (+27%),
Ireland (+25%), Great Britain (+41%), and Italy (+24%). The cross-country average of the
unconditional share of asymmetric technology shocks stands at 34% while the cross-country
average of the estimated share of asymmetric technology shocks amounts to 24%.

J.10 Setting the Dynamics of Factor-Augmenting Efficiency and Capital
Utilization Adjustment Costs

Factor-augmenting efficiency. As detailed in section 3.1 (see eq. (7)), factor-augmenting
productivity is made up of a symmetric and an asymmetric component across sectors. To
set the adjustment of factor-augmenting efficiency, we first recover their dynamics in the
data in the same spirit as Caselli and Coleman [2006]. Log-linearizing the demand for
labor relative to the demand for capital (10), this equation together with the log-linearized
version of the technology frontier (12) can be solved for deviations of Aj

c(t) and Bj
c(t)

relative to their initial values (where the subscript c = S,D refers to either the symmetric
or asymmetric component):

Âj
c(t) = Ẑj

c (t)−
(
1− sjL

)[(
σj

1− σj

)
Ŝj
c (t)− k̂jc(t)− ûK,j

c (t)

]
, (184a)

B̂j
c(t) = Ẑj

c (t) + sjL

[(
σj

1− σj

)
Ŝj
c (t)− k̂jc(t)− ûK,j

c (t)

]
. (184b)

Plugging estimated values for σj and empirically estimated responses for Sj
c (t) =

sjL,c(t)

1−sjL,c(t)
,

kjc(t), u
K,j
c (t) (conditional on symmetric, i.e., c = S, or asymmetric, i.e., c = D, technology

improvements) enables us to recover the dynamics for Aj
c(t) and Bj

c(t) consistent with the
demand for factors of production (10) and the technology frontier (12). Then we choose
values for exogenous parameters xjc (for x = a, b, c = S,D), ξjX,c and χj

X,c (for X = A,B,
c = S,D) of the continuous time paths (30) within sector j = H,N , which are consistent
with the estimated paths (32a)-(32b) for Aj

c(t) and Bj
c(t). Once we have generated the

dynamics of Aj
c(t) and Bj

c(t), we can infer the dynamics of utilization-adjusted-TFP in

sector j by using the technology frontier, i.e., Ẑj
c (t) = sjLÂ

j
c(t) +

(
1− sjL

)
B̂j

c(t) (see eq.

(12)). Table 18 summarizes the values of parameters xjc (for x = a, b, c = S,D), ξjX,c and

χj
X,c (for X = A,B, c = S,D), the long-run change in factor-augmenting productivity, i.e.,

X̂j
c , and its change on impact, i.e., X̂j

c (0).
Capital utilization adjustment costs. Because capital-augmenting productivity has

a symmetric and an asymmetric component, capital technology utilization rate must also

have both a symmetric and asymmetric component, i.e., uK,j(t) =
(
uK,j
S (t)

)η (
uK,j
D (t)

)1−η
,

see eq. (8) in the main text, which ensures that symmetric and asymmetric components of
TFP are well-defined. At the steady-state uK,j

c = 1. Table 19 gives values of parameters to
calibrate the dynamic adjustment of capital utilization adjustment costs in the open econ-

omy with CES production functions, i.e., CK,j
c (t) = ξj1,c

(
uK,j
c (t)− 1

)
+

ξj2,c
2

(
uK,j
c (t)− 1

)2
,

see eq. (20) in the main text. We set the magnitude of the adjustment cost in the capital
utilization rate, i.e., ξj2,S and ξj2,D so as to account for empirical responses of uK,j

S (t) and

uK,j
D (t), respectively, conditional on symmetric and asymmetric technology shocks across

sectors. We set ξH1,S = ηRK,H

PH , ξH1,D = (1− η) RK,H

PH , ξN1,S = ηRK,N

PN , ξN1,D = (1− η) RK,N

PN .
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Table 18: Calibration of Dynamics of Symmetric and Asymmetric Technology Shocks

Parameters Symmetric Technology shock Asymmetric Technology Shock
Tradables Non-Tradables Tradables Non-Tradables

AH
S (t) BH

S (t) AN
S (t) BN

S (t) AH
D(t) BH

D (t) AN
D(t) BN

D (t)
(1) (2) (3) (4) (5) (6) (7) (8)

Exogenous technology shock, xj
c -0.03 -0.70 -0.78 3.18 -8.20 14.46 -0.42 -1.12

Impact effect, X̂j
c (0) 1.68 0.00 1.84 0.00 -4.64 14.79 -1.20 1.00

Long-run effect, X̂j
c 1.71 0.70 2.62 -3.18 3.56 0.33 -0.78 2.12

Persistence and shape of X̂j(t), ξjX,c 0.38 0.38 0.50 0.50 0.19 0.20 0.10 0.10

Persistence and shape of X̂j(t), χj
X,c 0.41 0.35 0.51 0.50 0.18 0.24 0.10 0.10

Notes: Denoting the factor-augmenting efficiency by Xj
c = Aj

c, B
j
c for technology shock c = S,D in sector j, the adjustment of Xj

c (t) toward its long-run level

expressed in percentage deviation from initial steady-state is governed by the following continuous time process: X̂j
c (t) = X̂j

c +e
−ξ

j
X,c

t−
(
1 − xj

c

)
e
−χ

j
X,c

t
.

The first row is an exogenous parameter which determines the magnitude of the change in Xj
c (t) on impact (see the second row) given its rate of change

in the long-run X̂j
c (see the third row). The last two rows display the values of parameters ξ

j
X,c

and χ
j
X,c

which determines the shape and the persistence

of the technology shock.

Table 19: Baseline Parameters (Representative OECD Economy): Capital Utilization Ad-
justment Costs Parameters

Parameter Tradables Non-Tradables
Symmetric Asymmetric Symmetric Asymmetric

(1) (2) (3) (4)
ξH1,S ξH1,D ξN1,S ξN1,D

Value of ξj1,c 0.05285 0.03524 0.04329 0.02886

ξH2,S ξH2,D ξN2,S ξN2,D
Value of ξj2,c 0.5 0.03 0.6 0.5

Notes: Table 19 gives values of parameters to calibrate the dynamic adjustment of capital utilization ad-

justment costs in the open economy with CES production functions, i.e., CK,j
c (t) = ξj1,c

(
uK,j
c (t)− 1

)
+

ξ
j
2,c

2

(
uK,j
c (t)− 1

)2
, see eq. (20) in the main text. Note that at the steady-state uK,j

c = 1.
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J.11 Calibration to the Data

In Table 18, we show the values we choose to set the dynamic processes of symmetric and
asymmetric components of factor-augmenting technology shocks. Because in the empirical
part, we estimate the dynamics of utilization-adjusted-TFP, we have to ensure that the
dynamics of Zj

c (t) generated numerically are in line with those estimated empirically. The
first two rows of Fig. 13 show responses following a symmetric technology shock. Rows
3-4 show responses following an asymmetric technology shock. We attribute a value of
0.6 to the share of symmetric technology shocks and generate the dynamics of technology
variables for an aggregate technology improvement which is a combination of symmetric and
asymmetric technology shocks, as shown in the last two rows. While the blue line displays
responses we estimate empirically, the black line with squares plots theoretical responses we
generate by assuming that labor- and capital-augmenting technological change is governed
by dynamic equation (30) while the log-linearized version of the technology frontier allows
us to recover the law of motion of utilization-adjusted-TFP. The first column shows that
the model reproduces well the adjustment of technology improvements in the traded and
the non-traded sector.

In Table 19, we show the values we choose to set the dynamic adjustment of the capital
utilization adjustment costs in the traded and the non-traded sector conditional on sym-
metric and asymmetric technology shocks. The second column of Fig. 13 plots empirical
responses of the capital utilization rate for the traded and the non-traded sector shown
in blue lines. Black lines with squares plot theoretical responses for uK,H

t and uK,N
t . The

confidence bounds indicate that none of the responses are statistically significant, except for
uK,H(t) after an asymmetric technology shock.12 Inspection of the second column reveals
that our model reproduces well the dynamics of the capital utilization rate. First, as shown
in the first two rows, the capital utilization rates increase slightly following a symmetric
technology shock (but the responses are not statistically significant) because technological
change is biased toward capital which increases the return on capital and thus rental rate.
By contrast, an asymmetric technology shock leads to a dramatic fall in uK,H(t) because
technological change is strongly biased toward labor in the traded sector which drives down
the return on capital. As shown in Fig. 13(q), our model reproduces well the dynamic
adjustment of the capital utilization rate for non-tradables while Fig. 13(n) indicates that
the model tends to somewhat overstate the response of uK,H , especially in the short-term.

The last column of Fig. 13 plots empirical responses of FBTC in the traded and the
non-traded sector. As mentioned above, symmetric technology shocks are biased toward
capital while asymmetric technology shocks are biased toward labor. As shown in the
last two rows, our model reproduces well the dynamics of FBTC following an aggregate
technology improvement.

J.12 Calibration of the Model to Generate the Time-Varying Effect

Strategy. Our main objective in the paper is to account for the vanishing decline in hours
after a technology shock we document for OECD countries in the main text in section
4.4. Fig. 2.6 shows that the decline in hours shrinks from -0.26% the first thirty years
of our sample to -0.11% the last thirty years. These values are displayed by column 3 of
Table 20. According to our assumption, the gradual disappearance of the decline in hours
after a technology shock is driven by the increasing share of technological change which is
explained by asymmetric technology shock between sectors.

Calibration of the model to generate time-varying effects. To test our hypoth-
esis, we keep all model’s parameters discussed in the main text in section 4.1 unchanged
and we lower the share of symmetric technology shocks. We take values we have computed
in the empirical part, see Fig. 4(d), by estimating the share of the variations in technology
improvements explained by asymmetric technology shocks. Column 2 of Table 20 shows
the values of the share of symmetric technology shocks which have been estimated on the
corresponding sub-period shown in column 1. We simulate the same model nineteen times

12The reason is that there exists a wide cross-country dispersion in the movement of the capital utilization
rates across countries in terms of both direction and magnitude.
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Figure 13: Dynamics of Technology Variables: Theoretical vs. Empirical Responses. Notes:
The solid blue line displays point estimate from local projections with shaded areas indicating 90% confidence bounds.
The thick solid black line with squares displays model predictions in the baseline scenario with capital and technology
utilization together with FBTC, while the dashed red line shows predictions of a model with Cobb-Douglas production
functions and abstracting from capital and technology utilization. Fig. 13 plots the dynamic effects of a 1% permanent
technology improvement on utilization-adjusted-TFP, the capital utilization rate and utilization-adjusted-FBTC for
tradables and non-tradables. The fist two rows show the effects of a symmetric technology shock across sectors while
rows 3-4 display the effects of an asymmetric technology shock. The last two rows shows the effects following a
technology shock.
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Table 20: Calibration of the Model to Generate the Time-Varying Impact Effects of a
Technology Shock

Subperiod Share of symmetric Impact Response of Hours
(30 years) shocks (η) Empirical Numerical
(1) (2) (3) (4)
1970 - 1999 0.902 -0.257 -0.285
1971 - 2000 0.868 -0.243 -0.248
1972 - 2001 0.838 -0.233 -0.260
1973 - 2002 0.811 -0.243 -0.259
1974 - 2003 0.787 -0.255 -0.261
1975 - 2004 0.766 -0.218 -0.254
1976 - 2005 0.748 -0.217 -0.209
1977 - 2006 0.731 -0.223 -0.227
1978 - 2007 0.716 -0.228 -0.228
1979 - 2008 0.703 -0.197 -0.183
1980 - 2009 0.692 -0.189 -0.149
1981 - 2010 0.682 -0.168 -0.122
1982 - 2011 0.673 -0.147 -0.119
1983 - 2012 0.664 -0.150 -0.128
1984 - 2013 0.657 -0.157 -0.138
1985 - 2014 0.651 -0.136 -0.120
1986 - 2015 0.645 -0.120 -0.093
1987 - 2016 0.640 -0.113 -0.095
1988 - 2017 0.636 -0.115 -0.078

Notes: Column 2 displays the values for the share of symmetric tech-
nology shocks (η) we choose numerically. In column 3, we show impact
responses that we estimate empirically by means of local projections
(sample: 17 OECD countries, 1970-2017, annual data). Column 4
shows impact effects we estimate numerically in the baseline model
which allows for endogenous capital utilization rate, CES production
functions and FBTC.

by feeding the model with the value of the share of symmetric technology shocks shown in
column 2. Column 4 displays the impact responses of hours after a technology shock of 1%
we estimate numerically. While Fig. 6(a) contrasts the impact responses of hours after a
permanent technology shock we estimate empirically (blue line) with those we estimated
numerically (lack line) by using values of η displayed by column 2 in Table 20 to simulate
the open economy model, empirical and numerical estimates are shown in columns 3 and 4
of the Table.

Additional comments on the strategy. It is worth mentioning that the share
of symmetric component of technology improvements is not modelled as a shock but as
a structural parameter which shapes the composition of technology improvements, i.e.,
the mix of symmetric and asymmetric technology shocks. It is not a model’s parameter
because η does not determine the shape of labor demand nor labor supply. Instead, the
gradual change in the value of η over the last 50 years captures time-increasing biasedness
of technology improvements toward the traded sector.

K More Numerical Results

For reasons of space, we relegate to the online appendix a number of numerical results we
refer to in the main text. These results include the effects of symmetric and asymmetric
technology shocks across restricted variants of the baseline model.

K.1 Impact Effects across Restricted Versions of the Baseline Model:
Symmetric vs. Asymmetric Technology Shocks

For reasons of space, in the main text, we restrict the discussion to the effects of symmetric
and asymmetric technology shocks in the baseline model. In this section, we discuss the ef-
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fects of symmetric and asymmetric technology shocks by considering the restricted versions
of the baseline model and show that all variants fail to account for the effects we estimate
empirically.

Symmetric technology improvements across sectors. When home- and foreign-
produced traded goods are perfect substitutes, as considered in columns 9 and 12, a tech-
nology improvement which is evenly spread across sectors leads to a dramatic decline in
total hours worked. Intuitively, a technology improvement produces a positive wealth effect
which increases consumption in both traded and non-traded goods. Because home- and
foreign-produced traded goods are perfect substitutes, households find it optimal to borrow
from abroad (see panel E) to consume more foreign goods and increase leisure. As shown in
panel B, total hours fall dramatically by -0.88% when we assume perfect mobility of inputs
(see column 12) and by -0.67% under the assumption of imperfect mobility of inputs (see
column 9). While the technology improvement drives down both traded and non-traded
hours worked (see the second and the third row of panel B), the hours worked share of
tradables falls (see the last row of panel B) which enters in contradiction with our empirical
results which show that labor shifts away from non-traded industries and toward traded
industries on impact.

In contrast, when home- and foreign-produced traded goods are assumed to be imperfect
substitutes which is the scenario considered in columns 3 and 6, a symmetric technology
improvement shifts labor away from non-traded and toward traded industries in accordance
with the evidence we document in the empirical section 2. Intuitively, a symmetric technol-
ogy shock across sectors lowers the marginal cost in both sectors which leads both traded
and non-traded firms to cut prices. By increasing exports and mitigating the rise in im-
ports, the terms of trade depreciation reduces considerably the current account deficit as
shown in panel E. In addition, because traded and non-traded goods are gross complements
(i.e., φ < 1), the excess supply on the non-traded goods market lowers the non-tradable
content of expenditure (see the second row of panel D) which leads labor to shift toward
the traded sector in line with our evidence. As can be seen in panel E, since households
are reluctant to substitute foreign for domestic goods, the current account deficit shrinks
from -0.43 ppt of GDP in the restricted model to -0.06 ppt of GDP in the baseline model.
To meet higher demand for home-produced traded goods, households must mitigate their
appetite for leisure which curbs the fall in hours worked. As shown in columns 3 and 6,
a model assuming endogenous terms of trade produces a decline in hours worked ranging
from 0.40% to 0.46% which squares well with the decline in hours worked by 0.47% we
estimate empirically. The reallocation of labor toward the traded sector and the reduction
in the consumption of leisure mitigates substantially the fall in traded hours worked, i.e.,
from -0.49 ppt of total hours worked (see column 12) to -0.11 ppt (see column 3), and leaves
the value added share of tradables at constant prices, νY,H essentially unchanged (see the
first row of panel D).

Asymmetric technology improvements across sectors. While symmetric technol-
ogy improvements drive down hours worked in the data, we find empirically that asymmetric
technology shocks across sectors do the opposite and increase total hours worked by 0.31%.
Importantly, only the baseline model can account for the magnitude of the response of
hours worked to a technology improvement. If we consider a restricted version of the model
shown in column 13, the model generates a decline in hours worked by 0.38% instead of
an increase. Intuitively, when technology improvements are concentrated toward traded
industries, non-traded firms set higher prices to compensate for lower productivity gains.
Because traded and non-traded goods have low substitutability, the tradable content of ex-
penditure declines (see the second row of panel D). Labor thus shifts away from the traded
sector which leads the traded goods-sector share of total hours worked by 0.51 ppt of total
hours worked (see the last row of panel B). Because home- and foreign-produced traded
goods are perfect substitutes, households import goods from abroad and increase leisure
time. While labor supply falls, the rise in the hours worked share of non-tradables is large
enough to produce additional units of non-traded goods. As shown in column 10, when we
put frictions into the movement of inputs, the reallocation of labor toward the non-traded
sector is less and and total hours worked is almost unchanged. The reason is that labor
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mobility costs lead non-traded firms to pay higher wages to encourage workers to shift away
from traded industries. Because the non-tradable content of the labor compensation share
of non-tradables is two-third, higher non-traded wages push the aggregate wage index up.
The higher wage rate produces a substitution effect which almost offsets the positive wealth
effect.

While labor mobility costs has a positive impact on hours worked by putting upward
pressure on wages, adding imperfect substitutability between home- and foreign-produced
traded goods allows the model to produce an increase in hours worked by 0.05% (see the first
row of panel B in column 7). Intuitively, when technology improvements are concentrated
in traded industries and traded goods are price-elastic, traded firms find it optimal to lower
their prices which leads to a current account surplus (see panel E). Because imports increase
less than if terms of trade were exogenous, households must increase their labor supply to
produce home-produced traded goods units. However, the rise in total hours worked by
0.05% remains significantly below what we estimate. It is only once we allow for FBTC and
endogenous capital utilization at a sectoral level that the open economy model can account
for the magnitude of the rise in hours worked we estimate. Intuitively, our empirical evidence
reveals that technology improvements in the traded sector are associated with technological
change biased toward labor. By making the production in the traded sector more labor
intensive, technological change biased toward labor increases wages and further increases
labor supply. However, by increasing labor demand in the traded relative to the non-
traded sector, the positive FBTC differential between tradables and non-tradables reduces
the magnitude of the decline in the hours worked share of tradables. To account for the
impact response of hours worked to asymmetric technology shocks and the shift of labor
toward the non-traded sector, we have to allow for endogenous capital utilization. Because
technological change biased toward labor lowers the demand for capital in the traded sector,
it is profitable to reduce in the intensity in the use of physical capital in this sector. The
fall in the capital utilization rate of tradables lowers the traded wage rate which amplifies
the shift of labor toward the non-traded sector and generates an increase in labor supply
by 0.28% close to what we estimate empirically.

K.2 Time-Varying Effects on Hours Worked in a Model Imposing Hicks-
Neutral Technological Change (HNTC)

As highlighted in the main text, one key ingredient of our model is FBTC. Without this
ingredient, the model cannot generate an increase in total hours worked which is in line with
the evidence after an asymmetric technology shock. In addition, as mentioned in section 4.4,
technological change is key to giving rise to a time-increasing impact response of traded and
non-traded hours worked. As can be seen in Fig. 14, abstracting from technological change
biased toward labor by assuming Cobb-Douglas production functions leads the model to
fail to account for the evidence. First, as shown in Fig. 14(a), a model imposing HNTC
produces a time-decreasing impact response of traded hours worked (see the black line)
while according to the evidence, the contractionary effect of a technology improvement on
traded hours shrinks over time. The inability of a model abstracting from FBTC to produce
the time-increasing impact response of LH(t) is that asymmetric technology shocks have
a strong expansionary effect on non-traded hours worked at the expense of traded hours
worked because such shocks strongly appreciate non-traded goods prices and increase the
share of non-tradables. In contrast, by assuming that technological change is significantly
biased toward labor in the traded sector in line with the evidence, the baseline model with
FBTC can reproduce very well the time-increasing impact responses of LH(t). Second,
when technological change biased toward labor is absent, the model overstates the decline
in hours worked.

L More Empirical Results and Robustness Checks

In this section, we conduct some robustness checks. Our identification of aggregate technol-
ogy shocks and their decomposition into symmetric and asymmetric technology shocks is
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(a) Time-Varying Impact Effect of
Technology on Traded Hours

Worked

(b) Time-Varying Impact Effect of
Technology on Non-Traded

Hours Worked

(c) Time-Varying Impact Effect of
Technology on Total Hours

Worked

Figure 14: Time-Varying Impact Effects of a Technology Shock on Sectoral Hours Worked.
Notes: The figure shows impact responses of traded and non-traded hours worked to a 1% permanent increase in utilization-adjusted
aggregate TFP. The solid blue line shows the impact response we estimate empirically on rolling sub-periods by using Jordà’s [2005]
single-equation method. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. The solid black
line shows the impact response we compute numerically by considering a restricted version of our baseline model where we shut down

FBTC by assuming σj = 1 and we abstract from endogenous capital utilization by letting ξ
j
2 tend toward infinity. Note that we have

normalized the rise in utilization-adjusted aggregate TFP to 1% on impact as we focus on The horizontal axis shows the end year of
the period of the sub-sample and the vertical line displays the point estimate of the impact effect of technology on total hours worked.

based on the assumption that time series for utilization-adjusted-aggregate-TFP together
with the utilization-adjusted-TFP of tradables relative to non-tradables follow a unit root
process. Because in the main text, all variables enter the VAR model in growth rate, subsec-
tion L.1 shows panel unit tests for all variables considered in the empirical analysis. Because
one major contribution of our paper is to show that that the vanishing decline in hours is
caused by a the changing nature of technology shocks and not by switching regime, we have
run panel unit root tests on utilization-adjusted-TFP and hours by allowing for potential
structural breaks where the date of the structural break is endogenously determined.

Due to data availability, we use annual data for eleven 1-digit ISIC-rev.3 industries that
we classify as tradables or non-tradables. At this level of disaggregation, the classification
is somewhat ambiguous because some broad sectors are made-up of heterogenous sub-
industries, a fraction being tradables and the remaining industries being non-tradables.
Since we consider a sample of 17 OECD countries over a period running from 1970 to
2017, the classification of some sectors may vary across time and countries. Industries
such as ’Finance Intermediation’ classified as tradables, ’Hotels and Restaurants’ classified
as non-tradables display intermediate levels of tradedness which may vary considerably
across countries but also across time. Subsection L.2 deals with this issue and conducts a
robustness check to investigate the sensitivity of our empirical results to the classification
of industries as tradables or non-tradables.

Since we split the gross capital stock into traded and non-traded industries by using
sectoral valued added shares, in subsection L.3, we conduct a robustness check by consider-
ing time series for capital stock per industry from KLEMS which are available for a limited
number of countries.

Our dataset covers eleven industries which are classified as tradables or non tradables.
The traded sector is made up of five industries and the non-traded sector of six industries.
In subsection L.4, we conduct our empirical analysis at a more disaggregated level. The
objective is twofold. First, we investigate whether all industries classified as tradables or
non-tradables behave homogeneously or heterogeneously. Second, we explore empirically
which industry drives the responses of broad sectors following a rise in government spending
by 1% of GDP.

In subsection L.5, we document evidence about the drivers of asymmetric technology
shocks. We find that only asymmetric technology shocks increase significantly the stock of
R&D and only in the traded sector. We find that the share of asymmetric technology shocks
is larger in countries where the R&D intensity of traded output is higher. In subsection L.6,
we contrast empirically the adjustment of total hours with the adjustment at the intensive
margin following an exogenous increase in utilization-adjusted-aggregate-TFP by 1% in the
long-run. In subsection L.7, we estimate and plot time-varying impact responses of hours
worked to symmetric and asymmetric technology shocks which are estimated over rolling
sub-samples.
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In subsection L.8, we calculate the correlation of technology shocks across OECD coun-
tries and find that shocks are uncorrelated. We estimate a VAR model in panel format and
assume that the response of hours to a technology shock is homogenous across countries.
In subsection L.9, we test the validity of the homogeneity assumption in estimating the dy-
namic response of hours to a technology shock in panel format. In the main text, we adopt
a two-step method where we identify first technology shocks which are used as regressors
in the second step. While Pagan [1984] presents a formal confirmation of the robustness
of the two-step method, in subsection L.10, we further test this approach by adopting a
one-step approach based on local projections as suggested by Ramey and Zubairy [2018]
who apply this approach to estimate the effects of government spending shocks. Since we
estimate both the VAR model and local projections in panel format by allowing for time
dummies which capture common macroeconomic shocks, in subsection L.11, we test the
sensitivity of our results to the inclusion of time dummies.

In subsection L.12, we re-estimate the effects of a technology shock by by generating
impulse response functions to the identified technology shocks from the SVAR model. We
further test our assumption of the changing nature of technology shocks and constancy
of model’s parameters by running a series of tests in panel format to detect the potential
presence of structural breaks in the relationship between technology and hours in subsection
L.13. In subsection L.14, we conduct an empirical analysis to identify the key factors driving
international differences in the response of hours and the current account to a technology
shock.

L.1 Panel Unit Root Tests

Short description of the four panel unit root test. When estimating alternative VAR
specifications, all variables enter in growth rates. In order to support our assumption of I(1)
variables, we ran panel unit root tests displayed by Table 22. We consider four panel unit
root tests among the most commonly used in the literature: Levin, Lin and Chu ([2002],
hereafter LLC), Breitung [2000], Im, Pesaran and Shin ([2003], hereafter IPS), and Hadri
[2000]. All tests, with the exception of Hadri [2000], consider the null hypothesis of a unit
root against the alternative that some members of the panel are stationary. Additionally,
they are designed for cross sectionally independent panels. LLC and IPS are based on
the use of the Augmented Dickey-Fuller test (ADF hereafter) to each individual series of
the form ∆xi,t = αi + ρixi,t−1 +

∑qi
j=1 θi,j∆xi,t−j + εi,t, where εi,t are assumed to be i.i.d.

(the lag length qi is permitted to vary across individual members of the panel). Under
the homogenous alternative the coefficient ρi in LLC is required to be identical across all
units (ρi = ρ, ∀i). IPS relax this assumption and allow for ρi to be individual specific
under the alternative hypothesis. We also apply the pooled panel unit root test developed
by Breitung [2000] which does not require bias correction factors when individual specific
trends are included in the ADF type regression. This is achieved by an appropriate variable
transformation. As a sensitivity analysis, we also employ the test developed by Hadri [2000]
which proposes a panel extension of the Kwiatkowski et al. [1992] test of the null that the
time series for each cross section is stationary against the alternative of a unit root in
the panel data. Breitung’ and Hadri’s tests, like LLC’s test, are pooled tests against the
homogenous alternative.13

Empirical results: macroeconomic variables considered in the empirical part
are all integrated of order one. As noted above, IPS test allows for heterogeneity of
the autoregressive root, accordingly, we will focus intensively on these tests when testing
for unit roots. Across all variables the null hypothesis of a unit root against the alternative
of trend stationarity cannot be rejected at conventional significance levels, suggesting that
the set of variables of interest are integrated of order one. When considering the Hadri’s
test for which the null hypothesis implies stationary against the alternative of a unit root
in the panel data, we reach the same conclusion and conclude again that all series are
nonstationary. Taken together, unit root tests applied to our variables of interest show that

13In all aforementioned tests and for all variables of interest, we allow for individual deterministic trends
and country-fixed effects. Conclusions of unit root tests are robust whether there are individual trends in
regressions or not. Appropriate lag length qi is determined according to the Akaike criterion.
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Table 22: Panel Unit Root Tests

LLC Breitung IPS Hadri
Stat. p-value Stat. p-value Stat. p-value Stat. p-value

ZA
adjK 2.584 0.995 3.782 1.000 1.368 0.914 49.802 0.000

ZH
adjK/ZN

adjK 5.075 1.000 2.721 0.997 1.677 0.953 38.462 0.000
ZH

adjK 5.512 1.000 3.069 0.999 3.288 0.999 46.085 0.000
ZN

adjK 3.542 1.000 2.105 0.982 -1.784 0.037 40.995 0.000
ZA 2.770 0.997 2.555 0.995 3.650 1.000 51.528 0.000
ZH 5.580 1.000 2.626 0.996 5.725 1.000 50.884 0.000
ZN 3.259 0.999 1.533 0.937 1.180 0.881 43.072 0.000
ZH/ZN 3.773 1.000 2.375 0.991 1.237 0.892 38.231 0.000
YR 5.999 1.000 4.783 1.000 0.831 0.797 32.188 0.000
I 8.106 1.000 3.977 1.000 -1.657 0.049 27.022 0.000
NX/Y 7.388 1.000 -1.317 0.094 -1.892 0.029 26.619 0.000
L 1.895 0.971 -2.132 0.016 -0.624 0.266 42.163 0.000
WC 5.027 1.000 3.921 1.000 1.367 0.914 46.474 0.000
Y H 5.760 1.000 4.343 1.000 1.369 0.915 34.095 0.000
Y N 4.652 1.000 5.276 1.000 -0.491 0.312 34.677 0.000
Y H/Y 4.116 1.000 0.950 0.829 0.778 0.782 35.765 0.000
Y N/Y 4.206 1.000 0.951 0.829 0.854 0.804 36.350 0.000
LH 3.777 1.000 3.102 0.999 -0.405 0.343 39.294 0.000
LN 2.652 0.996 3.223 0.999 -1.481 0.069 35.428 0.000
LH/L 6.378 1.000 3.411 1.000 0.197 0.578 29.488 0.000
LN/L 3.173 0.999 3.069 0.999 3.110 0.999 49.082 0.000
WH

C 5.511 1.000 3.957 1.000 2.361 0.991 48.366 0.000
WN

C 4.372 1.000 4.375 1.000 -0.323 0.373 40.834 0.000
WH/W 5.655 1.000 1.159 0.877 0.035 0.514 34.592 0.000
WN/W 5.605 1.000 1.186 0.882 -0.393 0.347 40.573 0.000
WN/WH 5.911 1.000 1.195 0.884 0.200 0.579 38.036 0.000
PN/PH 4.711 1.000 3.281 0.999 1.036 0.850 37.766 0.000
PH/PH∗ 3.697 0.000 -0.015 0.494 -2.845 0.002 49.728 0.000
PN/PH∗ 0.930 0.824 0.971 0.834 0.835 0.798 47.444 0.000
sAL 7.545 1.000 0.733 0.768 0.479 0.684 29.691 0.000
sHL 7.845 1.000 1.280 0.900 -0.778 0.218 28.716 0.000
sNL 5.371 1.000 0.302 0.619 0.003 0.501 37.364 0.000
kA 2.744 0.997 4.505 1.000 -0.965 0.167 36.339 0.000
kH 4.212 1.000 4.162 1.000 0.200 0.579 34.524 0.000
kN 3.384 1.000 5.396 1.000 -1.099 0.136 33.419 0.000
FBTCH 7.896 1.000 3.048 0.999 -0.571 0.284 30.124 0.000
FBTCN 4.960 1.000 1.718 0.957 0.661 0.746 37.112 0.000
FBTCH

adjK 8.227 1.000 2.862 0.998 -0.610 0.271 28.090 0.000
FBTCN

adjK 5.723 1.000 1.612 0.947 0.283 0.612 37.668 0.000
Notes: For LLC, Breitung and IPS, the null of a unit root is not rejected if p-value ≥ 0.05 at
a 5% significance level. For Hadri, the null of stationarity is rejected if p-value ≤ 0.05 at a
5% significance level. All tests (with the exception of Breitung) include a linear trend and,
for LLC, Breitung and IPS, four lags in the Augmented Dickey-Fuller regressions.

non stationarity is pervasive, suggesting that all variables should enter in the VAR models
in growth rate.

Panel unit root tests with structural breaks. So far, we have run the panel
unit root tests by abstracting from structural breaks. We now run panel unit root tests
developed by Karavias and Tzavalis [2014] who allow for potential structural breaks where
the date of the structural break is endogenously determined. We focus on two important
variables, say, utilization-adjusted-TFP and total hours worked. Results summarized in
Table 23 reveal that both utilization-adjusted-TFP and total hours worked are integrated
of order one and no structural breaks have been detected.

L.2 Classification of Industries as Tradables vs. Non-Tradables

This section explores the robustness of our findings to the classification of the eleven 1-digit
ISIC-rev.3 industries as tradables or non tradables.

Following De Gregorio et al. [1994], we define the tradability of an industry by con-
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Table 23: Karavias and Tzavalis [2014] Panel Unit Root Tests with Structural Breaks

Variable Test statistic Value Critical-value p− value Trend Estimated breaks
Lit minZ 2.3135 -9.1839 1.0000 Yes None
ZA
it minZ 2.1208 -9.3052 1.0000 Yes None

Notes: The null hypothesis of a unit root is not rejected if p− value > 0.05. The test includes a linear
trend. The dates of the breaks are unknown and are endogenously determined from the data. The
number of bootstrap replications is set to 100. Sample: 17 OECD countries, 1970-2017, annual data.

structing its openness to international trade given by the ratio of total trade (imports + ex-
ports) to gross output. Data for trade and output are provided by the World Input-Output
Databases ([2013], [2016]). Table 24 gives the openness ratio (averaged over 1995-2014)
for each industry in all countries of our sample. Unsurprisingly, ”Agriculture, Hunting,
Forestry and Fishing”, ”Mining and Quarrying”, ”Total Manufacturing” and ”Transport,
Storage and Communication” exhibit high openness ratios (0.54 in average if ”Mining and
Quarrying”, due to its relatively low weight in GDP, is not considered). These four sectors
are consequently classified as tradables. At the opposite, ”Electricity, Gas and Water Sup-
ply”, ”Construction”, ”Wholesale and Retail Trade” and ”Community Social and Personal
Services” are considered as non tradables since the openness ratio in this group of industries
is low (0.07 on average). For the three remaining industries ”Hotels and Restaurants”, ”Fi-
nancial Intermediation”, ”Real Estate, Renting and Business Services” the results are less
clearcut since the average openness ratio amounts to 0.18 which is halfway between the two
aforementioned averages. In the benchmark classification, we adopt the standard classifica-
tion of De Gregorio et al. [1994] by treating ”Real Estate, Renting and Business Services”
and ”Hotels and Restaurants” as non traded industries. Given the dramatic increase in
financial openness that OECD countries have experienced since the end of the eighties, we
allocate ”Financial Intermediation” to the traded sector. This choice is also consistent with
the classification of Jensen and Kletzer [2006] who categorize ”Finance and Insurance” as
tradable. They use locational Gini coefficients to measure the geographical concentration
of different sectors and classify sectors with a Gini coefficient below 0.1 as non-tradable
and all others as tradable (the authors classify activities that are traded domestically as
potentially tradable internationally).

Table 24: Openness Ratios per Industry: 1995-2014 Averages

Agri. Minig Manuf. Elect. Const. Trade Hotels Trans. Finance Real Est. Public
AUS 0.242 0.721 0.643 0.007 0.005 0.025 0.255 0.247 0.054 0.051 0.054
AUT 0.344 2.070 1.152 0.178 0.075 0.135 0.241 0.491 0.302 0.221 0.043
BEL 1.198 13.374 1.414 0.739 0.067 0.186 0.389 0.536 0.265 0.251 0.042
CAN 0.304 0.821 0.966 0.098 0.002 0.030 0.338 0.211 0.169 0.121 0.038
DEU 0.553 2.594 0.868 0.115 0.037 0.072 0.139 0.266 0.101 0.086 0.017
DNK 0.470 0.786 1.329 0.214 0.014 0.092 0.021 0.832 0.138 0.131 0.027
ESP 0.386 4.699 0.680 0.021 0.003 0.044 0.008 0.206 0.130 0.149 0.022
FIN 0.228 2.899 0.796 0.117 0.006 0.094 0.131 0.280 0.153 0.256 0.021
FRA 0.280 3.632 0.815 0.049 0.004 0.048 0.001 0.224 0.068 0.070 0.014
GBR 0.360 0.853 0.958 0.017 0.010 0.024 0.148 0.209 0.233 0.147 0.041
IRL 0.298 1.384 1.127 0.154 0.013 0.652 0.772 0.285 1.014 0.988 0.049
ITA 0.300 4.130 0.603 0.041 0.013 0.087 0.035 0.150 0.095 0.082 0.012
JPN 0.158 3.923 0.293 0.004 0.000 0.067 0.021 0.159 0.034 0.020 0.005
NLD 0.988 1.496 1.259 0.082 0.076 0.106 0.011 0.562 0.245 0.405 0.114
NOR 0.391 0.837 0.995 0.146 0.024 0.097 0.009 0.354 0.146 0.143 0.058
SWE 0.294 2.263 0.969 0.119 0.020 0.163 0.019 0.392 0.274 0.256 0.026
USA 0.207 0.541 0.428 0.012 0.001 0.055 0.003 0.109 0.066 0.052 0.008
OECD 0.412 2.766 0.900 0.124 0.022 0.116 0.150 0.324 0.205 0.202 0.035
H/N H H H N N N N H H N N

Notes: the complete designations for each industry are as follows (EU KLEMS codes are given in parentheses). ”Agri.”:
”Agriculture, Hunting, Forestry and Fishing” (AtB), ”Minig”: ”Mining and Quarrying” (C), ”Manuf.”: ”Total Manu-
facturing” (D), ”Elect.”: ”Electricity, Gas and Water Supply” (E), ”Const.”: ”Construction” (F), ”Trade”: ”Wholesale
and Retail Trade” (G), ”Hotels”: ”Hotels and Restaurants” (H), ”Trans.”: ”Transport, Storage and Communication”
(I), ”Finance”: ”Financial Intermediation” (J), ”Real Est.”: ”Real Estate, Renting and Business Services” (K), ”Public”:
”Community Social and Personal Services” (LtQ). The openness ratio is the ratio of total trade (imports + exports) to
gross output (source: World Input-Output Databases ([2013], [2016]).
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We conduct below a sensitivity analysis with respect to the three industries (”Real
Estate, Renting and Business Services”, ”Hotels and Restaurants” and ”Financial Interme-
diation”) which display some ambiguity in terms of tradedness to ensure that the benchmark
classification does not drive the results. In order to address this issue, we re-estimate the
dynamic responses to a permanent tchnology shock for the main variables of interest using
local projections for different classifications in which one of the three above industries ini-
tially marked as tradable (non tradable resp.) is classified as non-tradable (tradable resp.),
all other industries staying in their original sector. In doing so, the classification of only
one industry is altered, allowing us to see if the results are sensitive to the inclusion of a
particular industry in the traded or the non-traded sector.

As an additional robustness check, we also exclude the industry ”Community Social
and Personal Services” from the non-tradable industries’ set. This robustness analysis
is based on the presumption that among the industries provided by the EU KLEMS and
STAN databases, this industry is government-dominated and its removal allows us to assess
whether it influences or not our results related to the effects of a permanent technology
improvement. The baseline and the four alternative classifications considered in this exercise
are shown in Table 25. The last line provides the matching between the color line (when
displaying IRFs below) and the classification between tradables and non tradables.

Table 25: Robustness check: Classification of Industries as Tradables or Non Tradables

KLEMS Classification
code Baseline #1 #2 #3 #4

Agriculture, Hunting, Forestry and Fishing AtB H H H H H
Mining and Quarrying C H H H H H
Total Manufacturing D H H H H H
Electricity, Gas and Water Supply E N N N N N
Construction F N N N N N
Wholesale and Retail Trade G N N N N N
Hotels and Restaurants H N N N H N
Transport, Storage and Communication I H H H H H
Financial Intermediation J H N H H H
Real Estate, Renting and Business Services K N N H N N
Community Social and Personal Services LtQ N N N N neither H or N
Color line in Figure 15 blue red black green yellow
Notes: H stands for the Traded sector and N for the Non traded sector.

Fig. 15 reports the effects of a permanent technology improvement by 1% in the long-
run on selected variables shown in Fig. 2 in the main text. The green line and the red
line show results when ’Hotels and restaurants’ and ’Real Estate, Renting and Business
Services’ are treated as tradables, respectively. The black line shows results when ’Financial
intermediation’ is classified as non-tradables. Finally, the yellow line displays results when
Public services (’Community Social and Personal Services’) is excluded.

In each panel, the shaded area corresponds to the 90% confidence bounds for the base-
line. For aggregate variables shown in the first column, including aggregate utilization-
adjusted-aggregate-TFP, total hours worked and real GDP, the responses are remarkably
similar across the baseline and alternative classifications. As shown in the yellow line which
displays the response for the market sector only, the response of total hours worked is little
sensitive to the inclusion or not of the public services. Inspection of the first row reveals
that the classification of industries as tradables or non-tradables has an impact on the
utilization-adjusted-TFP of tradables relative to non-tradables. In particular, the removal
of the non-market sector (classification #4 and shown in the yellow line) mitigates the rise
in traded relative to non-traded technology. But the shape of the dynamic adjustment is
similar to the benchmark classification and the alternative IRF lies within the confidence
bounds of the baseline classification. Aggregate TFP and FBTC are not sensitive to the
classification.

The second row of Fig. 15 contrasts the responses of total hours worked, non-traded
hours worked (i.e., LN ), the hours worked share of tradables (i.e., νL,H), and the labor
income share of tradables (i.e., sHL ). Moving ’Real Estate, Renting and Business Services’
in the traded sector results in a decline in non-traded hours worked which is less pronounced
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Figure 15: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. the
Classification of Industries as Tradable or Non-Tradable. Notes: The solid blue line shows the response of
aggregate and sectoral variables to an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas
indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate the dynamic responses to a technology
shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes utilization-adjusted aggregate TFP,
real GDP, total hours worked, the real consumption wage and the technology shock is identified by imposing long-run restrictions, i.e.,
technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the second step, we estimate the
effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate years. Vertical axes measure percentage deviation from
trend. The green line and the red line show results when ’Hotels and restaurants’ and ’Real Estate, renting and business services’ are
treated as tradables, respectively. The black line shows results when ’Financial intermediation’ is classified as non-tradables. Finally,
the yellow line displays results when Public services (’Community Social and Personal Services’) is excluded. Sample: 17 OECD
countries, 1970-2017, annual data.

which in turn amplifies the deindustrialization trend, as displayed by Fig. 15(g). Across
all scenarios, the traded LIS exhibits a similar dynamic adjustment following a technology
improvement.

The third row of Fig. 15 contrasts the responses of real GDP, the value added share
of tradables (νY,H), the relative price of non-tradables (PN/PH), and the terms of trade
(PH/PH,?) for the baseline classification with those obtained for alternative classifications
of industries as tradables or non-tradables. Alternative responses are fairly close to those
estimated for the baseline classification as they lie within the confidence interval (for the
baseline classification) for all the selected horizons. The dynamic adjustment of the relative
price of non-tradables displays some differences across the baseline and the four alternative
classifications: the appreciation is less pronounced when the public sector is excluded (clas-
sification #4 and the yellow line) because ZH/ZN increases less which mitigates the excess
demand for non-traded goods. We also note some differences for the terms of trade which
depreciate more when ’Financial intermediation” is moved to the non-traded sector (classi-
fication #2 and the black line) because technology improvements are more pronounced in
the traded sector which results in a larger excess supply of traded goods. One can notice
that the discrepancy in the estimated effect between the benchmark and the alternative
classifications are not statistically significant

In conclusion, our main findings hold and remain unsensitive to the classification of
one specific industry as tradable or non-tradable. In this regard, the specific treatment
of ”Hotels and Restaurants”, ”Real Estate, Renting and Business Services”, ”Financial

100



Intermediation” or ”Community Social and Personal Services” does not drive the results.

L.3 Robustness Check to the Construction of Sectoral Physical Capital
Time Series

In the main text, due to data availability, we construct time series for sectoral capital by
computing the overall capital stock by adopting the perpetual inventory approach and then
by splitting the gross capital stock into traded and non-traded industries by using sectoral
valued added shares. In this Appendix, we investigate whether the effects on utilization-
adjusted-TFP and utilization-adjusted-FBTC we estimate empirically are driven by our
assumption about the construction of time series for sectoral capital stock. To conduct this
robustness check, we contrast below empirical responses when sectoral capital stocks are
measured by adopting the Garofalo and Yamarik’s [2002] methodology (our benchmark)
with those obtained by using sectoral data on Kj provided by EU KLEMS [2011], [2017]
databases. Due to data availability, our results in the latter case include a sample of thirteen
OECD countries which provide time series on sectoral capital of reasonable length. In this
regard, Belgium, Germany, Ireland and Sweden are removed from the sample due to a lack
of data over a reasonable time length to construct KH and KN . To be consistent, our
benchmark excludes these four countries and thus focuses on thirteen countries only. Our
estimates below show that our empirical findings are unsensitive to the way the sectoral
capital stocks are constructed in the data.

The methodology by Garofalo and Yamarik’s [2002] is based on the assumption of
perfect mobility of capital across sectors and a small discrepancy in the LIS across sectors,
i.e., sHL ' sNL . The assumption of perfect capital mobility implies that the marginal revenue
product of capital must equalize across sectors:

PH
t

(
1− sHL

) Y H
t

KH
t

= PN
t

(
1− sNL

) Y N
t

KN
t

. (185)

Using the resource constraint for capital, K = KH +KN , dividing the numerator and the

denominator in the LHS of (185) by GDP, Y , and denoting by ωY,j
t =

P j
t Y

j
t

Yt
the share of

value added of sector j in GDP at current prices (at time t), eq. (185) can be solved for
the KH/K:

KH
t

Kt
=

ωY,H
t

(
1− sHL

)
(
1− sNL

) (
1− ωY,H

t

)
+
(
1− sHL

)
ωY,H
t

. (186)

Assuming that sHL ' sNL leads to the rule we apply to split the aggregate stock of capital
into tradables and non tradables:

KH
t

Kt
= ωY,H

t . (187)

In the baseline, we adopt the methodology of Garofalo and Yamarik [2002] to split the
national gross capital stock into traded and non-traded industries by using sectoral value
added shares at current prices. Let ωY,j be the share of sector j’s value added (at current
prices) P jY j for j = H,N in overall output (at current prices) Y ≡ PHY H + PNY N , the
allocation of the national capital stock to sector j is given by the rule:

Kj
GY = ωY,jK =

P jY j

Y
K, (188)

where we denote the sectoral stock of capital obtained with the decomposition by Garofalo
and Yamarik [2002] by Kj

GY . National capital stocks are estimated from the perpetual
inventory approach. Following Garofalo and Yamarik [2002], the gross capital stock is then
allocated to traded and non-traded industries by using sectoral value added shares according
to eq. (188). Once the series for Kj

GY are obtained, we can construct the sectoral capital-

labor ratios, kjGY = Kj
GY /L

j , sectoral capital utilization rates, uK,j
GY , sectoral utilization-

adjusted-TFPs, Zj
GY , and sectoral utilization-adjusted-FBTC (see section F).
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Sample. As a robustness check, we alternatively take capital stock series from the
EU KLEMS [2011] and [2017] and STAN [2017] and [2017] databases which provide dis-
aggregated capital stock data (at constant prices) at the 1-digit ISIC-rev.3 level for up
to 11 industries, but only for thirteen countries of our sample which include Australia
(1970-2007), Austria (1976-2017), Canada (1970-2016), Denmark (1970-2017), Spain (1970-
2016), Finland (1970-2017), France (1978-2017), the United Kingdom (1970-2015), Italy
(1970-2017), Japan (1973-2015), the Netherlands (1970-2017), Norway (1970-2017) and the
United States (1970-2016). In efforts to have time series of a reasonable length, we exclude
Belgium (1995-2017), Germany (1991-2017), Ireland (1985-2017) and Sweden (1993-2016)
because the period is too short.
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Figure 16: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. the
Construction of Sectoral Capital Stocks Notes: The solid blue line shows the response of aggregate and sectoral
variables to an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent
confidence bounds based on Newey-West standard errors. To estimate the dynamic responses to a technology shock, we adopt a two-step
method. In the first step, we estimate a VAR model that includes utilization-adjusted aggregate TFP, real GDP, total hours worked,
the real consumption wage and the technology shock is identified by imposing long-run restrictions, i.e., technology shocks are driven
by the permanent increase in utilization-adjusted aggregate TFP. In the second step, we estimate the effects by using Jordà’s [2005]
single-equation method. Horizontal axes indicate years. Vertical axes measure percentage deviation from trend. The black line reports

responses when we use the EU KLEMS [2011] and [2017] databases to construct sectoral capital stocks series Kj . Sample: 13 OECD
countries, 1970-2017, annual data.

Results. In Fig. 16, we compare the responses of selected variables displayed by
Fig. 2 in the main text. Note that because we consider new time series for Kj , we have
reconstructed time series for sectoral TFPs and the capital utilization rates. The blue line
shows the dynamic effects of a 1% permanent increase in utilization-adjusted-aggregate-
TFP when the sectoral capital stock is measured by adopting the methodology by Garofalo
and Yamarik [2002] while the black line shows the dynamic effects when the capital stock
is obtained directly from KLEMS (black line). For comparison purposes and to ensure
consistency, we compare the results by considering the same sample, i.e. the restricted
sample that includes 13 OECD countries over the period 1970-2017. As it stands out, the
construction of capital stocks does not affect the results as we cannot detect any difference,
even for the utilization-adjusted-TFP, TFP, or FBTC. In conclusion, our main findings
are robust and unsensitive to the way the sectoral capital stocks are constructed in the
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data. While the responses of capital-labor ratios are not reproduced, one can observe that
a discrepancy in the results in the short-run only. To conclude, the dynamic effects of a
technology improvement are similar across the two methods as they are both qualitatively
and quantitatively similar since the solid black line lies within the original confidence bounds
of those obtained when Kj is constructed with the use of the methodology of Garofalo and
Yamarik [2002]. In particular, one can observe that the discrepancy in the results is small
and not statistically significant at conventional level.

L.4 How Technology at Industry Level Responds to Aggregate Technol-
ogy Improvements: A Disaggregated Approach

Empirical analysis at a disaggregate sectoral level. Our dataset covers eleven indus-
tries which are classified as tradables or non-tradables. The traded sector is made up of five
industries and the non-traded sector of six industries. To conduct a decomposition of the
sectoral effects at a sub-sector level, we estimate the responses of sub-sectors to the same
identified technology shock by adopting the two-step approach detailed in the main text.
More specifically, indexing countries with i, time with t, sectors with j, and sub-sectors
with k, we first identify the permanent technology shock, by estimating a VAR model
which includes utilization-adjusted-aggregate-TFP, ZA

it , real GDP, total hours worked, the
real consumption wage (all quantities are divided by the working age population and all
variables are in rate of growth) and next we estimate the dynamic effects by using the
Jordà’s [2005] single-equation method. The local projection method amounts to running a
series of regression of each variable of interest on the structural identified shock for each
horizon h = 0, 1, 2, ...:

xk,ji,t+h = αk,j
i,h + αk,j

t,h + ψk,j
h (L) zi,t−1 + γk,jh .εZA

i,t + ηk,ji,t+h, (189)

where x = TFPk,j
i,t , L

k,j
i,t . To express the results in meaningful units, i.e., we multiply the

responses of TFP of sub-sector k by the share of industry k in the value added of the broad
sector j (at current prices), i.e., ωY,k,j = Pk,jY k,j

P jY j . We multiply the responses of hours

worked within the broad sector j by its labor compensation share, i.e., αL,k,j = Wk,jLk,j

W jLj .
We detail below the mapping between the responses of broad sector’s variables and responses
of variables in sub-sector k of one broad sector j.

The response of Lk,j to a technology shock is the percentage deviation of hours worked

in sub-sector k ∈ j relative to initial steady-state: lnLk,j
t −lnLk,j ' dLk,j

t

Lk,j = L̂k,H
t where Lk,j

is the initial steady-state. We assume that hours worked of the broad sector is an aggregate
of sub-sector hours worked which are imperfect substitutes. Therefore, the response of
hours worked in the broad sector L̂j

t is a weighted average of the responses of hours worked
Wk,jLk,j

W jLj L̂k,j
t where Wk,jLk,j

W jLj is the share of labor compensation of sub-sector k in labor
compensation of the broad sector j:

L̂j
t =

∑

k∈j

W k,jLk,j

W jLj
L̂k,j
t ,

W jLj

WL
L̂j
t =

∑

k∈j

W k,jLk,j

WL
L̂j
t ,

αL,jL̂j
t =

∑

k∈j
αL,kL̂k,j

t , (190)

where
∑

j

∑
k α

L,k = 1. Above equation breaks down the response of hours worked in broad
sector j into the responses of hours worked in sub-sectors k ∈ j weighted by their labor
compensation share αL,k = Wk,jLk,j

W jLj averaged over 1970-2017. In multiplying L̂k,j
t by αL,k,

we express the response of hours worked in sub-sector k ∈ j in percentage point of hours
worked in the broad sector j = H,N .

The response of TFP in the broad sector j is a weighted average of responses TFPk,j
t of

TFP in sub-sector k ∈ j where the weight collapses to the value added share of sub-sector
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k:

TFPk,j
t =

∑

k∈j

P k,jY k,j

P jY j
ˆTFP

k,j
t ,

TFPj
t =

∑

k∈j

P k,jY k,j

P jY j
ˆTFP

k,j
t ,

TFPj
t =

∑

k∈j
ωY,k,j ˆTFP

k,j
t , (191)

where ωY,k,j = Pk,jY k,j

P jY j averaged over 1970-2017 is the value added share at current prices
of sub-sector k ∈ j which collapses (at the initial steady-state) to the value added share at
constant prices as prices at the base year are prices at the initial steady-state. Note that∑

k

∑
k∈j ω

Y,k,j = 1.
Aggregate technology shock. The first column of Fig. 17 shows responses of TFP

and hours worked of sub-sectors classified in the traded sector and the non-traded sector
to a permanent technology improvement of 1% in the long-run. When we consider an
aggregate technology shock, all industries behave as the broad sector as they all experience
a permanent technology improvement, except ’Mining’ shown in the black line for which
the rise in TFP vanishes in the long-run. More interestingly, the rise in traded TFP is
driven by technology improvement in ’Manufacturing’ because this sector accounts for the
greatest value added share of the traded sector and also experiences significant increases in
TFP. With regard to non-traded industries, ’Real Estate, Renting, and Business Services’
drives the rise in non-traded TFP followed by ’Wholesale and Retail Trade’ and ’Community
Social and Personal Services’ (i.e., the public sector which also includes health and education
services). When we focus on traded and non-traded hours worked, we find that all industries
experience a decline in hours worked except ’Construction’. One explanation to this lies
in the shift of labor away from traded and toward non-traded industries. As we shall see,
this sector experiences a dramatic increase in its hours worked following an asymmetric
technology shock.

Symmetric technology shock. The second column of Fig. 17 shows responses of TFP
and hours worked of sub-sectors classified in the traded sector and the non-traded sector
to a permanent technology improvement of 1% which is evenly spread between the traded
and non-traded sectors. Like for an aggregate technology shock, the rise in traded TFP
is driven by the technology improvement in ’Manufacturing’ while ’Real Estate, Renting,
and Business Services’ drives the rise in non-traded TFP. All traded industries experience a
decline in hours worked on impact while only ’Agriculture’ and ’Manufacturing’ experience
a fall in the long-run. All non-traded industries experience a decline in hours worked on
impact while only ’Real Estate, Renting, and Business Services’ experiences a persistent
decline in its hours worked below trend.

Asymmetric technology shock. The third column of Fig. 17 shows responses of
TFP and hours worked of sub-sectors classified in the traded sector and the non-traded
sector to a permanent technology improvement of 1% which is concentrated toward traded
industries. As it stands out, the rise in traded TFP is driven by a technology improvement
in ’Manufacturing’ and the gap with other sectors is even more pronounced than after an
aggregate technology shock. We can notice that the contribution of ’Mining’ is substantial
given its small weight in the traded sector. When we turn to the non-traded TFP, we find
that ’Real Estate, Renting, and Business Services’ together with ’Community Social and
Personal Services’ (i.e., the public sector which also includes health and education services)
drive the fall in non-traded TFP. Traded industries such as ’Manufacturing’, ’Financial
Intermediation’, ’Transport and Communication’ drive the rise in traded hours worked fol-
lowing an asymmetric technology shock. All non-traded industries experience an increase
in hours worked. The rise in non-traded hours worked is driven by the rise in labor in ’Con-
struction’ and ’Community Social and Personal Services’ followed by ’Real Estate, Renting,
and Business Services’ and ’Wholesale and Retail Trade’. The diversity of industries which
experience a rise in labor can explain why both skilled and unskilled labor shift away from
traded industries and toward non-traded industries following an asymmetric technology
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Figure 17: Effects of Technology Shocks on Eleven Sub-Sectors. Notes: Because the traded and
non-traded sector are made up of industries, we conduct a decomposition of the sectoral effects at a sub-sector
level following a an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas
indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate the dynamic responses
to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes
utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology
shock is identified by imposing long-run restrictions, i.e., technology shocks are driven by the permanent increase in
utilization-adjusted aggregate TFP. In the second step, we estimate the effects by using Jordà’s [2005] single-equation
method. Horizontal axes indicate years. Vertical axes measure percentage deviation from trend. To express the results
in meaningful units, i.e., total hours worked units, we multiply the responses of hours worked sub-sector k by its labor
compensation share (in the traded sector of traded industries or in the non-traded sector for non-traded industries),

i.e., Wk,jLj,j

W jLj . Column 1-3 display the responses of technology and hours in traded and non-traded industries to
aggregate, symmetric and asymmetric technology shocks across sectors, respectively. For tradable industries: the blue
line shows results for ’Agriculture’, the black line for ’Mining and Quarrying’, the red line for ’Manufacturing’, the
green line for ’Transport and Communication’, and the purple line for ’Financial Intermediation’. The second/fourth
columns show results for sub-sectors classified in the non-traded sector. For non-tradable industries: the blue line
shows results for ’Electricity, Gas and Water Supply’, the black line for ’Construction’, the red line for ’Wholesale
and Retail Trade’, the green line for ’Hotels and Restaurants’, and the cyan line for ’Community Social and Personal
Services’. Sample: 17 OECD countries, 11 industries, 1970-2017, annual data.

shock.
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L.5 Do both Symmetric and Asymmetric Technology Shocks Stimulate
Innovation?

In this subsection, we further investigate the drivers behind symmetric and asymmetric
technology shocks and if these two shocks are different. We must acknowledge that the
literature on technology shocks is silent about the factors driving technology improvements
except Shea [1999] and Alexopoulos [2011]. Shea [1999] employs direct measures of techno-
logical change based on research and R&D expenditure and patent activities in a VAR to
identify technology shocks. Using annual panel data for 19 U.S. manufacturing industries
from 1959 to 1991, the author estimates VARs to determine the dynamic impact of shocks
to two observable indicators of technological change: R&D spending (measures the amount
of input devoted to innovative activity), and patent applications (measure innovation). The
author finds that favorable technology shocks tend to increase input use, especially labor, in
the short run, but to reduce inputs in the long run. Alexopoulos [2011] presents new mea-
sures of technical change based on new book titles in the field of technology from 1955-1997.
Results show that technology shocks driven by book publications in the area of technology
increases R&D and employment.

Effects of symmetric and asymmetric technology shocks on R&D. First, we
identify asymmetric and symmetric technology shocks by estimating a VAR model which in-
cludes the ratio of traded to non-traded technology measure, aggregate technology measure,
real GDP, total hours worked and real consumption wage and then we estimate the dynam-
ics effects of aggregate, symmetric and asymmetric technology improvements on the stock
of R&D of tradables and non-tradables at constant prices. Table 26 and Table 27 present
the point estimate at horizons t = 0...8 which measures the increase in percentage in the
stock of R&D in the traded and the non-traded sectors after an aggregate, asymmetric and
symmetric technology shocks, respectively. Our sample includes 13 OECD countries over
1995-2017. The evidence reveals that only asymmetric technology shocks have a positive
and a statistically significant impact in the stock of R&D and only in the traded sector.

Do asymmetric technology shocks increase innovation? Asymmetric technol-
ogy shocks are technology improvements which are concentrated toward traded industries.
As discussed above, only these shocks give rise to a significant and positive increase in
the stock of R&D which reflects cumulated investment devoted to innovative activity. As
shown below when we estimate the elasticity of utilization-adjusted-TFP w.r.t. the stock of
R&D, the latter has a significant impact on utilization-adjusted-TFP of tradables only as it
has virtually no impact on non-traded technology. Therefore, accumulation of R&D invest-
ment can generate innovation since according to our FMOLS estimates, an increase in the
stock of R&D in the traded sector by 1% improves technology of tradables by 0.23%. This
evidence thus underlines that technology improvements concentrated in traded industries,
i.e., asymmetric technology shocks, are shocks which increase innovation. In contrast, sym-
metric technology shocks do not increase the stock of R&D significantly and may capture
improvements in work organization within the firm and/or better management practices.

Effects of technology shocks on labor: shocks to the stock of R&D vs. shocks
to utilization-adjusted-TFP. Shea [1999] and Alexopoulos [2011] find that technology
shocks driven by innovation increase employment. In this paper, we show that symmetric
technology shocks lower dramatically hours worked while asymmetric technology shocks
increase significantly labor. Since asymmetric technology shocks are driven by innovation,
our work can reconcile the labor effects of technology shocks reported by the literature and
the evidence documented by Shea [1999] and Alexopoulos [2011] who focus on shocks to
innovation and find that innovation-driven technology shocks increase employment.

To further investigate the discrepancy in the effects on hours caused by shocks to in-
novation or driven by technology shocks reflecting mainly technology adoption of better
worker organizations, we estimate a SVAR which includes the aggregate stock of R&D
at constant prices, utilization-adjusted-aggregate-TFP, real GDP, total hours worked and
the real consumption wage, all variables entering the VAR model in growth rates. Our
identification strategy lies in long-run restrictions. We identify innovation shocks as shocks
which increase permanently the stock of R&D while we identify technology improvements
not driven by innovative activities as technology shocks which increase permanently the
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Table 26: IRF of the Stock of R&D in the Traded Sector After Technology Shocks

Horizon AGG ASYM SYM
0 −0.025 0.148 −0.163
2 0.381 0.511b 0.187
4 0.328 0.639b 0.009
6 −0.015 0.461 −0.416
8 0.332 1.213a −0.349

Notes: a, b and c denote significance at 1%, 5% and 10% levels. The
number in columns denotes the impulse response function (estimated
with local projections) of the stock of R&D in the traded sector after an
aggregate technology shock (column AGG), an asymmetric technology
shock (column ASYM) and an symmetric technology shock (column
SYM). Sample: 12 OECD countries, 1995-2017, annual data.

Table 27: IRF of the Stock of R&D in the Non Traded Sector After Technology Shocks

Horizon AGG ASYM SYM
0 0.086 0.134 0.029
2 0.310 0.388 0.173
4 0.224 0.109 0.273
6 −0.103 −0.006 −0.161
8 0.085 0.291 −0.120

Notes: a, b and c denote significance at 1%, 5% and 10% levels. The
number in columns denotes the impulse response function (estimated
with local projections) of the stock of R&D in the non traded sector
after an aggregate technology shock (column AGG), an asymmetric
technology shock (column ASYM) and an symmetric technology shock
(column SYM). Sample: 12 OECD countries, 1995-2017, annual data.

utilization-adjusted-aggregate-TFP. We find that innovation shocks do not drive down hours
on impact and instead increase labor in the long-run. In contrast, technology shocks which
are not driven by innovative industries lower persistently hours worked.

Table 28: Stocks of Capital from KLEMS and sectoral R&D series: Data Availability

data on K from KLEMS data on R&D
AUS 1970-2007 no data
AUT 1976-2017 1995-2017
BEL 1995-2017 1995-2017
CAN 1970-2016 no data
DEU 1991-2017 1995-2017
DNK 1970-2017 1995-2017
ESP 1970-2016 1995-2016
FIN 1970-2017 1995-2017
FRA 1978-2017 1995-2017
GBR 1970-2017 1995-2017
IRL 1985-2017 no data
ITA 1970-2017 1995-2017
JPN 1973-2015 1995-2015
NLD 1970-2017 1995-2017
NOR 1970-2017 no data
SWE 1993-2016 1995-2016
USA 1970-2016 1995-2017

Elasticity of technology w.r.t. the stock of R&D. One key parameter is νj which
measures the impact of 1% increase in the stock of R&D in sector j on utilization-adjusted-
TFP in sector j. In an earlier version of the paper, we have laid out a model, we extend
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Figure 18: Cross-Country Relationship between Investment in R&D (% of Value Added in
the Traded Sector) and the Share of FEV of Technological Change Driven by Asymmetric
Technology Improvements. Notes: The horizontal axis shows the R&D investment to value added ratio for the traded
sector. To measure the intensity of the traded sector in investment in R&D, we take data from EU KLEMS, Stehrer et al. [2019], see
Table 28 for data coverage. Sample: 12 OECD countries, 1995-2017. On the vertical axis, we show the share of FEV of technological
change attributed to asymmetric technology shocks over the period 1993-2017 to fit the period over which data on R&D is available.
The share of asymmetric technology shocks is an average of the share at time t = 0 and t = 10. Sample: 12 OECD countries, 1993-2017.

Table 29: Elasticity of Utilization-Adjusted-TFP w.r.t. the Stock of R&D

ZH ZN ZW

(1) (2) (3)
ZH 0.1499a

(5.88)
n.a. 0.077a

(4.71)

ZN n.a. 0.0007b
(1.66)

−0.002b
(−2.13)

ZA 0.019
(0.42)

Notes: a, b and c denote significance at 1%, 5% and 10% levels. Het-
eroskedasticity and autocorrelation consistent t-statistics are reported
in parentheses. Denoting utilization-adjusted-TFP in sector j by Zj

it is
We run the regression of utilization adjusted TFP on the stock of R&D
at constant prices in sector j in panel format on annual data:

lnZj
it = αi + αt + βit+ γj lnZj

t + ηit,

where we include country fixed effects, time dummies, country-specific
linear time trend and we estimate γj = νjζj . Because ζj is the domestic
component of country-level-utilization-adjusted-TFP we obtain from

the principal component analysis, we can infer νj = γj

ζj
. Since our

estimates for 17 countries by adopting an ACP reveals that ζH = 0.631
and ζN = 0.695, and our FMOLS estimates show that γH = 0.1499 and
γN = 0.0007, we can recover νH = 0.238 and νN = 0.001. In column
3, we construct the international stock of knowledge as a geometric
weighted average of trade partners’ aggregate stock of R&D at constant

prices for country i, i.e., ZW
it = Π12

k=1 (Zkt)
αM
ik where αM

k is the share
of imports of home country i from the trade partner k. Sample: 13
OECD countries, 1970-2017, annual data.
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the setup by Corhay et al. [2020] to a two-sector open economy where households decide
about investment in tangible and intangible assets and the stocks of physical capital and
R&D are allocated across sectors in accordance to their return.

Households decide about investment in R&D which gives rise to an aggregate stock of
knowledge ZA(t). Households stand ready to supply the stock of knowledge to firms in
the traded and the non-traded sectors. Because intangible assets are imperfect substitutes,
they pay different returns. Given sector-specific rental rates on intangible assets denoted
by Rj

Z(t), traded and non-traded firms choose the amount of intangible assets ZH(t) and
ZN (t) according to the following optimal rules:

P j(t)

µj
ζjνj

(
Zj(t)

)ζjνj−1 (
ZW (t)

)(1−ζj)νj (
Lj(t)

)θj (
K̃j(t)

)1−θj

= Rj
Z(t),

where P j is the price of the final good in sector j = H,N . This equation shows that an
increase in international stock of knowledge ZW (t) raises the marginal revenue product of
investing in intangible assets and thus has a positive impact on Zj(t). Higher levels in
both international ZW and domestic Zj(t) stock of knowledge have a positive impact on
utilization-adjusted-TFP.

Using data from Stehrer et al. [2019] (EU KLEMS database) we construct time series
for both gross fixed capital formation and capital stock in R&D in the traded and non-
traded sectors. Data are available for thirteen countries over 1995-2017, see Table 28. We
have run the regression of the logged utilization-adjusted-TFP in sector j on the logged
stock of R&D at constant prices by using cointegration techniques. As shown in Table 29,
we find a FMOLS estimated value of the long-term elasticity of utilization-adjusted-TFP
w.r.t. the stock of R&D of 0.1499 for the traded sector and 0.0007 for the non-traded
sector. Once we have estimated the elasticity γj of utilization-adjusted-TFP in sector j
w.r.t the stock of knowledge in sector j, we have to recover the parameter νH and νN

by using values of parameters ζH and ζN . By adopting a principal component analysis,
we have estimated the common component of utilization-adjusted-TFP which stands at
1 − ζH = 0.369 for tradables and 1 − ζN = 0.305 for non-tradables. These values lead to
νH = γH/ζH = 0.238 and νN = γN/ζN = 0.001. These values suggest that increasing the
domestic or the international stock of knowledge have little impact on utilization-adjusted-
TFP of non-tradables and instead have a significant impact on utilization-adjusted-TFP
of tradables. These values fit the data which indicates that utilization-adjusted-TFP has
increased by 0.2% per year while technology improves by 1.6% on average per year in the
traded sector over 1995-2017.

L.6 Intensive vs. Extensive Margin

Responses of hours to a technology shock: intensive vs. extensive margin.
Because total hours can be decomposed in employment and hours per worker, we contrast
empirically the adjustment of total hours (shown in the solid blue line) with the adjustment
at the intensive margin (shown in the solid black line) following an exogenous increase in
utilization-adjusted-aggregate-TFP by 1% in the long-run. In Fig. 19, we consider the
effects of an aggregate technology shock in column 1 and the effects of symmetric and
asymmetric technology shocks in columns 2 and 3. Like Thomet and Wegmuller [2021] who
use a panel of fourteen OECD countries, we find that the movements in the intensive margin
are the dominant channel of adjustment in total hours after an aggregate technology shock.
While most of the variations in total hours are driven by changes in hours per worker after
a symmetric technology shock, the intensive margin is predominant only in the short-run
after an asymmetric technology shock.

Elasticity of hours w.r.t. real GDP: Structural but gradual change. Fig.
20(a), the elasticity of hours worked w.r.t. real GDP has substantially increased over time,
moving from negative to positive values from the mid-nineties. More specifically, the blue
line shows the ratio of the rate of change in hours worked in (17) OECD countries to
the trend rate of growth of real GDP. The trend (dashed black) line which neutralizes
short-run fluctuations reveals that the elasticity of hours worked w.r.t. (the trend of) real
GDP has increased from -0.58 to 0.51 from 1970 to 2017. As documented by Gaĺı and
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Figure 19: Effects of Technology Shocks on Total Hours: Extensive. Intensive MarginNotes:
Because total hours can be decomposed in employment and hours per worker, we contrast empirically the adjustment
of total hours (shown in the solid blue line) with the adjustment at the intensive margin (shown in the solid black
line) following an exogenous increase in utilization-adjusted-aggregate-TFP by 1% in the long-run. We show the
effects of an aggregate technology shock in column 1 and the effects of symmetric and asymmetric technology shocks
in columns 2 and 3. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors.
Sample: 17 OECD countries, 1970-2017, annual data.
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Figure 20: Structural Change in the Elasticity of Hours w.r.t. Real GDP: Intensive vs.
Extensive Margin. Notes: In Fig. 20(b), the blue line shows the ratio of the rate of change in hours per worker to the
(Hodrick-Prescott) trend rate of growth of real GDP. In Fig. 20(c), the blue line shows the ratio of the rate of change in employment to
the (Hodrick-Prescott) trend rate of growth of real GDP. Both employment and real GDP are divided by the working age population.
We apply a Hodrick-Prescott filter with a smoothing parameter of 100 as we are using annual data to obtain the trend rate of growth
for real GDP. In estimating the trend growth rate, we added a dummy for the 2009 year. Sample: 17 OECD countries, annual data,
1970-2017.

Gambetti [2009], one potential explanation to this structural change lies in the change in
the relationship between hours and technology. Because changes in hours worked can be
driven by variations at the intensive margin (i.e., by the change in hours per worker) and at
the extensive margin (i.e., by the change in employment), it is useful to disentangle these
two components. We thus decompose the elasticity of hours worked w.r.t. real GDP into
the elasticity of hours per worker and the elasticity of employment. Inspection of Fig. 20(b)
and Fig. 20(c) reveals that the rise in the elasticity of hours w.r.t. real GDP is driven by
the rise in the elasticity of hours per worker and the elasticity of employment.

Impact response of hours to a technology shock on rolling sub-samples. In
section 2.6, we investigate whether the contractionary effect of a permanent technology
improvements on hours varies across time. Our empirical analysis on rolling sub-samples
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Figure 21: Time-Varying Impact Response of Hours to a Technology Shock: Intensive
vs. Extensive Margin. Notes: Fig. 21(a) and Fig. 21(b) show the time-varying impact response of hours per worker
and employment to a 1% permanent technology improvement. We have estimated impact responses over rolling windows of fixed
length. While the vertical axis of Fig. 21(a) (Fig. 21(b)) shows the point estimate, i.e., γ0, for the impact response of hours per
worker (employment) to a 1% permanent increase in utilization-adjusted-aggregate-TFP obtained from estimating eq. (5) on rolling
subs-samples, the horizontal axis shows the end year of the corresponding window. Light (dark) shaded areas represent 90 (68) percent
confidence intervals based on Newey-West standard errors. Sample: 17 OECD countries, annual data, 1970-2017.

reveals that the impact response of hours to a technology shock shrinks over time. In
Fig. 21, we decompose the impact response of hours worked estimated on rolling sub-
samples into an extensive and an intensive margin. Dividing employment by the working age
population and hours by employment, we estimate the impact response of hours per worker
(employment) to a 1% permanent increase in utilization-adjusted-aggregate-TFP obtained
from estimating eq. (5) on rolling sub-samples. As shown in Fig. 21(b), employment is
muted on impact to a technology shock because it is a state variable which responds only
gradually. The variation of employment does not drive the shrinking contractionary effect
we document empirically and therefore a reduction in hiring costs cannot account for our
evidence. In contrast, Fig. 21(a) reveals that the decline in hours per worker shrinks over
time and thus the time-increasing impact response of hours to a technology shock only
operates at the intensive margin.

L.7 Time-Varying Hours Effects: Symmetric vs. Asymmetric Technol-
ogy Shocks

Our hypothesis that the time-increasing response of total hours worked to a technology
improvement is driven by the growing share of asymmetric technology shocks is valid as
long as the elasticity of hours worked to symmetric and asymmetric technology shocks
remains stable over time. To clarify this point, we decompose the impact response of total
hours worked to an aggregate technology shock into impact responses of hours to symmetric
and asymmetric technology shocks, i.e.,

γ0 = ηγS,0 + (1− η) γD,0, (192)

where γ0 = L̂0

ẐA
0

and γX,0 =
L̂X,0

ẐA
X,0

with X = S,D. According to our hypothesis, the time-

declining share η of symmetric technology shocks leads γ0 to move from larger to smaller
negative values over time while γS,0 and γD,0 are assumed to remain constant over time.
In column 2 of Fig. 22, we plot the impact responses of hours worked to symmetric and
asymmetric technology shocks which are estimated over rolling sub-samples. Two conclu-
sions emerge. The first conclusion is that as discussed in the next subsection, symmetric
technology shocks exert a strong negative impact on hours worked while asymmetric tech-
nology shocks increase hours worked on impact. The second conclusion which emerges
from the inspection of Fig. 22(a) is that the elasticity of labor to symmetric technology
shocks is increasing over time which could potentially rationalize smaller negative values of
γ0. However, as displayed by Fig. 22(b), asymmetric technology shocks tend to produce
smaller positive effects on total hours worked which thus lead to larger negative values of
γ0.
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Figure 22: Time-Varying Impact Response of Hours Worked to a Symmetric vs. Asymmet-
ric Technology Shock. Notes: In columns 1 and 2, we estimate the impact response of total hours worked to a 1% permanent
increase in utilization-adjusted aggregate TFP driven by symmetric technology shocks (Fig. 22(a)) while in Fig. 22(b), we consider a
rise in utilization-adjusted aggregate TFP driven by asymmetric technology shocks. To identify symmetric vs. asymmetric technology

shocks, we estimate the VAR model [ẐH
it − ẐN

it , Ẑ
A
it, ŶR,it, L̂it, ŴC,it]. We impose long-run restrictions such that both symmetric

and asymmetric technology shocks increase permanently ZA
it while only asymmetric technology shocks increase permanently ZH

it /Z
N
it

in the long-run. Once we have identified technology shocks, we estimate the effects of a 1% permanent increase in utilization-adjusted
aggregate TFP on hours worked by using Jordà’s [2005] single-equation method. We run the regression (5) in rolling sub-samples by
considering a fixed window length of thirty years. Because we are interested in the impact effect of technology on hours worked, we
consider an horizon h = 0 into (5). The horizontal axis shows the end year of the period of the sub-sample and the vertical line displays
the point estimate of the impact effect of technology on total hours worked. Sample: 17 OECD countries, 1970-2017, annual data.

L.8 Correlation of Technology Shocks between OECD Countries

We estimate a VAR model in panel format which has the advantage to increase substan-
tially the number of observations. One first key feature of panel VAR is that we control
for common macroeconomic shocks. Although we stack up the time series, the second key
feature is that the technology shocks are estimated for each country. The country-level
technology shocks have a country-specific component (determined by management prac-
tices, the structure of production organization, the ability to transform R&D expenditure
into innovation) and an international component which also remains country-specific be-
cause the ability to take advantage of foreign ideas to innovate domestically will depend on
the number of factors such as the absorptive capacity and human capital.

Because we estimate error terms for each country of our sample, it is straightforward
to calculate the correlation of shocks across OECD countries, as displayed by Table 30.
We find a cross-country mean of -0.048 and the mean amounts to 0.18 when we take the
absolute values for country pair correlation. The correlation of technology shocks between
OECD countries is thus low because technology improvements depend on country-specific
factors and also because the share of asymmetric technology shocks across sectors varies
substantially across countries. It is worth mentioning that our empirical approach serves
our purpose as the nature of technology shocks are allowed to vary between space and time
while the effect of a technology shock on hours is captured by parameters which display
some homogeneity between countries.

L.9 Homogeneity Assumption in Estimating the Dynamic Effects

Nature of technology shocks varying across time and space and the homogeneity
assumption to estimate the panel VAR model. Our paper stresses the importance
of the variations in the share of asymmetric technology shocks across time and space and
we show that hours worked decline after a technology shock in an average OECD economy
because symmetric technology shocks are predominant but the decline in hours after a tech-
nology shocks progressively vanishes over time as technological change is increasingly driven
by technology shocks which are concentrated within traded industries. Our panel SVAR
approach let the share of asymmetric technology shocks vary across time and countries
and assume that the effect of a technology shock on hours is homogenous across countries,
i.e., the structural parameters of the model such the Frisch elasticity of labor supply and
other parameters display some homogeneity across countries. Besides the fact that this as-
sumption increases the accuracy of estimates by economizing the degrees of freedom (as the
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homogeneity assumption implies that we estimate less parameters), this approach is in line
with our modelling strategy where we assume that the response of hours to a technology
shock varies across time (and potentially across countries) as a result of the time-varying
importance of asymmetric technology shocks.

Testing the homogeneity assumption. To test the validity of the homogeneity
assumption in estimating the dynamic response of hours to a technology shock in panel
format, we proceed as follows. We estimate the same VAR model but for one country at a
time. Fig. 23 contrasts the dynamic response of hours to a technology shock when we adopt
a panel approach shown in the blue line with the dynamic response when we estimate the
same VAR model but for one country at a time and estimate the dynamic effect by using
local projections. The red line shows the country mean of point estimates while the black
line shows the median estimate when we estimate the dynamic effect for one country at
a time. We consider four cases by estimating the technology shocks in panel format (first
row), by estimating the technology shocks separately for one country at a time (second row),
by adding time dummies in local projections (second step to plot the dynamic response of
hours) as shown in the first column, or by dropping the time dummies in both the panel
SVAR and local projections as shown in the second column.

The first observation is that adding time dummies to estimate the panel SVAR and local
projections (blue line in Fig. 23(a)), or to estimate only local projections (blue line in Fig.
23(c)) or dropping time dummies (second column of Fig. 23) does not affect the response
of hours. What matters is whether the technology shocks are estimated in the first step
from a panel SVAR (first row) or instead technology shocks are estimated in the first step
for one country a time (second row). As it stands out, the second row of Fig. 23 shows
that the dynamic responses of hours are essentially identical when the technology shocks
are estimated for one country at a time whether the dynamic response is estimated in panel
format (blue line) or for one country at a time (black and red lines). In other words, the
second row of Fig. 23 reveals that imposing the homogeneity when estimating the response
of hours to a technology shock in local projections (blue line), i.e., in the second step, leads
to the same results when we estimate the dynamic response of hours for one country at a
time (black and red line). As shown in the first row, when technology shocks are identified
in the panel format across all scenarios and we contrast the response of hours estimated in
panel format (blue line) or for one country at a time (black and red line), we don’t find
a discrepancy which is statistically different until year 8. Quantitatively, in the baseline
model shown in the blue line of Fig. 23(a), hours decline by -0.15% on impact; when we
estimate the dynamic response of hours by relaxing the homogeneity assumption and by
estimating the response for one country at a time, the decline in hours amounts to -0.10%
for the median and -0.25% for the mean.

Precision-weighted estimator. As stressed in the main text, we first identify the
technology shock by estimating a panel SVAR and then in a second step, we use local
projections to estimate the dynamic response of hours to a technology shock. To further
test our homogeneity assumption, we use the mean-group estimator which amounts to
estimating the dynamic response of hours to a technology shock for each country and
aggregating the response by using a weighted average where the more precise estimators
gives us better information and thus receive a higher weight. In Fig. 24, we contrast the
panel OLS fixed effect estimator when the coefficient is assumed bo be homogenous across
countries (see the solid blue line) with the precision-weighted average of individual estimates
(see the solid red line). As it stands out, the discrepancy in the point estimate between
the panel OLS fixed effect estimator and the precision-weighted-estimator is small and
insignificant. These empirical findings provide an additional piece of evidence confirming
the validity of the homogeneity assumption.

L.10 One Step vs Two-Step Method

In the main text, we adopt a two-step approach where we first identify the exogenous
shock to utilization-adjusted-TFP by estimating a panel SVAR which includes utilization-
adjusted-TFP, real GDP, total hours worked, the real consumption wage and assume that
technology shocks are shocks which increase permanently utilization-adjusted-TFP. Once
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With time dummies Without time dummies

(a) Dynamic Response of Hours (b) Dynamic Response of Hours

(c) Dynamic Response of Hours (d) Dynamic Response of Hours

Figure 23: Dynamic Response of Hours to a Technology Shock and Homogeneity Assump-
tion Notes The solid lines show the dynamic responses to an exogenous increase in utilization-adjusted-aggregate-
TFP by 1%. In the first row, we estimate the dynamic response of hours to a technology shock in panel format (blue
line) and for one country at a time. In the latter case, the black line shows the median of estimates while the red line
displays the country mean. Across all scenarios, we have estimated the error terms and thus the technology shocks in
panel format and we relax the homogeneity assumption only in the second step, i.e., when we estimate the dynamic
effect of a technology shock on hours by using local projections. In Fig. 23(a), we estimate the VAR model in panel
format and local projections with time dummies (blue line) while in Fig. 23(b), we estimate the VAR model in panel
format and local projections without time dummies (blue line). In the second row, we adopt the same approach except
that in the first step, we identify the technology shocks for one country at a time. While solid lines represent point
estimates, light (dark) shaded areas represent 90 (68) percent confidence intervals based on Newey-West standard
errors. Horizontal axes indicate years. Vertical axes measure percentage deviation from trend. Sample: 17 OECD
countries, 1970-2017, annual data.

Aggregate Technology Sym. Technology Asym. Technology
Shock Shock

(a) Dynamic Response
Hours to a

Technology Shock

(b) Dynamic Response
Hours to a
Symmetric

Technology Shock

(c) Dynamic Response
Hours to an
Asymmetric

Technology Shock

Figure 24: Dynamic Response of Hours after a Technology Shock: OLS Fixed Effect Es-
timator vs. Mean-Group Estimator Notes: The solid blue line shows the dynamic response of hours we estimate by
assuming that the coefficient is homogenous across countries while the red line displays the dynamic response when the point estimate is
computed a weighted average of cross-country point estimates. Light (dark) Shaded areas represent 90 (68) percent confidence intervals
based on Newey-West standard errors. Horizontal axes indicate years. Vertical axes measure percentage deviation from trend. Sample:
17 OECD countries, 1970-2017, annual data.

115



we have identified the technology shock, we estimate the dynamic effects by using the
local projection method which simply requires estimation of a series of regressions for each
horizon h for each variable of interest on the identified shock (see eq. (5) in the main text):

xi,t+h = αi,h + αt,h + ψh (L) yi,t−1 + γhε
Z
i,t + ηi,t+h. (193)

In the main text, baseline control variables collected in y, includes past values of utilization-
adjusted-TFP and of the variable of interest.

One-step approach. Ramey and Zubairy [2018] adopt a one-step approach (to ensure
a straightforward comparison of results with estimates from defense news variables) by
replacing the shock with current government spending in the single-equation method. We
adapt their approach to our case and thus we run a series of regressions for each horizon
h for each variable of interest in rate of growth on the rate of growth of the considered
technology variable:

∆xi,t+h = αi,h + αt,h + ψh (L) yi,t−1 + γh∆zit + ηi,t+h, (194)

where x is the (logged) variable of interest and z is the (logged) technology variable; ∆xi,t+h

represents the accumulated growth of the dependent variable from t− 1 to t+ h. We con-
sider three types of technology improvements: i) a technology improvement by considering
the time series for logged utilization-adjusted-TFP, ii) a technology improvement which is
asymmetric between sectors by using zAD,it = zHit − zNit , i.e., the differential between traded
and non-traded utilization-adjusted-TFP, iii) a technology improvement which is symmet-
ric between sectors by constructing zAS,it = logZA

S,it where ZA
S,it = ZA

it − νY,Hi ZA
D,it, see eq.

(3) in the main text, where ZA is utilization-adjusted-TFP, νY,Hi the value added share of
tradables, and ZA

D,it the ratio of utilization-adjusted-TFP of tradables to non-tradables.
Robustness of the two-step method. Pagan [1984] provides a complete treatment of

the econometric problems arising when generated variables appear in a regression equation.
In particular, the author explores the situation when generated residuals are used as regres-
sors. It is found that the coefficient and its standard error from an OLS program would be a
consistent estimator of the true coefficient and the true standard error for the coefficient of
the unanticipated variable. In other words, running a regression with structural technology
shocks recovered from the estimation of utilization-adjusted-TFP over a set of regressors is
equivalent to running a regression where the regressor is utilization-adjusted-TFP itself.

Contrasting the effect of a technology improvement on hours from the two-
step with that obtained from the one-step method. Fig. 25(a) contrasts the dynamic
response of hours to a technology shock when we adopt the two-step approach detailed in the
main text (shown in the solid blue line) with the dynamic response of hours to a permanent
technology improvement when we adopt the one-step approach (shown in the solid red
line). As it stands out, the difference between the two methods is insignificant. Fig. 25(b)
displays the impact response of hours to a permanent technology improvement normalized
to one 1%. The response is estimated on rolling windows of fixed length of thirty years.
Again, the difference between the two approaches is insignificant. These empirical findings
reveal that the two-step and the one-step method are equivalent and thus identifying the
technology shock in the first step by estimating a panel VAR and running the regression
of hours on the identified shock could be replaced with a one step approach where we
estimated directly the effect of a permanent technology improvement on hours by using
raw series of utilization-adjusted-TFP.

Advantage of the the two-step over the one-step method. While the discrepancy
between the two methods is insignificant when we consider a standard technology shock
reflected by a permanent increase in utilization-adjusted-TFP, the second row of Fig. 25
reveals that the two-step approach is more suited when it comes to decomposing the tech-
nology shock into a symmetric and an asymmetric component. More specifically, when we
use the two-step method and impose in the VAR model that symmetric technology shocks
are shocks which increase permanently utilization-adjusted TFP while leaving unchanged
the ratio ZH

it /Z
N
it , this approach cancels any productivity differential. In contrast, the one-

step method cannot neutralize the productivity differential in the short-run as there is no
simultaneous identification of symmetric and asymmetric technology shocks. The effects of
an asymmetric technology shock display much less difference.
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Figure 25: Effects of a Technology Shock on Hours: One-Step vs Two-Step Method. Notes:
The blue line in Fig. 25(a) shows the dynamic response of hours to a technology shock by adopting a two-step approach where we
identify the technology shock by estimating a VAR model which includes utilization-adjusted-TFP and macroeconomic variables in
the first step and in the second step, we estimate the dynamic effect of the identified technology shock on hours on rolling windows.
Alternatively, we estimate the dynamic effect of a permanent increase in utilization-adjusted-TFP on hours by adopting a one-step
approach. In the latter case, we estimate the impact response of a permanent technology improvement on hours by mans of local
projections by using directly time series for utilization-adjusted-TFP. The blue line in Fig. 25(b) shows the point estimate (i.e., γ0) for
the impact response of hours (Lit) to a 1% permanent increase in utilization-adjusted-aggregate-TFP obtained from an estimation on
rolling sub-samples, the horizontal axis shows the end year of the corresponding window. Light (dark) shaded areas represent 90 (68)
percent confidence intervals based on Newey-West standard errors. In Fig. 25(c), we show impact responses of hours to a technology
improvement which is symmetric across sectors. In Fig. 25(d), we show impact responses of hours to a technology improvement which
is asymmetric across sectors. Impact responses are estimated on rolling sub-samples. Sample: 17 OECD countries, 1970-2017, annual
data.

L.11 Inclusion of Time Dummies

Our empirical strategy. We include time effects when we estimate the VAR model in
panel format to identify technology shocks and in the second step when we run a series of
regressions of each variable of interest on the identified technology shock for each horizon
h = 0, 1, 2, ...

xi,t+h = αi,h + αt,h + ψh (L) zi,t−1 + γhε
Z
i,t + ηi,t+h, (195)

where αi,h are country fixed effects and αt,h are time dummies. Time effects should be
included when we estimate the VAR model and local projections as we have to control
for the shocks which are common across countries such as oil price shocks or the 2008
financial crisis. In addition, it is recommended to include time dummies as it enures that
the responses of variables reflect the deviations relative to the sample average.

What time dummies capture and do not capture. The time effects do not capture
or remove the technology shocks which are symmetric or asymmetric across sectors because
both the symmetric and asymmetric components are country-specific. The time dummies
might capture the common component of technology improvements across countries, i.e.,
the progression of the international stock of ideas. However, the impact of the world stock
of ideas on country-level TFP is country-specific because the absorptive capacity of tech-
nology, the structure of production and technology adoption costs vary substantially across
countries. Therefore, time dummies should not remove the impact of the international stock
of knowledge.

Dynamic effects with vs. without time dummies. In Fig. 26, we contrast the
dynamic responses to a technology shock we obtain when we include time dummies (shown
in the solid blue line) and when we exclude time dummies from the VAR model and local
projections (shown in the solid red line). Note that the blue line shows the responses we
estimate in the main text, see Fig. 2. We have chosen the set of macroeconomic variables
displayed by Fig. 2. While Fig. 26(e) shows the dynamic response of hours to a technology
shock, Fig. 27(b) and Fig. 27(c) show the dynamic responses to a symmetric and an
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Figure 26: Dynamic Effects of a Technology Shock on Hours: With and Without Time
Dummies. Notes: The blue line shows the dynamic response of hours to a technology shock by adopting a two-step approach
where we identify the technology shock by estimating a VAR model which includes utilization-adjusted-TFP and macroeconomic
variables in the first step and in the second step, we estimate the dynamic effect of the identified technology shock on hours on rolling
windows. In the baseline scenario shown in the blue line, we include time dummies when we estimate the VAR model (first step) and
local projections (second step). In the solid red line, we show the point estimate when we exclude time dummies from the VAR model
and local projections. Light (dark) shaded areas represent 90 (68) percent confidence intervals based on Newey-West standard errors.
Sample: 17 OECD countries, 1970-2017, annual data.
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after a Technology
Shock
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Hours, Lit, to a

Symmetric Technology
Shock
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Hours, Lit, to an
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Figure 27: Impact Effects of a Technology Shock on Hours over Sub-Periods: With and
Without Time Dummies. Notes: The blue line in Fig. 27(b) and Fig. 27(c) shows the dynamic response of hours to a
technology shock by adopting a two-step approach where we identify symmetric and asymmetric technology shocks by estimating a
VAR model which includes the ratio of traded to non-traded utilization-adjusted-TFP, utilization-adjusted-TFP, and macroeconomic
variables in the first step and in the second step, we estimate the dynamic effect of the identified (symmetric or asymmetric) technology
shock on hours on rolling windows. In the baseline scenario shown in the blue line, we include time dummies when we estimate the VAR
model (first step) and local projections (second step). In the solid red line, we show the point estimate when we exclude time dummies
from the VAR model and local projections. The solid lines in Fig. 27(a) show the point estimate (i.e., γ0) for the impact response
of hours (Lit) to a 1% permanent increase in utilization-adjusted-aggregate-TFP obtained from an estimation on rolling sub-samples,
the horizontal axis shows the end year of the corresponding window. Light (dark) shaded areas represent 90 (68) percent confidence
intervals based on Newey-West standard errors. Sample: 17 OECD countries, 1970-2017, annual data.

asymmetric technology shock. Fig. 27(a) contrasts the impact response of hours estimated
on rolling sub-samples. Overall, we do not detect any significant discrepancy. Inspection of
Fig. 26 and Fig. 27 reveals that the dynamic responses of variables lie within the confidence
interval of the baseline. Therefore, whether we include or not time dummies, the difference
is not statistically significant.

L.12 SVAR vs Local Projections

In the main text, we adopt a two-step approach and estimate the dynamic effects by using
local projections in the second step. The reason is that we want to shed some light on the
multi-sector aspect of the transmission mechanism of technology shocks and by decoupling
the shock identification and the estimate of the dynamic responses, we ensure that the
variables respond to the same shock. In this subsection, we re-estimate the effects of a
technology shock we show in the main text by using a one-step approach, say by imposing
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long-run restrictions when estimating the SVAR model to identify structural shocks and
next by generating impulse response functions to the identified technology shocks from the
SVAR model.

Advantages of Local Projections over SVAR. Jordà’s [2005] local projection
method has several advantages over the VAR methodology. First, when estimating the
dynamic adjustment of variables to the technology shock, it considerably reduces the num-
ber of coefficients and thus is particularly suited when estimating the effects over over-
lapping subperiods of fixed length. The second advantage is that it does not impose the
dynamic restrictions implicitly embedded in VARs and can accommodate non-linearities in
the response function, see Jordà [2005]. By imposing fewer restrictions, impulse responses
obtained by using the local projection method might be erratic. The third advantage is that
we are interested in shedding some light about the transmission mechanism of technology
shocks which leads us to estimate the dynamic effects on a set of aggregate and sectoral
variables. If we estimate several VAR models, we have to identify new technology shocks
which might slightly differ from the previous VAR model. One way to circumvent this
obstacle is to estimate one unique VAR model to identify once and for all the technology
shock and then to estimate the dynamic effects of identified technology shock on a set of
variables by using local projections.

SVAR vs. Local Projections. Fig. 28 contrasts the dynamic responses generated
from the VAR model (shown in the black line) with the baseline displayed by the solid blue
line. We consider the same set of variables as in the main text, see Fig. 2. Overall, we do
not detect any significant discrepancy.

Inspection of Fig. 28, reveals that both methods lead to very similar results, especially
on impact, and even at a longer time horizon, as responses lie within the confidence interval
of the baseline case (i.e., associated with the point estimate from local projections). We
may notice some quantitative differences because local projections are based on sequential
regressions of the endogenous variable shifted several steps ahead,. In particular, the re-
sponses generated from local projections can account for the non-monotonic adjustment
of macroeconomic variables after a technology shock such as utilization-adjusted-TFP, the
ratio of utilization-adjusted-TFP of tradables relative to non-tradables, the relative price
of non-tradables, the terms of trade or hours worked.

Fig. 29 contrasts the impact response of hours to a technology estimated on rolling
windows. While we do not detect any statistical significant difference because the responses
from the VAR model lies with the confidence international, as stressed above, time-varying
estimates are more reliable and consistent since in estimating the dynamic effects, the
technology shock for every year remains unchanged from one sub-period to another.

L.13 Testing the Presence of Structural Breaks in the Relationship be-
tween Hours and Technological Change

Empirical strategy. The main objective of the paper is to provide an explanation to the
vanishing decline in hours after a technology shock we document for OECD countries. The
explanation we put forward is based on the rising share of technological change explained by
exogenous asymmetric technology shocks. More specifically, according to our hypothesis,
the gradual disappearance of the fall in labor is driven by the changing nature of technology
shocks and is not the result of a change in the structural model’s parameters such as
the Frisch elasticity of labor supply, the degree of labor mobility between sectors, or the
substitutability across goods. In accordance with this hypothesis, in the empirical part,
we estimate the VAR model in panel format by assuming that the coefficients in the VAR
model are constant over time. Once we have identified the structural shocks, we estimate
the dynamic response of hours to the exogenous technology shock on rolling sub-samples
and find that the decline in hours shrinks over time from -0.26% the first thirty of our sample
to -0.11% the last thirty years of our sample. The changing nature of technology shocks
over time is assumed to drive the shrinking contractionary effect of technology shocks on
hours. In other words, the decline in hours after a technology shock gradually vanishes over
time not because the elasticity of labor supply takes smaller values over time but instead
because the composition of technology improvements gradually changes over time as it tends
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Figure 28: Dynamic Effects of a Technology Shock. Notes: The solid lines shows the dynamic responses to
an exogenous increase in utilization-adjusted-aggregate-TFP by 1% in the long-run. While solid lines represent point estimates, light
(dark) shaded areas represent 90 (68) percent confidence intervals based on Newey-West standard errors. Horizontal axes indicate
years. Vertical axes measure percentage deviation from trend. The solid blue line shows the dynamic adjustment when we estimate
the dynamic effects by using local projections while the solid black line displays the dynamic effects when we generate the dynamic
responses from the VAR model. Sample: 17 OECD countries, 1970-2017, annual data.

(a) Time-Varying Response
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(b) Time-Varying Response
of LN

it
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Figure 29: Time-Varying Effects of a Technology Shock. Notes: While the vertical axis of Fig. 29(a) shows
the point estimate (i.e., γ0) for the impact response of hours (Lit) to a 1% permanent increase in utilization-adjusted-aggregate-TFP
obtained from estimating eq. (5) on rolling subs-samples, the horizontal axis shows the end year of the corresponding window. Light
(dark) shaded areas represent 90 (68) percent confidence intervals based on Newey-West standard errors. Fig. 29(b) and Fig. 29(c) show

time-varying impact responses of non-traded (LN
it ) and traded (LH

it ) hours worked to an aggregate technology shock, both re-scaled by
the labor compensation share so that the sum response of sectoral hours worked are expressed in percentage point of total hours. The
solid blue line shows the dynamic adjustment when we estimate the dynamic effects by using local projections while the solid black line
displays the dynamic effects when we generate the dynamic responses from the VAR model. Sample: 17 OECD countries, 1970-2017,
annual data.
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to become more concentrated toward industries. We test our hypothesis by developing and
simulating a model with tradables and non-tradables. In computing numerically the impact
response of hours to a technology shock, we increase the share of technology improvements
driven by asymmetric technology shocks between sectors by assuming that the model’s
parameters remain unchanged. We feed the model with the share of asymmetric technology
shocks between sectors we estimate in the data by computing the forecast error variance
decomposition over rolling sub-periods and we find that the model can account for the
vanishing decline in hours after a technology shock we document empirically.

The test for potential structural breaks in the estimated relationship. While
the quantitative exercise we conduct corroborates our hypothesis, we further test our as-
sumption of the changing nature of technology shocks and constancy of model’s parameters
by running a series of tests in panel format to detect the potential presence of structural
breaks in the relationship between technology and hours. In section L.1, we have investi-
gated the potential presence breaks in the time series for hours and utilization-adjusted-
TFP. Both variables are found to be integrated of order one and no structural breaks have
been detected. Although time series do not contain structural breaks, we cannot reject
the assumption of the presence of structural breaks in the relationship between hours and
technology. We apply the test developed by Ditzen et al. [2024] for detecting multiple
structural breaks in panel data to the relationship we are interested in, i.e. the relationship
between total hours worked and the identified technology shocks εZ where Z can be either
aggregate (AGG), asymmetric (ASYM) or symmetric (SYM) between sectors. We run the
regression of the logged total hours worked on the identified technology shocks εZ and a set
of controls which are lagged values of the dependent variable and utilization-adjusted-TFP:

lnLi,t = αi + γεZi,t +
(
β1 lnLi,t−1 + β2 lnLi,t−2 + β3 lnZ

A
i,t−1 + β4 lnZ

A
i,t−2

)
+ ηi,t, (196)

where we allow for two lags on control variables. Equation (196) collapses to the equation we
estimate in the main text by using local projections by considering a time horizon h = 0;
therefore γ captures the impact effect of a technology shock on hours. The coefficient
γ associated with the regressor εZi,t is potentially subject to structural breaks while the
coefficients βj for j = 1, . . . , 4 are supposed to be unaffected by the breaks. To detect
potential structural breaks, the authors test the null of s structural breaks against the
alternative of s + 1 structural breaks consecutively in order to estimate the true number
of structural breaks. Due to the homogeneity assumption, the break dates are common for
all countries in our sample. According to Ditzen et al. [2024], this assumption is common
and is reasonable in panels where the frequency of the data is not too high. To account for
potential heteroskedasticity and autocorrelation we use robust (HAC) standard errors.

Results: no structural breaks in the estimated relationship between hours
and technology. The test proposed by Ditzen et al. [2024] is aimed at testing directly the
presence of structural breaks that could affect the impact effect of technological shocks on
total hours worked. Columns 1-3 of Table 31 report the test value F (s|s+1); F (s|s+1) is
the F -statistic for testing the null hypothesis H0 where there are s breaks versus hypothesis
H1 with s+ 1 breaks. The critical values of the test are shown in columns 4-6. When the
F statistic is lower that the critical value, then we cannot reject assumption H0. As shown
in the first row, we accept H0 of s = 0 structural break. Therefore, there is no structural
breaks in the relationship between hours and technology we estimate in the main text.

According to the test F (1|0), the hypothesis of 0 breaks against at least 1 break is not
rejected for the three identified shocks. The same conclusion holds for the consecutive tests.
By and large, we therefore cannot reject the null of no breaks at the 1% level, suggesting
that the local projection regressions we estimated are not subject to structural breaks.

L.14 Cross-Country Variations

In this paper, we put forward international openness to generate a negative link between
technology and hours worked. When the country is open to international trade and world
capital markets, the open economy will find it optimal to import consumption and invest-
ment goods from abroad by running a current account deficit. By increasing imports, the
home country can meet a higher domestic demand for goods and thus households can enjoy
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Table 31: Ditzen et al. [2024] Test for Detecting One or More Structural Breaks

eq. (196) Critical Values
AGG ASYM SYM 1% 5% 10%
(1) (2) (3) (4) (5) (6)

F (1|0) 0.58 0.13 0.14 12.29 8.58 7.04
F (2|1) 0.65 0.24 5.47 13.89 10.13 8.51
F (3|2) 1.09 1.70 1.62 14.80 11.14 9.41
F (4|3) 2.07 1.56 2.49 15.28 11.83 10.04
F (5|4) 1.02 1.53 0.63 15.76 12.25 10.58

Notes: AGG refers to aggregate technology shocks. ASYM refers to asymmetric
technology shocks. SYM refers to symmetric technology shocks. Columns 1-3 of
Table 31 report the test value F (s|s+1). F (s|s+1) is the F -statistic for testing the
null hypothesis H0: s breaks versus H1: s+ 1 breaks. The critical values of the test
are shown in columns 4-6. When the F statistic is lower that the critical value, then
we cannot reject assumption H0 of s structural breaks. Sample: 17 OECD countries,
1970-2017, annual data.
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Figure 30: Impact Responses of Hours to a Permanent Technology Improvement: Financial
Openness and Tradable Share. Notes: Fig. 30(a) and Fig. 30(b) show the impact response of total hours worked to a
1% permanent increase in utilization-adjusted-aggregate-TFP. We first identify the permanent technology shock by estimating a VAR
model which includes utilization-adjusted-aggregate-TFP together with a set of variables and impose long-run restrictions. Then in a
second step, we estimate the impact response of hours worked by means of local projections. In Fig. 30(a), we plot impact responses
of hours worked (on vertical axis) against the current account balance (as a percentage of GDP) averaged over 1970-2017. Data for the
current account balance are taken from Lane and Milesi-Ferretti [2007]. In Fig. 30(b), we plot impact responses of hours (on vertical
axis) against the value added share of tradables (as a percentage of GDP) averaged over 1970-2017. Data are taken from EU KLEMS.
Sample: 17 OECD countries, annual data, 1970-2017.

leisure. In line with our hypothesis, we find that OECD countries run a current account (or
a trade balance) deficit on impact, see Fig. 2(c) in the main text. We have to keep in mind
that empirical estimates capture the reaction of an average OECD economy. More specifi-
cally, as shown below, there exists a substantial cross-country dispersion in the response of
hours as some countries will not decide to run a current account deficit.

Cross-country dispersion in the impact response of hours. In Fig. 30(a),
we plot impact responses of hours to a permanent technology improvement against the
(unconditional) averaged current balance (in % of GDP) for the seventeen OECD countries
over 1970-2017. Because estimates are made for one country at a time, the limited number
of observations implies a great amount of uncertainty surrounding the point estimate of
the response of hours. The economies (mostly English-speaking and Spain) which borrow
from abroad (located in the south-west part) experience a decline in hours worked. The
economies (mostly Scandinavian, Japan and Germany) which lend to abroad (located in the
North-east part) do not experience a decline in hours worked. As shown in the numerical
part of the paper, barriers to factors’ mobility and imperfect substitutability between home-
and foreign-produced traded goods reduce considerably the current account deficit. For
countries with low mobility costs, such as English-speaking countries, it is optimal to import
goods from abroad (and run a current account deficit) and meet higher demand for non-
traded goods by shifting productive resources away from traded and toward non-traded
industries. Conversely, factors’ mobility costs have a positive influence on the current
account and labor supply. Scandinavian countries tend to have a low degree of labor
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vs. Mobility of Labor vs. Current Account Balance vs. Share Asym. Tech.
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Change

Figure 31: Impact Response of Hours after a Technology Shock against the degree of
mobility of labor across sectors and the current account balance. Notes: We have estimated the impact
response of hours to a technology shock by using local projections. We add an interaction term which involves the degree of labor
mobility across sectors, εL, and plot γ1,0 + γ2,0 × εL,i in Fig. 31(a). The values for εL are taken from our own estimates which are
used to calibrate the model. We add an interaction term which involves the averaged current account balance in percentage of GDP,
denoted by ca and plot γ1,0 + γ2,0 × cai in Fig. 32(b). Data for the current account balance are taken from Lane and Milesi-Ferretti
[2007]. In Fig. 32(b), we plot the coefficient associated with the interaction term γ1,0 + γ2,0 × asym sharei. Light (dark) shaded
areas represent 90 (68) percent confidence intervals based on Newey-West standard errors. Horizontal axes indicate years. Vertical axes
measure percentage deviation from trend. Sample: 17 OECD countries, 1970-2017, annual data.

mobility between sectors and thus they have low incentives to borrow from abroad as the
cost of moving resources away from the traded sector and toward the non-traded sector is
prohibitive, thus explaining why the group of countries in the north-east part of Fig. 30(a)
does not experience a current account deficit and a fall in hours.

An alternative way to visualize the role of the degree of labor mobility across sectors
in determining the response of hours to a technology shock is to re-estimate the dynamic
effect of a technology shock on hours by adding an interaction term between the technology
shock and the degree of labor mobility across sectors, i.e., we run the regression:

xi,t+h = αi,h + αt,h + ψh (L) yi,t−1 + γ1,h .εZi,t + γ2,h .εZi,t × εL,i + ηi,t+h, (197)

where αi,h are country fixed effects, αt,h are time dummies; x is the logarithm of the variable
of interest, y is a vector of control variables (i.e., past values of utilization-adjusted-TFP
and of the variable of interest), ψh (L) is a polynomial (of order two) in the lag operator.
Since we are interested in the impact effect of a technology shock, we focus on the horizon
h = 0. The coefficient γ1,0 gives the response of x at time t+h to the identified technology
shock εZi,t at time t if labor were immobile across sectors while γ2,0 captures the effect of
a technology shock on hours conditional on the degree of labor mobility. Formally, in Fig.
31(a), we plot the impact response of hours to a technology shock (vertical axis)

∂xi,t

∂εZi,t
= γ1,0 + γ2,0 × εL,i, (198)

against εL,i (horizonal axis). According to our model’s predictions, we expect γ1,0+γ2,0×εL,i
to be negative. Intuitively, as the degree of labor mobility between sectors increases, because
it is less costly to move labor, the open economy will be more inclined to increase imports
from abroad to meet the demand for traded goods and will shift more labor toward the
non-traded sector to meet the demand for non-traded goods. Therefore, households will
lower significantly labor supply. Fig. 31(a) corroborates our model’s predictions. More
specifically Fig. 31(a) reveals that hours decline dramatically for values of εL larger than
one.

As shown by Rothert and Short [2023] and in line with our model’s predictions, all
factors which mitigate the shift of productive resources away from the traded and toward
the non-traded sector will reduce the amount of capital inflows. Therefore, countries which
are on average borrowers such as English-speaking countries which are characterized by a
lower amount of frictions in the movements of factors between sectors should borrow more
after a technology shock and thus should experience a greater decline in hours. Conversely,
countries such as Scandinavian countries will tend to be lenders as they are characterized
by larger costs of factors’ mobility because their structure of production is less diversified.
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Other countries such as Germany will run a current account surplus as a result of trade-
oriented government policies. An additional important factor which is highlighted in our
numerical analysis is imperfect substitutability between home- and foreign-produced traded
goods. As home- and foreign-produced traded goods are more differentiated, households
will import less goods produced from abroad which will results in a lower current account
deficit. Taking time series for the current account balance from Lane and Milesi-Ferretti
[2007], we have replaced εL with the current account balance as a share of GDP, denoted
by ca, in eq. (199). In Fig. 31(b), we plot the impact response of hours to a technology
shock measured by (on the vertical axis)

∂xi,t

∂εZi,t
= γ1,0 + γ2,0 × cai, (199)

against the current account balance as a percentage of GDP (horizontal axis). According
to our model’s predictions, we expect γ1,0 + γ2,0 × cai to be positive. Intuitively, borrowers
(i.e., ca < 0) will experience a dramatic decline in hours after a technology shock while
hours will not decrease after a technology shock in countries which lend to abroad (i.e.,
ca > 0). In line with our hypothesis, Fig. 31(b) shows that there exists a strong positive
relationship between the response of hours to a technology shock and the current account
balance. The decline in hours tend to be larger in countries which are more prone to borrow
from abroad while the decline in hours is less in countries which are more inclined to lend
to abroad.

Hours vary across countries due to international differences in the share of
asymmetric technology improvements between sectors. As displayed by Fig. 30(b)
which plots impact responses of hours to a technology shock against the (value added)
share of tradables, a greater contribution of exporting industries to GDP is associated with
an increase in hours worked following a permanent technology improvement. Intuitively,
a greater share of tradables implies that the variations in utilization-adjusted-aggregate-
TFP are further driven by technological change in traded industries. Because technological
change is more pronounced in traded than in non-traded industries, aggregate technological
change tends to be more asymmetric across sectors. Because the value added share of trad-
ables, i.e., νY,H , is only an approximation of the share of asymmetric technological change,
we conduct below a deeper investigation of the role of share of asymmetric technology
improvements in driving technological change.

We have split our sample into two groups of countries on the basis of the share of
the (unconditional) variance of technological change driven by its asymmetric component
(between sectors). As shown in Online Appendix J.9, the share of the (unconditional)

variance of the rate of growth of utilization-adjusted-aggregate-TFP, ˆTFP
A
(t), driven by

its asymmetric component (between sectors), ˆTFP
A
D(t), reads:

Var
(

ˆTFP
A
D(t)

)

Var′
(
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(
νY,H
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(
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(t)

)

Var′
(
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) , (200)

where Var′
(

ˆTFP
A
(t)

)
denotes the variance of aggregate technological change adjusted with

the covariance of symmetric and asymmetric components. Eq. (200) reveals that the con-
tribution of asymmetric technology improvements to the variance of technological change
is increasing in both the value added share of tradables, νY,H , and the dispersion in tech-

nology improvement between the traded and the non-traded sector,
Var

(
ˆTFP

H
(t)− ˆTFP

N
(t)

)

Var′
(

ˆTFP
A
(t)

) .

Fig. 32(a) suggests that the share of asymmetric technology improvements is a major driver
of the response of hours. More specifically, the figure reveals that in the group of coun-
tries where the share of asymmetric technology improvements is lower than 30% (with a
mean of 22%), as shown in the orange line, hours decline by -0.48% on impact, while in
the group of countries where the share of asymmetric shocks is higher than 30% (with a
mean of 46%), the response of hours is muted at all time horizons (see the dashed green
line). This finding is important because our estimates also reveal that (only) asymmetric
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Figure 32: Response of Hours to Technology Shocks: Low vs. High Share of Asymmetric
Technological Change Notes: Fig. 32(a) plots the response of hours to a 1% permanent increase in utilization-adjusted-TFP
for countries with low (orange line) and high (dashed green line) variance share attributable to asymmetric technology improvements
(’Share of Asym. Tech. Change’). We perform a country-split on the basis of the share of the (unconditional) variance of utilization-
adjusted-TFP growth driven by asymmetric technology improvements across sectors which is calculated for each country by using eq.
(200). We have eight countries with a share of technological change driven by asymmetric technology improvements lower than 30%
(including continental European countries and Japan) and nine countries with a share higher than 30% (including English-speaking and
Scandinavian countries). Fig. 32(b) plot the estimated coefficient which includes an interaction term, i.e., γ1,0 + γ2,0 × asym sharei,
against the share of the (unconditional) variance of utilization-adjusted-TFP growth driven by asymmetric technology improvements
across sectors.

(a) Dynamic Response
of Hours: Big vs
Small Countries

(b) Impact Response of
Hours vs. Country’s

Size

(c) Impact Response of
Current Account vs.

Country’s Size

Figure 33: Response of Hours to a Technology Shock: Big vs. Small Countries Notes: ’CA’ refers
to the current account. Fig. 33(a) contrasts the response of hours to a 1% permanent increase in utilization-adjusted-TFP between
small (dashed red line) and large (solid blue line) countries. We split the sample into small (nine) and big (eight) countries by using
the median for the working age population. Solid and dashed lines represent point estimates and light (dark) shaded areas represent
90 (68) percent confidence intervals. Vertical axis measures deviation from the pre-shock trend/level in percent. Fig. 33(b) and Fig.
33(c) plot the estimated coefficient which includes an interaction term, i.e., γ1,0 + γ2,0 × sizei, which measures the impact response of
hours and the impact response of the current account conditional on the country’s size, respectively, against the country’size which is
measured by the working age population.

technology improvements are shocks which are associated with innovation (concentrated in
traded industries).

In Fig. 32(b), we plot the impact response of hours to a technology shock measured by
(on the vertical axis)

∂xi,t

∂εZi,t
= γ1,0 + γ2,0 × asym sharei, (201)

against the share of asymmetric technological change which is measured by using (200)
(horizontal axis). According to our model’s predictions, we expect γ1,0+γ2,0× asym sharei
to be positive. Intuitively, when technological change is concentrated toward specific in-
dustries, this creates a dispersion in technology improvement between sectors. Because
asymmetric technology improvements have a positive impact on labor supply, the impact
response of hours to a a technology is expected to be increasing in the share of technological
change driven by asymmetric technological change. In line with our hypothesis, Fig. 32(b)
shows that there exists a strong positive relationship between the response of hours to a
technology shock and the share of technological change which is explained by asymmetric
technology improvements.

Small vs. big countries. Because we divide quantities by the working age popula-
tion, each country receives the same weight in the empirical analysis. Therefore, the size
of the country does not drive our findings. But small vs. large countries will have a dif-
ferent production structure which shapes the reaction of the current account balance and
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the response of hours to a technology shock. Because small countries have a production
structure which is less diversified and biased toward exports, smaller countries will tend
to run smaller current account deficits or a current account surplus and will experience
a smaller decline in hours after a technology shock. In Fig. 33(a), we split the sample
into two-samples by using the median of the working age population. There are nine small
countries and eight large countries. The figure contrasts the response of hours to a 1% per-
manent increase in utilization-adjusted-TFP between small (dashed red line) and big (solid
blue line) countries. In line with our hypothesis, larger countries (blue line) experience a
greater decline in hours on impact because mobility costs between sectors are smaller, the
substitutability between home- and foreign-produced traded goods is larger and the share
of asymmetric technology shocks is lower.

In Fig. 33(b) and Fig. 33(c), we plot the impact response of hours and the impact
response of the current account, respectively, to a technology shock (see the vertical axis)

∂xi,t

∂εZi,t
= γ1,0 + γ2,0 × sizei, (202)

against the country’s size(horizontal axis) which is measured by means of the working
age population (in % of the total population in our sample). According to our model’s
predictions, we expect γ1,0 + γ2,0 × sizei to be increasing in the size of the country for
both hours and the current account. Intuitively, countries with a greater size have lower
mobility cots, a greater substitutability between home- and foreign-produced traded goods
and a smaller value added share of tradables so that the share of asymmetric technological
change is smaller. These large countries have greater incentives to borrow from abroad
which in turn allow households to further reduce labor supply. In line with our hypothesis,
Fig. 33(b) (Fig. 33(c)) shows that there exists a strong negative relationship between the
response of hours (the current account) to a technology shock and the country’s size.

Do all countries experience a current account deficit? Our sample includes
seventeen OECD countries. Among these seventeen OECD countries, using the time series
for the current account balance as a percentage of GDP constructed by Lane and Milesi-
Ferretti [2007], our sample consists of nine net lenders (such as Germany, Scandinavian
countries) and eight net borrowers (such as English-speaking countries) as shown in Fig.
30(a). In line with our model’s predictions, countries with low mobility costs across sectors
are more likely to borrow from aborad than countries with high mobility costs. When
we estimate the response of the current account to our identified technology shock, we find
that nine countries borrow from abroad (i.e., experience a current account deficit) and eight
countries lend to abroad (i.e., experience a current account surplus).

While in an average OECD economy, a technology shock generates a current account
deficit and a decline in hours worked, there are some international differences. Obviously,
our sample cannot be viewed as a closed economy on its own, i.e., the sum of the current
account surplus of lenders plus the sum of the current account deficits of borrowers won’t
be equal to zero because Asian countries and oil exporting countries are big lenders to
industrialized countries, including the United States.

M Addressing the SVAR Critique

The SVAR methodology allows researchers to estimate the dynamic adjustment of macroe-
conomic variables conditional on a shock. We run VARs on the actual data and impose
identification assumptions to identify a specific shock and trace out the dynamic responses
of variables to this shock. Then we calibrate the macroeconomic model and compare the
theoretical responses with empirical responses in order to determine which model is more
suited to rationalize the SVAR evidence.

The identification of technology shocks by adopting the SVAR methodology has been
subject to criticism. As summarized by Dupaigne, Fève, and Matheron [2007], the distor-
tions in a DSVAR may originate from several sources: (i) hours are over-differenced (Erceg,
Gust and Guerrieri [2005]) (ii) average labor productivity is a poor proxy for total factor
productivity at business cycle frequencies (Chang and Hong [2006]); (iii) the estimation of
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DSVARs is subject to small-sample biases, especially with long-run restrictions (see Faust
and Leeper [1997]); (iv) a structural VAR with a finite number of lags may poorly approxi-
mate the dynamics of DSGE models (Chari, Kehoe and McGrattan [2008]). Whilst SVAR
models might be subject to potential biases, nevertheless, the information they produce can
effectively complement analyses conducted with dynamic macroeconomic models, help to
point out the dimensions where these models fail, and provide stylized facts and predictions
which can improve the realism of macroeconomic models.

In this section, we address the SVAR critique. In section M.1, we investigate if our
identification of permanent technology improvements is contaminated by non-technology
shocks. In section M.2, we conduct a robustness check w.r.t. to the number of lags. In
section M.3, we consider alternative measures of technology. In section M.4, we employ
the Maximum FEV share approach. In section M.5, we use a two-step procedure proposed
by Fève and Guay [2010] to identify technology shocks so that a VAR model with a finite
number of lags can more easily approximate the true underlying dynamics of the data. In
section M.6, we replace the country-level utilization-adjusted-aggregate-TFP with its world
counterpart.

M.1 Are Utilization-Adjusted-Technology Shocks Contaminated by Non-
Technology Shocks?

In the lines of Francis and Ramey [2005], we assess below the validity of the technology
shocks identified using long-run restrictions by subjecting the model to exogeneity tests.

Mertens and Ravn [2011] find that permanent changes in income tax rates induce per-
manent changes in hours worked as well as in labor productivity which leads to a violation
of the standard long-run identification strategy for technology shocks. The importance of
controlling for tax changes was raised earlier by Uhlig [2004] who points out that changes
in capital income tax rates may give rise to long-lasting changes in labor productivity, thus
leading to a violation of the identifying assumption for technology shocks. Because Gali
[1999] uses labor productivity, the shocks identified could include capital income tax rate
shocks. As stressed by Francis and Ramey [2005], permanent shifts in government spend-
ing have permanent effects on wages, and hours, but not on labor productivity (because
the capital-labor ratio remains unaffected). However, as shown by Chaudourne, Fève and
Guay [2014], permanent or long-lasting non-technology shocks can contaminate the SVAR
identification of technology shocks as they impinge on hours worked and thus on labor
productivity.

Because our measure of productivity is utilization-adjusted-TFP, the technology shocks
we identified in the main text should not be contaminated by non-technology shocks. The
reason is twofold. One advantage of using TFP is that labor productivity is presumably
affected in more important ways by business cycle fluctuations than TFP. More specifically,
total factor productivity is a measure of technological change purified from changes in the
capital labor-ratio. Second, we consider a ’purified’ measure of technology as recommended
by BKF [2006] and Chaudourne, Fève and Guay [2014] which ensures that technology shocks
are less likely to be contaminated by non-technology shocks, such as shocks to taxation,
monetary policy and government spending. To confirm this assumption, we closely follow
Francis and Ramey [2005].

Exogeneity tests. The identified technology shock should not in principle be corre-
lated with other exogenous non-technology shifts nor with lagged endogenous variables.
To investigate whether the identified shows are really technology shocks is to test whether
non-technology variables are correlated with the shocks. We consider three types of non-
technology shocks: unanticipated temporary changes in taxation, in government spending,
and in monetary policy. We identify three types of shocks by considering two different VAR
models. Our identification of government spending shocks follows Blanchard and Perotti
[2002] and our identification of monetary policy shocks follows from Christiano et al. [2005].
We estimate a Vector Autoregression (VAR) which includes government consumption, real
GDP, total hours worked, the real consumption wage, utilization-adjusted aggregate total
factor productivity, and the short-term interest rate. For consistency reasons, we adjust the
nominal interest rate with foreign prices as foreign goods and services are the numeraire
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in our model. All quantities are divided by the working age population. All variables en-
ter the VAR model in log level except the interest rate which is in level. Like Blanchard
and Perotti [2002], we base the identification scheme on the assumption that there are
some delays inherent to the legislative system which prevents government spending from
responding endogenously to contemporaneous output developments. We thus order gov-
ernment consumption before the other variables which amounts to adopting the standard
Cholesky decomposition pioneered by Blanchard and Perotti [2002]. Like Christiano et
al. [2005], we identify monetary policy shocks as the innovation to the federal funds rate
under a recursive ordering, with the policy rate ordered last. The ordering of the variables
embodies the key identifying assumptions according to which the variables do not respond
contemporaneously to a monetary policy shock.

Source: Government final consumption expenditure (CGV), OECD Economic Outlook
Database [2017]. The short-term interest rate based on three-month money market rates
taken from OECD Economic Outlook Database. The nominal interest rate deflated by the
price of foreign goods which is the numeraire in our model and thus we subtract the rate
of change of the weighted average of the traded value added deflators of trade partners of
the country i from the nominal interest rate denoted by Rit.

To identify shocks to tax rates, denoted by εTit, we estimate a VAR model which in-
cludes net taxes defined as taxes minus security social benefits paid by general government
(deflated using the GDP deflator), real GDP, total hours worked, the real consumption
wage, and utilization-adjusted aggregate TFP. Following Blanchard and Perotti [2002], we
identify shocks to taxation by assuming that net taxes do not respond within the year to
the other variables includes in the VAR model.

Empirical strategy and results. As in the main text, we identify technology shocks
by estimating a VAR which includes utilization-adjusted-aggregate-TFP, real GDP, total
hours worked, the real consumption wage and identify technology shocks as shocks which
increase permanently utilization-adjusted aggregate TFP. We run the regression, in panel
format on annual data, of identified technology shocks, εZA

it , on three different structural
shocks:

εZit = di + dt + βGε
G
it + βRε

R
it + βT ε

T
it + νit. (203)

where νit is an i.i.d. error term; country fixed effects are captured by country dummies,
di, and common macroeconomic shocks by year dummies, dt. Note that in estimating
eq. (203), we add lagged values (we consider four lags) on non-technology shocks which
allow us to take into account for the persistence of non-technology shocks. As detailed in
the next section, we consider a ’purified’ measure of technology as recommended by BKF
[2006] and Chaudourne, Fève and Guay [2014] which ensures that technology shocks are
less likely to be contaminated by non-technology shocks. To show this point, we re-estimate
the VAR model by replacing utilization-adjusted aggregate TFP with the Solow residual
and identify technology shocks as shocks which increase permanent aggregate TFP. As
pointed out above, TFP is a better measure than labor productivity to identify technology
shocks. To test this statement, we estimate a VAR model which includes labor productivity
(calculated as the ratio of real GDP to total hours worked), total hours worked, and the real
consumption wage. We omit real GDP which collapses to the product of labor productivity
with total hours worked.

If our identification is correct, we should observe that non-technology shocks are corre-
lated with demand shocks or tax shocks. To test this assumption, we run the regression of
non-technology shocks which are shocks to real GDP denoted by εY R

it on the set of three
shocks shown on the RHS of eq. (203) and thus replace εZit with εY R

it .
Panel data estimations are shown in Table 32. We test the null hypothesis that all

of the coefficients on explanatory variables are jointly equal to zero. If p-value ≥ 0.05
at a 5% significance level, the variables are not significant in explaining the identified
technology shock εZit or the identified non-technology shock εY R

it . The first row of Table 32
runs the regression (203) by considering our baseline measure of technology shocks and two
alternative measures based on the Solow residual and labor productivity on the three sets of
shocks. The p-value of 0.136 for the F -test shows that none of the variables is significant in
explaining our identified technology shocks. By contrast, the p-value is lower than 0.05 for

128



both technology shocks identified on the basis of the Solow residual and labor productivity.
In contrast, we expect non-technology shocks we identify by estimating the VAR model

with long-run restrictions to be correlated with the set of non-technology variables. To
test this assumption, we run the same regression as above, i.e., eq. (203) where εZit is
replaced with the shock denoted by εY R

it which increases permanently real GDP but have
no permanent effect on utilization-adjusted TFP. As shown in the second row of Table 32,
the p-value is lower than 0.05 which thus reveals that non-technology shocks are correlated
with demand shocks and tax shocks.

Table 32: Identified Shocks: Exogeneity Tests

TFP variable used in the VAR

p-value for Exogeneity Test adjusted TFP Solow residual Labor productivity

Identified Aggregate Technology Shocks (εZit) 0.136 0.009 0.023

Identified Non-Technology Shocks (εYR
it ) 0.000 0.000 -

Notes: The exogeneity F-test is based on a regression of the identified aggregate technology shock εZit
(shown in the first row) or non-technology shocks εY R

it shown in the second row, on fixed effects, time
dummies and current and four lags of government spending shocks (εGit), monetary shocks (εRit) and tax
shocks (εTit). The null hypothesis is that all of the coefficients on explanatory variables are jointly equal
to zero. If p-value ≥ 0.05 at a 5% significance level, the variables are not significant in explaining the
identified technology shock εZit or the identified non-technology shock εY R

it .

M.2 Robustness Check w.r.t. lags

Erceg, Gust and Guerrieri [2005] find that a four-variable SVAR with four lags (as the
authors use quarterly data) performs well in recovering the true responses from DGP. More
specifically, the SVAR predicts correctly the sign and the pattern of responses but some
empirical IRFs are biased as the SVAR tends to understate the rise in labor productivity
and real GDP. The source of bias, called the lag-truncation bias arises because the VAR
allows for a limited number of lags which provides an approximation of the true dynamics
implied by the model which considers an infinite number of lags. Erceg, Gust and Guerrieri
[2005] find that the truncation bias appears negligible for each variable considered by the
authors. Thus a short-ordered VAR provides a good approximation of the true dynamics.

In the baseline VAR model, we consider 2 lags. Because Chari et al. [2008] find that
increasing the number of lags implies that empirical IRF is a good approximation of theo-
retical IRF, as a robustness check, we increase the number of lags from 2 to 8 to estimate all
VAR models. Chaudourne, Fève and Gay [2014] also indicate that the bias can be reduced
by increasing the number of lags in the DSVAR. De Graeve and Westermark [2013] perform
Monte Carlo experiments and find that raising the number of lags may be a viable strategy
to reduce the severity of the problem. We document below that the results are robust with
respect to using a smaller number of lags.

In Fig. 34, we re-estimate the VAR model of the main text and generate impulse
response functions by increasing the number of lags (for both the SVAR and local projec-
tions). Note that the SVAR critique focuses on the identification of technology shocks and
thus only the number of lags in the VAR model should affect estimation of the response of
hours worked. For consistency purposes, we set the same number of lags to estimate local
projections.

The baseline VAR model which allows for two lags as we use annual data is displayed by
the solid blue line. In the black line, we allow for three lags; in the red line, we allow for four
lags, in the green line, we allow for five lags; in the yellow line, we allow for six lags; in the
cyan line, we allow for seven lags and in the magenta line, we allow for eight lags. Overall,
all responses lie within the 90% confidence bounds of the original VAR model. We may
notice some quantitative differences. We can notice the decline in non-traded hours worked
and thus in total hours is somewhat amplified because the technology improvement is larger
on impact. Most importantly, the dynamic adjustment of sectoral variables remains little
sensitive to the increase in the number of lags.
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Figure 34: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. Lags Notes:
The solid blue line shows the response of aggregate and sectoral variables to an exogenous increase in utilization-adjusted aggregate
TFP by 1% in the long-run. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate
the dynamic responses to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes
utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology shock is identified by
imposing long-run restrictions, i.e., technology shocks are driven by the permnanent increase in utilization-adjusted aggregate TFP. In
the second step, we estimate the effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate years. Vertical axes
measure percentage deviation from trend. The baseline VAR model which allows for two lags is displayed by the solid blue line. Whilst
in the red line we allow for one lag, in the green line we allow for three lags; in the cyan line, we allow for four lags; in the magenta
line, we allow for five lags and in the yellow line, we allow for six lags; in the solid black line, we allow for seven lags and in the dashed
black line, we allow for eight lags. Sample. Sample: 17 OECD countries, 1970-2017, annual data.
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M.3 Alternative Measures of Utilization-Adjusted-TFP: Basu [1996], BKF
[2006], HLPN [2023] vs. Imbs [1999]

’Purified’ TFP eliminates biases in estimating the effects of technology shocks.
Chaudourne, Fève and Guay [2014] analyze the properties of estimators and IRF to a
permanent technology shock when technological change is measured by means of labor
productivity, TFP, ’purified’ TFP. The authors show that the estimated responses from
the DSVAR model are biased in a finite sample if technological change is measured by
labor productivity. This bias comes from the fact that both the technology and the non-
technology shocks have a permanent effect on labor productivity when hours worked follow
a persistent process. The authors also demonstrate that the bias is considerably reduced
when the econometrician uses the TFP to measure technological change and the bias is
completely eliminated when TFP is purified, i.e., adjusted with factor utilization rate. In
addition to eliminating the potential bias in empirical IRFs, Basu, Fernald and Kimball
[2006] show that correcting for unobserved input utilization can avoid understating TFP
changes when technology improves because utilization falls.

To measure technology, in line with the recommendation of Basu, Fernald and Kimball
(BFK henceforth) [2006], we adjust aggregate and sectoral TFPs with the utilization rate.
Because time series for utilization-adjusted TFP are only available for the United States
at an aggregate level, we have constructed time series for the capital utilization rate for
the 17 OECD countries of our sample and at a sectoral level by adopting the methodology
proposed by Imbs [1999].

To check whether our purified measure of efficiency reflects technology, we conduct
below a robustness check where we use alternative measures to ours and we also propose a
set of factors that can rationalize our findings. Note that in contrast to existing methods
which ’purify’ TFP measure from variations in the utilization rate, our method has two
advantages over others: first, we are able to construct time series at a sectoral level in line
with our classification T/N for our sample of seventeen OECD countries over 1970-2017 and
second we adapt the existing methodology to CES production functions where the labor
income share is variable over time.

We conduct a robust check by considering three different approaches. The first ap-
proach by BFK [2006] is thinner than ours because the authors construct a measure of
aggregate technology change, controlling for varying utilization of capital and labor, non-
constant returns to scale, and imperfect competition. HLPN [2023] construct time series
for utilization-adjusted TFP for a sample of 29 OECD countries, 30 sectors and up to 37
years (1970-2007). The authors control for the capital utilization rate, the labor utilization
rate (or worker’s efforts), hours per worker, by adapting the approach initiated by BFK
2006. While the authors allow for non-constant returns to scale, their estimations indicate
that returns to scale are close to constant. They show that hours per worker are not al-
ways an ideal proxy for unobserved utilization. The third approach by Basu [1996] has the
advantage of controlling for unobserved changes in both capital utilization and intensity of
worker effort while we control for the intensity in the use of capital only by adapting Imbs’s
[1999] method. Basu’s [1996] approach is based on the ingenious idea that intermediate
inputs do not have an extra effort or intensity dimension and thus variations in the use
of intermediate inputs relative to measured capital and labor are an index of unmeasured
capital and labor input.

Because time series for utilization-adjusted TFP at a sectoral level are not available
for the countries in our sample over 1970-2017, we conduct a third robustness check where
we construct time series of utilization-adjusted TFP measure at a sectoral level for all
OECD countries by adopting the methodology developed by Basu [1996] and we compare
the responses of utilization-adjusted TFP based on Basu [1996] methodology with the
responses of utilization-adjusted TFP based on Imbs [1999] approach. See Online Appendix
Q.3 of Cardi and Restout [2023] who detail the steps of derivation of the utilization rate.
Assuming that intermediate inputs and value added are complements implies that the
capacity utilization rate can be calculated as follows:

ûjY = M̂ j − sjLL̂
j −

(
1− sjL

)
K̂j , (204)
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where M j are intermediate inputs (i.e., intermediate consumption) at constant prices, Lj

hours worked, Kj the capital stock at constant prices, sjL is the LIS. We use (204) to
measure the intensity in the use of capital and labor at a sectoral level (i.e., for each
industry) and adjust the Solow residual with this measure to construct time series for the
utilization-adjusted TFP in sector j = H,N :

Ẑj = ˆTFP
j − ûjY . (205)

Source: Time series for intermediate inputs at constant prices are taken from EU
KLEMS. Data coverage: 1970-2017 for 17 OECD countries except for JPN (1973-2017). Ta-
ble 33 provides the information about data availability for our four measures of utilization-
adjusted-TFP.

Table 33: Alternative Meaasures of Technology: Data Availability

Imbs [1999] Basu [1996] HLPN [2023] BFK [2006]
AUS 1970-2017 1970-2007 1970-2007 1970-2007
AUT 1970-2017 1970-2017 1976-2007 1976-2007
BEL 1970-2017 1970-2017 1970-2006 1970-2006
CAN 1970-2017 1970-2007 1970-2007 1970-2007
DEU 1970-2017 1970-2017 1970-2007 1970-2007
DNK 1970-2017 1970-2017 1970-2007 1970-2007
ESP 1970-2017 1970-2007 1970-2007 1970-2007
FIN 1970-2017 1970-2017 1970-2007 1970-2007
FRA 1970-2017 1970-2017 1970-2007 1970-2007
GBR 1970-2016 1970-2007 1970-2007 1970-2007
IRL 1970-2017 1970-2007 1988-2007 1988-2007
ITA 1970-2017 1970-2017 1970-2007 1970-2007
JPN 1973-2015 1973-2015 1973-2006 1973-2006
NLD 1970-2017 1970-2017 1970-2007 1970-2007
NOR 1970-2017 1970-2017 no data no data
SWE 1970-2017 1970-2017 1993-2007 1993-2007
USA 1970-2017 1970-2017 1977-2007 1977-2007

Results. Fig. 35 contrasts the effects of a technology shock by considering our baseline
measure of technology shown in the blue line where we adjust the TFP with the capital
utilization rate constructed by adapting the method proposed by Imbs [1999] and three
alternative measures. We have constructed an alternative measure of technology where we
adjust the Solow residual with the capacity utilization rate constructed by following the
approach proposed by Basu [1996] shown in the yellow line. To further test our approach,
we also consider two different time series, i.e., the utilization-adjusted-TFP constructed by
Levchenko et al. [2023] shown in the green line, and that constructed by Basu et al. [2006]
which is displayed by the brown line. While in the baseline case, we estimate the VAR
model with two lags, we alternatively allow for four lags, as displayed by the black line,
and eight lags, as displayed by the red line.

The first column shows the dynamic effects of a technology shock on utilization-adjusted-
aggregate-TFP, total hours worked, traded hours worked, non-traded hours worked, and
the hours worked share of tradables. Overall, a technology improvement produces similar
effects across measures of technology. Importantly, the adjustment of utilization-adjusted-
aggregate TFP is very close whether we adjust the Solow residual with the capital utilization
rate or with alternative methods. We may notice some quantitative differences as alternative
measures of technology tend to produce a larger decline in total hours worked and in non-
traded hours worked. The second and the third columns show the effects following an
asymmetric and a symmetric technology shock. While our measure of technology controls
for the intensity in the use of capital only, columns 2 and 3 reveal that the controlling
for the both capital and labor utilization rate does not modify the results, as can be see
in the yellow line where we consider the Basu’s [1996] approach. Increasing the lags tend
to produce a larger decline in hours worked following symmetric technology shocks and a
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Figure 35: Labor Market Effects of a Technology Shock: Country-Level vs. World Technol-
ogy Shock Notes: Robustness Check w.r.t. the Measure of Technology Notes: The solid blue line shows the response of aggregate
and sectoral variables to an exogenous increase in the country level utilization-adjusted aggregate TFP by 1% in the long-run. Shaded
areas indicate the 90 percent confidence bounds based on Newey-West standard errors. We estimate a VAR model which includes the
country-level utilization-adjusted-aggregate-TFP, total hours worked, traded hours worked, non-traded hours worked, the hours worked
share of tradables, all variables entering the VAR model in rate of growth. While in the baseline case, we estimate the VAR model
with two lags, we alternatively allow for four lags, as displayed by the black line, and eight lags, as displayed by the red line. Because
in our measure of technology, we adjust the Solow residual with the capital utilization rate constructed by adapting the methodology
proposed by Imbs [1999], we alternatively adopt the approach of Basu [1996]. The yellow line shows the response of TFP based on
the Solow residual adjusted with the time series for the capacity utilization rate by using Basu’s [1996] method. To further test our
approach, we also consider two different time series, i.e., the utilization-adjusted-TFP constructed by Levchenko et al. [2023] shown in
the green line, and that constructed by Basu et al. [2006] which is displayed by the brown line. Sample: 17 OECD countries, 1970-2017,
annual data.

smaller in crease in hours worked after asymmetric technology shocks. In conclusion, our
results are robust to the measure of technology.

M.4 Max Share Identification

Advantages of Max share over LR identification of technology shocks. One
key difference between the empirical and the theoretical model is that the former imposes
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a small number of lags whilst the latter allows for an infinite number of lags. Erceg,
Gust and Guerrieri [2005], Chari et al. [2008] argue that it causes a lag-truncation bias
which lead estimated IRFs to be biased, in magnitude for the former and in sign for the
latter. Francis et al. [2014] offer an alternative approach to identification with the intent of
addressing the aforementioned shortcoming associated with long-run restriction in small-
sample estimation. Instead of imposing long-run restrictions, Francis et al. [2014] identify
the technology shock by maximizing the forecast error variance share of productivity at
long, finite horizons. This method has two major advantages over the standard long-run
identification which assumes that the technology shock is the sole contributor of long-run
productivity shifts, all other structural innovations having transitory effects on productivity.
First, in place of the restriction that the unit root in productivity is driven exclusively by
technology, their approach imposes a weaker restriction that the forecast-error variance
in productivity at long horizons is dominated by the technology shock. This allows other
shocks to influence productivity at finite horizon. Second, the max share approach considers
a finite horizon which is more suited to estimate BkA0 (see section G, eq. (85)). Intuitively,
as shown by Uhlig [2004], there is no horizon at which technology shocks alone explain
productivity. Thus, neither short-run, medium-run, nor long-run identification will exactly
identify the technology shock. He finds however that medium-run identification works
better than the other two.

Using data simulated from a RBC model and a standard medium-scale DSGE model
with sticky prices, Francis et al. [2014] find that the Max Share approach exhibits less bias
(measured by the deviation between the median response and the theoretical response)
and less uncertainty (measured by the width of the 68 percent error bands) than the LR
approach. In addition to the responses to the shocks, when the authors compare the model-
generated and the estimated technology shocks, they find a high correlation (of 0.81) for
the Max share shocks with the true shocks generated by RBC and NK models whilst the
correlation is lower for technology shocks from the LR model.

Advantages of max share identification. As mentioned in section G where we
detail formally the long-run identification of asymmetric technology shocks across sectors,
we consider a specification where all variables enter the VAR model in growth rate, we or-
der utilization-adjusted-aggregate-TFP first, and identify technology shocks as shocks that
increase permanently utilization-adjusted-aggregate-TFP (at an infinite horizon). We con-
sider below two VAR specifications to estimate the labor effects of a permanent technology
improvement. In addition to utilization-adjusted-aggregate-TFP, the baseline VAR model
includes real GDP, total hours worked, the real consumption wage, while the alternative
VAR model includes traded and non-traded hours worked (all variables in rate of growth).

Instead of imposing long-run restrictions, Francis et al. [2014] identify the technology
shock by maximizing the forecast error variance share of productivity at long, finite horizons.
In the Max Share identification, all variables including utilization-adjusted-TFP enter the
VAR in log levels. As mentioned above, instead of estimating the long-run cumulative
matrix B(1)A0, the max share approach amounts to estimating BkA0 at a finite horizon.
The Maximum Forecast Error Variance approach extracts the shock that best explains the
FEV at a long but finite horizon of utilization-adjusted-TFP.

LR model vs. Max share: One country at a time. In Fig. 36-39, we generate
the empirical responses from the VAR model estimated for one country at a time. We
have estimated the same VAR model for the seventeen OECD countries of our sample.
The blue line shows responses obtained by imposing LR restrictions to identify asymmet-
ric technology shocks across sectors. The black line shows results when we estimate the
aforementioned VAR model and use the max share identification developed by Francis et
al. [2014] to estimate the effects of a permanent increase in utilization-adjusted-aggregate-
TFP by 1% in the long-run. As it stands out, for almost all countries (except Austria,
Belgium, Germany) and almost all variables, the LR model generates empirical responses
which lie within the confidence bounds associated with the baseline VAR model estimated
with long-run restrictions.

Overall, the responses of hours worked generated by applying the Max share (black line)
identification lie within the confidence bounds associated with the LR model (blue line)
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Figure 36: Responses of Hours to a Technology Shock: Max Share (solid black line)
vs. Long-Run Restriction (solid blue line) Identification for Australia, Austria, Belgium,
Canada. Notes: The solid lines show the responses of aggregate variables to an exogenous increase in utilization-
adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent con¯dence bounds obtained
by bootstrap sampling. We compare the dynamic effects of two identification methods. In both cases, we estimate a
VAR model which includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption
wage. In the baseline shown in the blue line, the technology shock is identified by imposing long-run restrictions,
i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the alternative
identification method, we employ the Max Share approach. Instead of imposing long-run restrictions, Francis et al.
[2014] identify the technology shock by maximizing the forecast error variance share of productivity at long, finite
horizons. In the Max Share identification, all variables including utilization-adjusted aggregate TFP enter the VAR
in log levels. The black line shows the median of the responses. Horizontal axes indicate years. Vertical axes measure
percentage deviation from trend. Sample: Australia, Austria, Belgium, Canada, 1970-2017, annual data.

except for three countries (Austria, Belgium, Germany) out of seventeen in our sample.
We may notice some quantitative differences however. The LR model generates a gradual
increase in utilization-adjusted-TFP while the Max share produces a larger technology
improvement on impact. This overshooting may produce a larger increase in traded relative
to non-traded technology that would explain why in Austria, Belgium, Germany, non-traded
hours worked increases instead of falling or being muted.

LR model vs. Max share: Median estimates. So far, we have compared the
responses to technology shocks across countries by considering the Max share (black line)
approach and the LR model (blue line). To ease the comparison between the two ap-
proaches, it is convenient to compare one single IRF of one variable between the LR model
and the Max share identification by considering the median of estimates for both methods.
Fig. 40 shows the responses for the VAR model which includes aggregate technology, ZA

it ,
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Figure 37: Responses of Hours to a Technology Shock: Max Share (solid black line) vs.
Long-Run Restriction (solid blue line) Identification for Germany, Denmark, Spain, Finland.
Notes: The solid lines show the responses of aggregate variables to an exogenous increase in utilization-adjusted
aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent con¯dence bounds obtained by bootstrap
sampling. We compare the dynamic effects of two identification methods. In both cases, we estimate a VAR model
which includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption wage. In the
baseline shown in the blue line, the technology shock is identified by imposing long-run restrictions, i.e., technology
shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the alternative identification
method, we employ the Max Share approach. Instead of imposing long-run restrictions, Francis et al. [2014] identify
the technology shock by maximizing the forecast error variance share of productivity at long, finite horizons. In
the Max Share identification, all variables including utilization-adjusted aggregate TFP enter the VAR in log levels.
The black line shows the median of the responses. Horizontal axes indicate years. Vertical axes measure percentage
deviation from trend. Sample: Germany, Denmark, Spain, Finland, 1970-2013, annual data.

real GDP, hours worked and the real consumption wage. Overall the responses to the Max
share lie within the confidence bounds of the baseline LR model although the Max share
predicts a smaller decline in hours on impact and a greater increase in real GDP.

M.5 Two-Step SVARs-Based Procedure to Identify Technology Shocks

Why should hours be removed from the SVAR? Evidence documented by Christiano
et al. [2006] from their simulation experiments suggests using other variables than hours
worked which are less sensitive to the volatility of non-technology shocks and/or contain
a sizeable part of technology shocks. The reason is that they show that when the model
is more properly estimated, the standard error of the non-technology shocks is half the
standard error of the technology shock. In such a case, the bias in SVARs with labour
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Figure 38: Responses of Hours to a Technology Shock: Max Share (solid black line) vs.
Long-Run Restriction (solid blue line) Identification for France, the United Kingdom, Ire-
land, Italy. Notes: The solid lines show the responses of aggregate variables to an exogenous increase in utilization-
adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent con¯dence bounds obtained
by bootstrap sampling. We compare the dynamic effects of two identification methods. In both cases, we estimate a
VAR model which includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption
wage. In the baseline shown in the blue line, the technology shock is identified by imposing long-run restrictions,
i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the alternative
identification method, we employ the Max Share approach. Instead of imposing long-run restrictions, Francis et al.
[2014] identify the technology shock by maximizing the forecast error variance share of productivity at long, finite
horizons. In the Max Share identification, all variables including utilization-adjusted aggregate TFP enter the VAR
in log levels. The black line shows the median of the responses. Horizontal axes indicate years. Vertical axes measure
percentage deviation from trend. Sample: France, the United Kingdom, Ireland, Italy, 1970-2013, annual data.

productivity and hours is strongly reduced. In light of the above findings, Fève and Guay
[2010] argue that SVARs can deliver accurate results if more efforts are made over the choice
of the stationary variables. More precisely, hours (or other highly persistent variables sub-
ject to empirical controversies about their stationarity) must be excluded from SVARs and
replaced with any variable which presents better stochastic properties. The introduction
of a highly persistent variable as hours worked in the SVARs confounds the identification
of the permanent and transitory shocks and thus contaminates the corresponding Impulse
Response Functions (IRFs). Following the previously mentioned contributions, the selected
variable must satisfy the following stochastic properties. First, the variable must display
less controversy over its stationarity. Second, the variable must behave more as a capital
(or state) variable than hours worked do, so that a VAR model with a finite number of lags
can more easily approximate the true underlying dynamics of the data. Third, the vari-
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Figure 39: Responses of Hours to a Technology Shock: Max Share (solid black line) vs.
Long-Run Restriction (solid blue line) Identification for Japan, the Netherlands, Norway,
Sweden, the United States. Notes: The solid lines show the responses of aggregate variables to an exogenous
increase in utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent con¯dence
bounds obtained by bootstrap sampling. We compare the dynamic effects of two identification methods. In both
cases, we estimate a VAR model which includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the
real consumption wage. In the baseline shown in the blue line, the technology shock is identified by imposing long-run
restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In
the alternative identification method, we employ the Max Share approach. Instead of imposing long-run restrictions,
Francis et al. [2014] identify the technology shock by maximizing the forecast error variance share of productivity at
long, finite horizons. In the Max Share identification, all variables including utilization-adjusted aggregate TFP enter
the VAR in log levels. The black line shows the median of the responses. Horizontal axes indicate years. Vertical
axes measure percentage deviation from trend. Sample: Japan, the Netherlands, Norway, Sweden, the United States,
1970-2017, annual data.

able must contain a sizeable technology component and present less sensitivity to highly
persistent non-technology shocks. According to Fève and Guay [2010], the consumption to
output ratio (in logs) is a promising candidate for fulfilling these three requirements as it
is stationary and consequently displays less persistence than hours worked, it represents a
better approximation of the state variables than hours worked and appears less sensitive to
transitory shocks.

Two-step approach. The proposed approach by Fève and Guay [2010] consists in two
steps. In the first step, a SVARmodel which includes utilization adjusted aggregate TFP ZA

it

and the consumption to GDP ratio ωC,it is considered to consistently estimate technology
shocks using a long-run restriction. Note that consumption includes both private and
government consumption. Because we consider an open economy model, for the purposes
of consistency, we augment the broad measure of consumption with net exports which has
the advantage to isolate the demand for domestic goods. In the second step, the IRFs of
hours (or any other aggregate variable under interest) at different horizons are obtained by
a simple (univariate or multivariate) regression of hours on the estimated technology shock.
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Figure 40: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. Lags
Notes: The solid lines show the responses of aggregate variables to an exogenous increase in utilization-adjusted aggregate TFP by 1%
in the long-run. Shaded areas indicate the 90 percent con¯dence bounds obtained by bootstrap sampling. We compare the dynamic
effects of two identification methods. In both cases, we estimate a VAR model which includes utilization-adjusted aggregate TFP, real
GDP, total hours worked, the real consumption wage. In the baseline shown in the blue line, the technology shock is identified by
imposing long-run restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In
the alternative identification method, we employ the Max Share approach. Instead of imposing long-run restrictions, Francis et al.
[2014] identify the technology shock by maximizing the forecast error variance share of productivity at long, finite horizons. In the
Max Share identification, all variables including utilization-adjusted aggregate TFP enter the VAR in log levels. The black line shows
the median of the responses. Horizontal axes indicate years. Vertical axes measure percentage deviation from trend. Sample. Sample:
17 OECD countries, 1970-2017, annual data.
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Figure 41: Labor Market Effects of a Technology Shock: Robustness Check w.r.t. Lags Notes:
The solid blue line shows the response of aggregate and sectoral variables to an exogenous increase in utilization-adjusted aggregate
TFP by 1% in the long-run in the baseline case. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard
errors. In the first step, we estimate a VAR model that includes utilization-adjusted aggregate TFP, real GDP, total hours worked,
the real consumption wage and the technology shock is identified by imposing long-run restrictions, i.e., technology shocks are driven
by the permnanent increase in utilization-adjusted aggregate TFP. In the second step, we estimate the effects by using Jordà’s [2005]
single-equation method. Horizontal axes indicate years. In the lines of Fève and Guay [2010], we estimate in the first step a VAR model
which includes the measure of technology, i.e., utilization-adjusted aggregate TFP, and real GDP both in log differences and the ratio
of the sum of consumption, government spending and net exports to GDP in log level. Results are shown in the black line. Vertical
axes measure percentage deviation from trend. Sample. Sample: 17 OECD countries, 1970-2017, annual data.

The VAR we estimate, i.e., [ẐA
it , logωC,it], includes utilization adjusted aggregate TFP is

in growth rate and ωC is in log as in Blanchard and Quah where they consider a VAR
model which includes the rate of change in real GDP and the unemployment rate (which
is in level). In Fève and Guay ωC enters the VAR model in log level (and not in level).
In the second step, we estimate the dynamic effects on total hours worked by using local
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Figure 42: Rate of Growth of the Ratio of World TFP of Tradables Relative to Non-
Tradable Notes: We run the regression of the growth rate of TFP in sector j at time t in country i on country
and year effects, see eq. (206), and interpret estimated coefficients for time dummies as the rate of growth of sectoral
TFP which is common to the seventeen OECD countries of our sample. The solid blue line with circles plots the
world productivity growth against time. Alternatively, we calculate a world productivity growth by averaging logged
sectoral TFP across countries which is displayed by the black line with triangles. The two measures give similar
results. Sample: 17 OECD countries, 1970-2017, annual data.

projection methods.
Fig. 41 reveals that the two-step approach (black line) leads to empirical results which

are very close to our baseline estimates shown in the blue line. Because the two-step ap-
proach should considerably mitigate the likelihood for technology shocks to be contaminated
by long-lasting demand shocks, these results corroborate the robustness of our approach.

M.6 Shock to World TFP

Motivation. In this subsection, we conduct a third empirical test of the robustness of our
SVAR results. Because labor productivity growth depends on adjustment of the capital
stock which adjusts sluggishly and through this channel non-technology shocks can con-
taminate the ’true’ identification of technology shocks, Dupaigne and Fève [2009] find that
each country’s average productivity of labor reflect all the shocks in the model, including
those which materialize in the other countries.

Because SVARs on country-level data fail to properly disentangle the permanent tech-
nology shock common to all countries from the country-specific stationary shocks, Dupaigne
and Fève propose to replace the country-level measure of productivity with an aggregate
measure of country-level productivity. Because world permanent productivity shocks are
not affected by country-specific persistent non-technology shocks, identifying technology
shocks by using productivity growth common to all countries can eliminate the problem
of identification raised by Erceg, Gust and Guerrieri [2005], Chari, Kehoe and McGrattan
[2008]. Dupaigne and Fève [2009] find empirically that when they use the G7 labor produc-
tivity instead of country-level labor productivities, there is almost no discrepancy between
the responses of employment evaluated at the country and G7 level.

Estimating the importance of the world component for utilization-adjusted-
TFP growth. Building on the ingenious idea of Dupaigne and Fève [2009], we replace the
country-level utilization-adjusted TFP with the ’world’ stock of knowledge. We consider
a first measure which has the advantage to reflect the common component of the stock
ideas across countries and to allow us to assess the share of aggregate, traded and non-
traded technological change driven by the world component. By using the time series
for the country-level utilization-adjusted-TFP, we run the regression of the growth rate of
utilization-adjusted-TFP in sector j at time t in country i on country and year effects:

Ẑj
it = di + dt + ηit, (206)

where di captures the country fixed effects, dt are time dummies, and ηit are the i.i.d.
error terms. We interpret estimates of time dummies as the growth rate of utilization-
adjusted-TFP which is common to the seventeen OECD countries. We denote the world
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Figure 43: Labor Market Effects of a Technology Shock: Country-Level vs. World Tech-
nology Shock Notes: The solid blue line shows the response of aggregate and sectoral variables to an exogenous increase in
the country level utilization-adjusted aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent confidence bounds
based on Newey-West standard errors. We estimate a VAR model which includes the country-level utilization-adjusted-aggregate-TFP,
total hours worked, traded hours worked, non-traded hours worked, the hours worked share of tradables, all variables entering the
VAR model in rate of growth. The black line shows the dynamic effects of hours worked when the country-level utilization-adjusted-
aggregate-TFP is replaced with the world component of TFP. The world stock of knowledge or world technology is constructed as

an import-share-geometric-weighted-average of TFP of trade partners of country i, i.e., ZW
i,t = Π16

k=1

(
ZA

k,t

)αk
M where Zk,t is the

utilization-adjusted-TFP of country i’s trade partner (i.e., country k). Sample: 17 OECD countries, 1970-2017, annual data.

141



Table 34: The Share of Variance of TFP Growth Attributable to World TFP Growth (in
%)

Total Variance Contribution in % Sub-periods
Variance World World Country-level 1970-1992 1993-2017

(1) (2) (3) (4) (5) (6)

Agg. Technology 0.0043 0.0014 32.2 67.8 0.0015 (35.7%) 0.0013 (37.9%)
H-Technology 0.0125 0.0046 36.9 63.1 0.0041 (36.6%) 0.0060 (49.0%)
N -Technology 0.0032 0.0010 30.5 69.5 0.0015 (34.5%) 0.0006 (32.7%)
H/N Technology 0.0138 0.0052 37.7 62.3 0.0044 (34.7%) 0.0069 (48.6%)

Notes: We run a principal component analysis to extract the common component to all country-level-adjusted-aggregate-
TFP growth that we interpret as the world component. In columns 1 and 2, we show the variance of the rate of growth of
country-level-adjusted-TFP and its common component, respectively. The figure in columns 3-4 denotes the fraction of the
variance of country-level TFP growth attributable to the world component and country-specific component, respectively.
In columns 5 and 6, we show the variance of the rate of growth of world adjusted-TFP. Numbers in parentheses denote
shares of the country-level-adjusted-TFP. Sample: 17 OECD countries, 1970-2017, annual data.

component of sectoral utilization-adjusted-TFP in sector j by ZW,j
it and the world compo-

nent of utilization-adjusted-aggregate-TFP by ZW
it . Fig. 42 plots the world productivity

growth in the black line with triangles. In the blue line with circles, we plot the growth
rate of utilization-adjusted-aggregate-TFP which is constructed as a cross-country average
of country-level utilization-adjusted-TFP growth. Because the blue and the black line are
hardly distinguishable, we can conclude that estimating the world component of produc-
tivity gives very similar results to averaging utilization-adjusted-TFP.

Contribution of world TFP component to rate of growth of domestic TFP.
One interesting question to ask is to what extent the world component of utilization-
adjusted-TFP contributes to the rate of growth of the country-level utilization-adjusted-
TFP. Column 1 of Table 34 shows the variance of the growth rate of utilization-adjusted-
TFP. We consider four measures: utilization-adjusted-aggregate-TFP, utilization-adjusted-
traded-TFP, utilization-adjusted-non-traded-TFP and the ratio of traded to non-traded
utilization-adjusted-TFP. Column 2 of Table 34 shows the variance of the rate of growth of
world utilization-adjusted-TFP. Column 3 gives the contribution of the world component
to the rate of growth of the country-level of utilization-adjusted-TFP. The first row reveals
that over the period 1970-2017, the common component to the seventeen OECD coun-
tries of the rate of growth of aggregate TFP contributes 32% to the rate of growth of the
country-level aggregate TFP. As can be seen in the second and third row, as expected, the
world component of utilization-adjusted-traded-TFP is larger than the world component
of non-traded utilization-adjusted-non-traded-TFP since traded firms are more prone to
benefit from international innovations as they are more open to trade and investment more
in R&D. Importantly, the analysis over sub-periods reveals that the intensity of traded
technology in the world component has increased from 36% to 49%.

Empirical strategy and results. Fig. 43 contrasts the effects of a technology im-
provement in the baseline scenario where we estimate a VAR model which includes the
country-level utilization-adjusted-aggregate-TFP, total hours worked, traded hours worked,
non-traded hours worked, the hours worked share of tradables, all variables entering the
VAR model in rate of growth. The black line shows the dynamic effects of hours worked
when the country-level utilization-adjusted-aggregate-TFP is replaced with the world com-
ponent of TFP. The world stock of knowledge or world technology is constructed as an
import-share-geometric-weighted-average of utilization-adjusted-TFP of trade partners of

country i, i.e., ZW
i,t = Π16

k=1

(
ZA
k,t

)αk
M

where Zk,t is the utilization-adjusted-TFP of country

i’s trade partner. We use this index in running our estimates in order to use the panel
SVAR methodology which leads to higher accuracy of estimated values. We may notice
a discrepancy in the adjustment of utilization-adjusted-aggregate-TFP. When we use the
international stock of knowledge, we find that technology improves gradually. Our inter-
pretation is that taking advantage of existing technologies from abroad might generate
adoption technology costs which result in a gradual increase in ZA

it .
Overall, world technology shocks do not lower labor on impact. Our interpretation
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is that world technology shocks are mostly driven by asymmetric technology shocks and
symmetric technology shocks play a minor role. As shown in column 2, world technology
shocks produce very similar effects to those following country-level technology shocks once
we consider asymmetric technology shocks. More specifically, we find that a technology
improvement which is concentrated within traded industries generates an increase in non-
traded hours worked while traded hours worked are unresponsive, thus leading to a gradual
decline in the hours worked share of tradables. As can be seen in the second row of column 2,
the response of total hours worked following an asymmetric world technology shock is very
similar to that following an asymmetric country-level technology shock. In contrast, the
effects of symmetric technology shocks are somewhat different from our baseline when we
approximate the stock of knowledge with the international stock of ideas. The reason is that
while we impose in the long-run that the ratio of traded to non-traded utilization-adjusted-
TFP is fixed, in the short-run, technology improves in the traded relative to the non-traded
sector which appreciates the relative price of non-tradables and thus has an expansionary
effect non non-traded hours worked on impact. However, when we consider an aggregate
technology shock, overall, the discrepancy in the labor market effects are not statistically
different when we consider the baseline measure of technology or the international stock of
knowledge.
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N Semi-Small Open Economy Model

This Appendix puts forward an open economy version of the neoclassical model with trad-
ables and non-tradables, imperfect mobility of labor and capital across sectors, capital
adjustment costs, endogenous intensity in the use of physical capital and endogenous terms
of trade. This section illustrates in detail the steps we follow in solving this model. We
assume that production functions take a Cobb-Douglas form since this economy is the ref-
erence model for our calibration as we normalize CES productions by assuming that the
initial steady state of the Cobb-Douglas economy is the normalization point.

Households supply labor, L, and must decide on the allocation of total hours worked
between the traded sector, LH , and the non-traded sector, LN . They consume both traded,
CT , and non-traded goods, CN . Traded goods are a composite of home-produced traded
goods, CH , and foreign-produced foreign (i.e., imported) goods, CF . Households also
choose investment which is produced using inputs of the traded, JT , and the non-traded
good, JN . As for consumption, input of the traded good is a composite of home-produced
traded goods, JH , and foreign imported goods, JF . The numeraire is the foreign good
whose price, PF , is thus normalized to one.

N.1 Households

At each instant of time, the representative household consumes traded and non-traded
goods denoted by CT and CN , respectively, which are aggregated by means of a CES
function:

C(t) =

[
ϕ

1
φ
(
CT (t)

)φ−1
φ + (1− ϕ)

1
φ
(
CN (t)

)φ−1
φ

] φ
φ−1

, (207)

where 0 < ϕ < 1 is the weight of the traded good in the overall consumption bundle and φ
corresponds to the elasticity of substitution between traded goods and non-traded goods.
The index CT is defined as a CES aggregator of home-produced traded goods, CH , and
foreign-produced traded goods, CF :

CT (t) =

[(
ϕH

) 1
ρ
(
CH(t)

) ρ−1
ρ + (1− ϕH)

1
ρ
(
CF (t)

) ρ−1
ρ

] ρ
ρ−1

, (208)

where 0 < ϕH < 1 is the weight of the home-produced traded good in the overall traded
consumption bundle and ρ corresponds to the elasticity of substitution between home-
produced traded goods goods and foreign-produced traded goods.

As in De Cordoba and Kehoe [2000], the investment good is produced using inputs of
the traded good and the non-traded good according to a constant-returns-to-scale function
which is assumed to take a CES form:

J(t) =

[
ι

1
φJ

(
JT (t)

)φJ−1

φJ + (1− ι)
1
φJ

(
JN (t)

)φJ−1

φJ

] φJ
φJ−1

, (209)

where ι is the weight of the investment traded input (0 < ι < 1) and φJ corresponds to
the elasticity of substitution in investment between traded and non-traded inputs. The
index JT is defined as a CES aggregator of home-produced traded inputs, JH , and foreign-
produced traded inputs, JF :

JT (t) =

[
(ιH)

1
ρJ

(
JH(t)

) ρJ−1

ρJ + (1− ιH)
1
ρJ

(
JF (t)

) ρJ−1

ρJ

] ρJ
ρJ−1

, (210)

where 0 < ιH < 1 is the weight of the home-produced traded in input in the overall traded
investment bundle and ρJ corresponds to the elasticity of substitution between home- and
foreign-produced traded inputs.

Following Horvath [2000], we assume that hours worked in the traded and the non-
traded sectors are aggregated by means of a CES function:

L(t) =

[
ϑ
−1/εL
L

(
LH(t)

) εL+1

εL + (1− ϑL)
−1/εL

(
LN (t)

) εL+1

εL

] εL
εL+1

, (211)
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where 0 < ϑL < 1 is the weight of labor supply to the traded sector in the labor index L(.)
and εL measures the ease with which hours worked can be substituted for each other and
thereby captures the degree of labor mobility across sectors.

Like labor, we generate imperfect capital mobility by assuming that traded KH(t) and
non-traded KN (t) capital stock are imperfect substitutes:

K(t) =

[
ϑ
−1/εK
K

(
KH(t)

) εK+1

εK + (1− ϑK)−1/εK
(
KN (t)

) εK+1

ε

] εK
εK+1

, (212)

where 0 < ϑK < 1 is the weight of capital supply to the traded sector in the aggregate
capital index K(.) and εK measures the ease with which sectoral capital can be substituted
for each other and thereby captures the degree of capital mobility across sectors.

Households choose the level of capital utilization in sector j, denoted by uK,j(t). The
capital utilization rate collapses to one at the steady-state. Capital utilization adjustment
costs are assumed to be an increasing and convex function of the capital utilization rate:

CK,j(t) = ξj1
(
uK,j(t)− 1

)
+

ξj2
2

(
uK,j(t)− 1

)2
. (213)

The representative agent is endowed with one unit of time, supplies a fraction L(t) as
labor, and consumes the remainder 1− L(t) as leisure. At any instant of time, households
derive utility from their consumption and experience disutility from working and maximizes
the following objective function:

U =

∫ ∞

0
Λ (C(t), L(t)) e−βtdt, (214)

where β > 0 is the discount rate and we consider the utility specification proposed by
Shimer [2009]:

Λ (C,L) ≡ C1−σV (L)σ − 1

1− σ
, if σ 6= 1, V (L) ≡

(
1 + (σ − 1) γ

σL
1 + σL

L
1+σL
σL

)
, (215)

subject to the flow budget constraint:14

Ṅ(t) +PC(t)C(t) + PJ(t)J(t) +
∑

j=H,N

P j(t)CK,j(t)νK,j(t)K(t)

= r?N(t) +W (t)L(t) +RK(t)K(t)
∑

j=H,N

αj
K(t)uK,j(t)− T (t), (216)

and capital accumulation which evolves as follows:

K̇(t) = I(t)− δKK(t), (217)

where I is investment and 0 ≤ δK < 1 is a fixed depreciation rate. We assume that capital
accumulation is subject to increasing and convex cost of net investment, I(t)− δKK(t):

J(t) = I(t) +
κ

2

(
I(t)

K(t)
− δK

)2

K(t), (218)

Partial derivatives of total investment expenditure are:

∂J(t)

∂I(t)
= 1 + κ

(
I(t)

K(t)
− δK

)
, (219a)

∂J(t)

∂K(t)
= −κ

2

(
I(t)

K(t)
− δK

)(
I(t)

K(t)
+ δK

)
. (219b)

14we denote the share of sectoral capital in the aggregate capital stock by νK,j(t) = Kj(t)/K(t) and the

capital and labor compensation share in sector j = H,N by αj
K(t) = Rj(t)Kj(t)

RK(t)K(t)
and αj

L(t) =
W j(t)Lj(t)
W (t)L(t)

.

145



Denoting the co-state variables associated with (216) and (217) by λ andQ′, respectively,
the first-order conditions characterizing the representative household’s optimal plans are:

C(t)−σV (t)σ = PC(t)λ(t), (220a)

C(t)1−σV (t)σγL(t)
1

σL = λ(t)W (t), (220b)

Q(t) = PJ(t)

[
1 + κ

(
I(t)

K(t)
− δK

)]
, (220c)

λ̇(t) = λ (β − r?) , (220d)

Q̇(t) = (r? + δK)Q(t)−
{ ∑

j=H,N

αj
K(t)uK,j(t)RK(t)

−
∑

j=H,N

P j(t)CK,j(t)νK,j(t)− PJ(t)
∂J(t)

∂K(t)

}
, (220e)

Rj(t)

P j(t)
= ξj1 + ξj2

(
uK,j(t)− 1

)
, j = H,N, (220f)

and the transversality conditions limt→∞ λ̄N(t)e−βt = 0 and limt→∞Q(t)K(t)e−βt = 0; to
derive (220c) and (220e), we used the fact that Q(t) = Q′(t)/λ(t). We drop the time index
below when it does not cause confusion.

Given the above consumption indices, we can derive appropriate price indices. With
respect to the general consumption index, we obtain the consumption-based price index
PC :

PC =
[
ϕ
(
P T

)1−φ
+ (1− ϕ)

(
PN

)1−φ
] 1

1−φ
, (221)

where the price index for traded goods is:

P T =
[
ϕH

(
PH

)1−ρ
+ (1− ϕH)

] 1
1−ρ

. (222)

Given the consumption-based price index (221), the representative household has the
following demand of traded and non-traded goods:

CT = ϕ

(
P T

PC

)−φ

C, (223a)

CN = (1− ϕ)

(
PN

PC

)−φ

C. (223b)

Given the price indices (221) and (222), the representative household has the following
demand of home-produced traded goods and foreign-produced traded goods:

CH = ϕ

(
P T

PC

)−φ

ϕH

(
PH

P T

)−ρ

C, (224a)

CF = ϕ

(
P T

PC

)−φ

(1− ϕH)

(
1

PT

)−ρ

C. (224b)

As will be useful later, the percentage change in the consumption price index is a
weighted average of percentage changes in the price of traded and non-traded goods in
terms of foreign goods:

P̂C = αC P̂
T + (1− αC) P̂

N , (225a)

P̂ T = αH P̂H , (225b)

where αC is the tradable content of overall consumption expenditure and αH is the home-

146



produced goods content of consumption expenditure on traded goods:

αC = ϕ

(
P T

PC

)1−φ

, (226a)

1− αC = (1− ϕ)

(
PN

PC

)1−φ

, (226b)

αH = ϕH

(
PH

P T

)1−ρ

, (226c)

1− αH = (1− ϕH)

(
1

P T

)1−ρ

. (226d)

Given the CES aggregator functions above, we can derive the appropriate price indices
for investment. With respect to the general investment index, we obtain the investment-
based price index PJ :

PJ =
[
ι
(
P T
J

)1−φJ + (1− ι)
(
PN

)1−φJ
] 1

1−φJ , (227)

where the price index for traded goods is:

P T
J =

[
ιH

(
PH

)1−ρJ
+
(
1− ιH

)] 1
1−ρJ . (228)

Given the investment-based price index (227), we can derive the demand for inputs of
the traded good and the non-traded good:

JT = ι

(
P T
J

PJ

)−φJ

J, (229a)

JN = (1− ι)

(
PN

PJ

)−φJ

J. (229b)

Given the price indices (227) and (228), we can derive the demand for inputs of home-
produced traded goods and foreign-produced traded goods:

JH = ι

(
P T
J

PJ

)−φJ

ιH
(
PH

P T
J

)−ρJ

J, (230a)

JF = ι

(
P T
J

PJ

)−φJ (
1− ιH

)( 1

P T
J

)−ρJ

J. (230b)

As will be useful later, the percentage change in the investment price index is a weighted
average of percentage changes in the price of traded and non-traded inputs in terms of
foreign inputs:

P̂J = αJ P̂
T
J + (1− αJ) P̂

N , (231a)

P̂ T
J = αH

J P̂H , (231b)

where αJ is the tradable content of overall investment expenditure and αH
J is the home-

produced goods content of investment expenditure on traded goods:

αJ = ι

(
P T
J

PJ

)1−φJ

, (232a)

1− αJ = (1− ι)

(
PN

PJ

)1−φJ

, (232b)

αH
J = ιH

(
PH

P T
J

)1−ρJ

, (232c)

1− αH
J =

(
1− ιH

)( 1

P T
J

)1−ρJ

. (232d)
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The aggregate wage index, W , associated with the labor index defined above (211) is:

W =
[
ϑL

(
WH

)εL+1
+ (1− ϑL)

(
WN

)εL+1
] 1

εL+1
, (233)

where WH and WN are wages paid in the traded and the non-traded sectors, respectively.
The aggregate capital rental rate, R, associated with the aggregate capital index defined
above (212) is:

R =
[
ϑK

(
RH

)εK+1
+ (1− ϑK)

(
RN

)εK+1
] 1

εK+1
, (234)

where RH and RN are capital rental rates paid in the traded and the non-traded sectors,
respectively.

Given the aggregate wage index and the aggregate capital rental rate, the allocation of
aggregate labor supply and the aggregate capital stock to the traded and the non-traded
sector reads:

LH = ϑL

(
WH

W

)εL

L, LN = (1− ϑL)

(
WN

W

)εL

L, (235a)

KH = ϑK

(
RH

R

)εK

K, KN = (1− ϑK)

(
RN

R

)εK

K, (235b)

As will be useful later, the percentage change in the aggregate return index on labor and
capital is a weighted average of percentage changes in sectoral wages and sectoral capital
rental rates:

Ŵ = αLŴ
H + (1− αL) Ŵ

N , R̂ = αKR̂H + (1− αK) R̂N , (236)

where αL and αK are the tradable content of aggregate labor and capital compensation:

αL = ϑL

(
WH

W

)1+εL

, 1− αL = (1− ϑL)

(
WN

W

)1+εL

, (237a)

αK = ϑK

(
RH

R

)1+εK

, 1− αK = (1− ϑK)

(
RN

R

)1+εK

. (237b)

N.2 Firms

Both the traded and non-traded sectors use physical capital, K̃j = uK,jKj , and labor, Lj ,

according to constant returns to scale production functions Y j = ZjF j
(
K̃j , Lj

)
which are

assumed to take a Cobb-Douglas form:

Y j = Zj
(
Lj

)θj (
K̃j

)1−θj

, j = H,N (238)

where θj is the labor income share in sector j and Zj corresponds to the total factor
productivity. Both sectors face two cost components: a capital rental cost equal to Rj , and
a labor cost equal to the wage rate, i.e., W j .

Both sectors are assumed to be perfectly competitive and thus choose capital and labor
by taking prices as given:

max
K̃j ,Lj

Πj = max
K̃j ,Lj

{
P jY j −W jLj −RjK̃j

}
. (239)

Since capital can move freely between the two sectors, the value of marginal products in
the traded and non-traded sectors equalizes while costly labor and capital mobility implies
a capital rental rate and wage rate differential across sectors:

P jZj
(
1− θj

) (
Lj

)θj (
K̃j

)−θj

= Rj , (240a)

P jZjθj
(
Lj

)1−θj
(
K̃j

)1−θj

= W j . (240b)
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N.3 Short-Run Solutions

Consumption and Labor
Before linearizing, we have to determine short-run solutions. Totally differentiating

first-order conditions (220a) and (220b), i.e., ΛC = λ̄PC and −ΛL = λ̄W , respectively,
leads to:

ΛCC

ΛC
dC +

ΛCL

ΛC
dL =

dλ̄

λ̄
+

αCα
H

PH
dPH +

(1− αC)

PN
dPN , (241a)

ΛLC

ΛC
dC +

ΛLL

ΛC
dL =

dλ̄

λ̄
+ αL

dWH

WH
+ (1− αL)

dWN

WN
(241b)

where we used (236) and (225). By applying the implicit functions theorem, (220a) and
(220b) can be solved for consumption and aggregate labor supply which of course must
hold at any point of time:

C = C
(
λ̄, PN , PH ,WH ,WN

)
, L = L

(
λ̄, PN , PH ,WH ,WN

)
. (242)

Inserting first the solution for consumption (242) into (223a)-(224b) allows us to solve
for Cg (with g = H,N,F )

Cg = Cg
(
λ̄, PN , PH ,WH ,WN

)
, (243)

where we used the fact that

ĈN = −φαC P̂
N + φαCα

H P̂H + Ĉ, (244a)

ĈH = −
[
ρ
(
1− αH

)
+ φ (1− αC)α

H
]
P̂H + (1− αC)φP̂

N + Ĉ, (244b)

ĈF = αH [ρ− φ (1− αC)] P̂
H + (1− αC)φP̂

N + Ĉ. (244c)

Inserting first the solution for labor (242) into (235a) allows us to solve for Lj (with
j = H,N):

Lj = Lj
(
λ̄, PN , PH ,WH ,WN

)
, (245)

with partial derivatives given by:

L̂H = εL (1− αL) Ŵ
H − (1− αL) εLŴ

N + L̂, (246a)

L̂N = εLαLŴ
N − αLεLŴ

H + L̂. (246b)

The decision to allocate capital between to the traded and the non-traded sectors (235b)
allows us to solve for KH and KN :

KH = KH
(
K,RH , RN

)
, KN = KN

(
K,RH , RN

)
, (247)

with partial derivatives given by:

K̂H = εK (1− αK) R̂H − (1− αK) εKR̂N + K̂, (248a)

K̂N = εKαKR̂N − αKεKR̂H + K̂. (248b)

Sectoral Wages and Sectoral Capital Rental Rates
Plugging the short-run solutions for LH , LN , KH , KN , given by (245)-(247) into the

demand for capital and labor (240a)-(240b), the system of four equations can be solved for
sectoral wages W j and sectoral capital rental rates Rj . Log-differentiating (240a)-(240b)

149



yields in matrix form:




−
[(
1− θH

) LH
WH

LH + 1
WH

]
−
(
1− θH

) LH
WN

LH

(
1− θH

) KH
RH

KH

(
1− θH

) KH
RN

KH

−
(
1− θN

) LN
WN

LN −
[(
1− θN

) LN
WN

LN + 1
WN

] (
1− θN

) KN
RH

KN

(
1− θN

) KN
RN

KN

θH
LH
WH

LH θH
LH
WN

LH −
[
θH

KH
RH

KH + 1
RH

]
θH

KH
RN

KH

θN
LN
WH

LN θN
LN
WN

LN θN
KN

RH

KN −
[
θN

KN
RN

KN + 1
RN

]




×




dWH

dWN

dRH

dRN




=




(
1− θH

) LH
PN

LH dPN +

[(
1− θH

) LH
PH

LH − 1
PH

]
dPH −

(
1− θH

) KH
K

KH dK − ẐH −
(
1− θH

)
duK,H

[(
1− θN

) LN
PN

LN − 1
PN

]
dPN +

(
1− θN

) LN
PH

LN dPH −
(
1− θN

) KN
K

KN dK − ẐN −
(
1− θN

)
duK,N

−θH
LH
PH

LH dPN −
[
θH

LH
PH

LH + 1
PH

]
dPH + θH

KH
K

KH dK − ẐH + θHduK,H

−
[
θN

LN
PN

LN + 1
PN

]
dPN − θN

LN
PH

LN dPH + θN
KN

K

KN dK − ẐN + θNduK,N




,(249)

The short-run solutions for sectoral wages and sectoral capital rental rates are:

W j = W j
(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
, Rj = Rj

(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
.

(250)
Inserting first sectoral wages and capital rental rates (250) into intermediate solutions for
sectoral hours worked (245) and sector capital capital (247), these equations can be solved
as functions of the aggregate capital stock, the price of non-traded goods in terms of foreign
goods, PN , the terms of trade, and the sectoral capital utilization rates:

Lj = Lj
(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
, Kj = Kj

(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
,

(251)
Finally, plugging solutions for sectoral labor (251) and sector capital-labor ratios (250),
production functions (238) can be solved for sectoral value added:

Y j = Y j
(
λ̄,K, PN , PH , ZH , ZN , uK,H , uK,N

)
. (252)

Capital Utilization Rates, uK,j(t)
Inserting firm’s optimal decision for capital (240a) in sector j in the optimal intensity

in the use of physical capital (220f) leads to:

Rj(t)

P j(t)
= ξj1 + ξj2

(
uK,j(t)− 1

)
= Zj(t)

(
1− θj

) (
Lj(t)

)θj (
K̃j(t)

)−θj

. (253)

Inserting intermediate solutions (251) for sectoral hours worked and sectoral capital into
(253) and log-differentiating leads to in a matrix form:




[
ξH2
ξH1

+ θH + θH
KH

uK,H

KH

]
− θH

LH
uK,H

LH θH
KH

uK,N

KH − θH
LH
uK,N

LH

θN
KN

uK,H

KN − θN
LN
uK,H

LN

[
ξN2
ξN1

+ θN + θN
KN

uK,N

KN

]
− θN

LN
uK,N

LN




(
ûK,H

ûK,N

)

=




[
θH

LH
X

LH − θH
KH

X

KH

]
dX + ẐH

[
θN

LN
X

LN − θN
KN

X

KN

]
dX + ẐN


 , (254)

where X = K,PH , PN , ZH , ZN
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The short-run solutions for capital utilization rates are:

uK,j = uK,j
(
λ̄,K, PN , PH , ZH , ZN

)
. (255)

Intermediate Solutions for Rj ,W j ,Kj , Lj , Y j

Plugging back solutions for the capital utilization rates (255) into the intermediate solu-
tions for the sectoral wage rates and the capital rental rates (250), for sectoral hours worked
and sectoral capital stocks (251), and for sectoral value added (252) leads to intermediate
solutions for sectoral wages, sectoral capital rental rates, sectoral hours worked, sectoral
capital stocks, sectoral value added:

W j , Rj , Lj ,Kj , Y j
(
λ̄,K, PN , PH , ZH , ZN

)
. (256)

Optimal Investment Decision, I/K
Eq. (220c) can be solved for the investment rate:

I

K
= v

(
Q

PI (P T , PN )

)
+ δK , (257)

where

v (.) =
1

κ

(
Q

PJ
− 1

)
, (258)

with

vQ =
∂v(.)

∂Q
=

1

κ

1

PJ
> 0, (259a)

vPH =
∂v(.)

∂PH
= −1

κ

Q

PJ

αJα
H
J

PH
< 0, (259b)

vPN =
∂v(.)

∂PN
= −1

κ

Q

PJ

(1− αJ)

PN
< 0. (259c)

Inserting (257) into (218), investment including capital installation costs can be rewritten
as follows:

J = K

[
I

K
+

κ

2

(
I

K
− δK

)2
]
,

= K
[
v(.) + δK +

κ

2
(v(.))2

]
. (260)

Eq. (260) can be solved for investment including capital installation costs:

J = J
(
K,Q,PN , PH

)
, (261)

where

JK =
∂J

∂K
=

J

K
, (262a)

JX =
∂J

∂X
= κvX (1 + κv(.)) > 0, (262b)

with X = Q,PH , PN .
Substituting (261) into (229b), (230a), and (230b) allows us to solve for the demand of

non-traded, home-produced traded, and foreign inputs:

JN = JN
(
K,Q,PN , PH

)
, JH = JH

(
K,Q,PN , PH

)
, JF = JF

(
K,Q,PN , PH

)
,

(263)
with partial derivatives given by

ĴN = −αJφJ P̂
N + φJαJα

H
J P̂H + Ĵ , (264a)

ĴH = −
[
ρJ

(
1− αH

J

)
+ αH

J φJ (1− αJ)
]
P̂H + φJ (1− αJ) P̂

N + Ĵ , (264b)

ĴF = αH
J [ρJ − φJ (1− αJ)] P̂

H + φJ (1− αJ) P̂
N + Ĵ , (264c)

where

Ĵ = K̂ +
Q

PJ

(1 + κv(.))

J
Q̂− Q

PJ

(1 + κv(.))

J
(1− αJ) P̂

N

−αJα
H
J

Q

PJ

(1 + κv(.))

J
P̂H .
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N.4 Market Clearing Conditions

Finally, we have to solve for non-traded good prices and the terms of trade. The role of
the price of non-traded goods in terms of foreign goods is to clear the non-traded goods
market:

Y N = CN +GN + JN + CK,NKN . (265)

The role of the price of home-produced goods in terms of foreign-produced goods or the
terms of trade is to clear the home-produced traded goods market:

Y H = CH +GH + JH +XH + CK,HKH , (266)

where XH stands for exports which are negatively related to the terms of trade:

XH = ϕX

(
PH

)−φX , (267)

with φX is the elasticity of exports with respect to the terms of trade. The rationale behind
(267) comes from the fact that exports are the sum of foreign demand for the domestically
produced tradable consumption goods and investment inputs denoted by CF,? and JF,?,
respectively:

XH(t) = CF,?(t) + JF,?(t),

= ϕ

(
P T,?

P ?
C

)−φ

(1− ϕ?
H)

(
PH(t)

P ?
T

)−ρ?

C? + ι

(
P T,?
J

P ?
J

)−φJ

(1− ι?H)

(
PH(t)

P T,?
J

)−ρ?J

J?,

where we assume that the rest of the world have similar preferences with the same elasticities
elasticities (i..e, ρ? = ρ and ρ?J = ρJ) between foreign and domestic tradable goods. To
keep things simple, we assume that technology is fixed abroad. Therefore foreign prices
denoted with a star remain constant and thus domestic exports are decreasing in the terms
of trade, PH(t).

As shall be useful to write formal expressions in a compact form, we set

∆H
PH = Y H

PH − CH
PH − JH

PH −XH
PH − ξH1 uK,H

PH , (268a)

∆H
PN = Y H

PN − CH
PN − JH

PN − ξH1 uK,H
PN , (268b)

∆H
K = Y H

K − CH
K − JH

K − ξH1 uK,H
K , (268c)

∆H
Zj = Y H

Zj − CH
Zj − ξH1 uK,H

Zj , (268d)

∆N
PH = Y N

PH − CN
PH − JN

PH − ξN1 uK,N
PH > 0, (268e)

∆N
PN = Y N

PN − CN
PN − JN

PN − ξN1 uK,N
PH , (268f)

∆N
K = Y N

K − CN
K − JN

K − ξN1 uK,N
K , (268g)

∆N
Zj = Y N

Zj − CN
Zj − ξN1 uK,N

Zj , (268h)

where XH
PH = ∂XH

∂PH < 0.
Totally differentiating the market clearing conditions (265)-(266) leads to in a matrix

form: (
∆H

PH ∆H
PN

∆N
PH ∆N

PN

)(
dPH

dPN

)
=

( −∆H
KdK + JH

Q dQ−∑
j ∆

H
ZjdZ

j

−∆N
KdK + JN

Q dQ−∑
j ∆

N
ZjdZ

j

)
. (269)

Applying the implicit functions theorem leads to the short-run solutions for the terms of
trade and non-traded good prices:

PH , PN
(
λ̄,K,Q,ZH , ZN

)
. (270)

Plugging back the solutions for sectoral prices into (255) and (256) allow us to find
the final versions of solutions of the capital utilization rate, sectoral wages, sectoral capital
rental rates, sectoral hours worked, sectoral capital stocks, sectoral value added:

uK,j ,W j , Rj , Lj ,Kj , Y j
(
λ̄,K,Q,ZH , ZN

)
. (271)

Inserting the solutions for prices into the intermediate solutions for consumption (243) and
investment (263) leads to:

Cg, Jg
(
K,Q,ZH , ZN , λ̄

)
, (272)

where g = H,N,F .
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N.5 Solving the Model

Remembering that the non-traded input JN used to produce the capital good is equal

to (1− ι)
(
PN

PJ

)−φJ

J (see eq. (229b)) with J = I + κ
2

(
I
K − δK

)2
K, using the fact that

JN = Y N − CN − GN − CK,NKN and inserting I = K̇ + δK , the capital accumulation
equation reads as follows:

K̇ =
Y N − CN −GN − CK,NKN

(1− ι)
(
PN

PJ

)−φJ
− δKK − κ

2

(
I

K
− δK

)2

K. (273)

Inserting short-run solutions for the capital utilization rate and value added, i.e., (271) ,
investment and consumption in non-tradables (272), into the physical capital accumulation
equation (273), and plugging the short-run solution for the return on domestic capital (271)
into the dynamic equation for the shadow value of capital stock (220e), the dynamic system
reads as follows:15

K̇ ≡ Υ
(
K,Q,ZH , ZN

)
=

EN
(
K,Q,ZH , ZN

)

(1− ι)
{

PN (.)
PJ [PH(.),PN (.)]

}−φJ
− δKK − K

2κ

{
Q

PJ [PH (.) , PN (.)]
− 1

}2

,(274a)

Q̇ ≡ Σ
(
K,Q,ZH , ZN

)
= (r? + δK)Q−

[∑
j R

j
(
K,Q,ZH , ZN

)
K̃j

(
K,Q,ZH , ZN

)

K

−
∑

j

CK,j
(
uK,j

(
K,Q,ZH , ZN

)] Kj
(
K,Q,ZH , ZN

)

K

+ PJ
κ

2
v(.) (v(.) + 2δK)

]
, (274b)

where EN = Y N − CN −GN − CK,NKN

To facilitate the linearization, it is useful to break down the capital accumulation into
two components:

K̂ = J − δKK − κ

2

(
I

K
− δK

)2

K. (275)

The first component is J . Using the fact that J = JN

(1−ι)
(

PN

PJ

)−φJ
and log-linearizing gives:

Ĵ = ĴN + φJαJ P̂
N − φJαJα

H
J P̂H (276)

where we used the fact that P̂J = αJα
H
J P̂H + (1− αJ) P̂

N . Using (275) and the fact that
JN = Y N−CN−GN−CK,NuK,N , linearizing (275) in the neighborhood of the steady-state
gives:

K̇ =
J

JN

[
dY N (t)− dCN (t)− ξN1 duK,N (t)

]
+ φJ

J

PN
αJdP

N (t)

− φJ
J

PH
αJα

H
J dPH(t)− δKdK(t), (277)

where J = I = δKK in the long-run.
As will be useful, let us denote by ΥK , ΥQ, and ΥZj the partial derivatives evaluated

at the steady-state of the capital accumulation equation w.r.t. K, Q, and Zj , respectively.
Using (277), these elements of the Jacobian matrix are given by:

ΥK ≡ ∂K̇

∂K
=

J

JN
EN

K + αJφJJ

(
PN
K

PN
− αH

J

PH
K

PH

)
− δK ≷ 0, (278a)

ΥQ ≡ ∂K̇

∂Q
=

J

JN
EN

Q + αJφJJ

(
PN
Q

PN
− αH

J

PH
Q

PH

)
> 0, (278b)

ΥZj ≡ ∂K̇

∂Zj
=

J

JN
EN

Zj + αJφJJ

(
PN
Zj

PN
− αH

J

PH
Zj

PH

)
, (278c)

15We omit the shadow value of wealth from short-run solutions for clarity purposes as λ remains constant
over time.

153



where J = δKK in the long run and EN
X = Y N

X − CN
X − ξN1 uK,N

X with X = K,Q,Zj ,
Let us denote by ΣK , ΣQ, and ΣZj the partial derivatives evaluated at the steady-state

of the dynamic equation for the marginal value of an additional unit of capital w.r.t. K,
Q, and Zj , respectively:

ΣK ≡ ∂Q̇

∂K
= −

[
−R

K
+

∆K

K
+ PJκvKδK

]
> 0, (279a)

ΣQ ≡ ∂Q̇

∂Q
= (r? + δK)−

[
∆Q

K
+ PJκvQδK

]
> 0, (279b)

ΣZj ≡ ∂Q̇

∂Zj
= −

[
∆Zj

K
+ PJκvZjδK

]
. (279c)

where ∆K =
∑

j K
jRj

K + RjKj
K + RjKjuK,j

K , ∆Q =
∑

j K
jRj

Q + RjKj
Q + RjKjuK,j

Q ,

∆Zj =
∑

j K
jRj

Zj +RjKj
Zj +RjKjuK,j

Zj .
Assuming that the saddle-path stability condition is fulfilled, and denoting the negative

eigenvalue by ν1 and the positive eigenvalue by ν2, the general solutions for K and Q are:

K(t)− K̃ = D1e
ν1t +D2e

ν2t, Q(t)− Q̃ = ω1
2D1e

ν1t + ω2
2D2e

ν2t, (280)

whereK0 is the initial capital stock and
(
1, ωi

2

)′
is the eigenvector associated with eigenvalue

νi:

ωi
2 =

νi −ΥK

ΥQ
. (281)

Because ν1 < 0, ΥK > 0 and ΥQ > 0, we have ω1
2 < 0, regardless of sectoral capital

intensities, which implies that the shadow value of investment and the stock physical capital
move in opposite direction along a stable path (i.e., D2 = 0).

N.6 Current Account Equation and Intertemporal Solvency Condition

To determine the current account equation, we use the following identities and properties:

PCC = PHCH + CF + PNCN , (282a)

PJJ = PHJH + JF + PNJN , (282b)

T = G = PHGH +GF + PNGN , (282c)

WL+RK̃ =
(
WHLH +RHK̃H

)
+
(
WNLN +RNK̃N

)
= PHY H + PNY N , (282d)

where (282d) follows from Euler theorem. Using (282d), inserting (282a)-(282c) into (216)
and invoking market clearing conditions for non-traded goods (265) and home-produced
traded goods (266) yields:

Ṅ = r?N + PH
(
Y H − CH −GH − JH − CK,HKH

)
−
(
CF + JF +GF

)
,

= r?N + PHXH −MF , (283)

where XH = Y H − CH − GH − JH − CK,HKH stands for exports of home goods and we
denote by MF imports of foreign consumption and investment goods:

MF = CF +GF + JF . (284)

Inserting appropriate solutions, the current account equation reads:

Ṅ ≡ r?N + Ξ
(
K,Q,ZH , ZN

)
,

= r?N + PH
(
K,Q,ZH , ZN

)
XH

(
K,Q,ZH , ZN

)
−MF

(
K,Q,ZH , ZN

)
. (285)

Let us denote by ΞK , ΞQ, and ΞZj the partial derivatives evaluated at the steady-state of
the dynamic equation for the current account w.r.t. K, Q, and Zj , respectively:

ΞK ≡ ∂Ṅ

∂K
= (1− φX)XHPH

K −MF
K , (286a)

ΞQ ≡ ∂Ṅ

∂Q
= (1− φX)XHPH

Q −MF
Q , (286b)

ΞZj ≡ ∂Ṅ

∂Zj
= (1− φX)XHPH

Zj −MF
Zj . (286c)
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where we used the fact that PHXH = ϕX

(
PH

)1−φX (see eq. (267)).
Linearizing (285) in the neighborhood of the steady-state, making use of (286a) and

(286b), inserting solutions for K(t) and Q(t) given by (280) and solving yields the general
solution for the net foreign asset position:

N(t) = N + [(N0 −N)−Ψ1D1 −Ψ2D2] e
r?t +Ψ1D1e

ν1t +Ψ2D2e
ν2t, (287)

where N0 is the initial stock of traded bonds and we set

Ei = ΞK + ΞQω
i
2, (288a)

Ψi =
Ei

νi − r?
. (288b)

Invoking the transversality condition leads to the linearized version of the nations’s
intertemporal solvency condition:

N −N0 = Ψ1 (K −K0) , (289)

where K0 is the initial stock of physical capital.

N.7 Derivation of the Accumulation Equation of Non Human Wealth

Remembering that the stock of financial wealth A(t) is equal to N(t)+Q(t)K(t), differenti-
ating w.r.t. time, i.e., Ȧ(t) = Ṅ(t) + Q̇(t)K(t) +Q(t)K̇(t), plugging the dynamic equation
for the marginal value of capital (220e), inserting the accumulation equations for physical
capital (217) and traded bonds (216), yields the accumulation equation for the stock of
financial wealth or the dynamic equation for private savings:

Ȧ(t) = (290)

where we assume that the government levies lump-sum taxes, T , to finance purchases of
foreign-produced, home-produced and non-traded goods, i.e., T = G =

(
GF + PH(.)GH + PN (.)GN

)
.

Solving for C = C
(
K,Q,ZH , ZN

)
by inserting the solutions for sectoral prices (270)

into the optimal decision for consumption (220a), inserting solutions for W j , Lj , into (256)
allows us to write the financial wealth accumulation equation as follows:

Ȧ ≡ r?A+ Λ
(
K,Q,ZH , ZN

)
,

= r?A+
∑

j

W j
(
K,Q,ZH , ZN

)
Lj

(
K,Q,ZH , ZN

)
−G

(
K,Q,ZH , ZN

)

− PC

[
PH (.) , PN (.)

]
C
(
K,Q,ZH , ZN

)
, (291)

where PN and PH are given by (270).
Let us denote by ΛK , ΛQ, and ΛZj the partial derivatives evaluated at the steady-state

of the dynamic equation for the non human wealth w.r.t. K, Q, and Zj , respectively:

ΛK ≡ ∂Ȧ

∂K
= (WKL+WLK)−GK −

(
∂PC

∂K
C + PCCK

)
, (292a)

ΛQ ≡ ∂Ȧ

∂Q
= (WQL+WLQ)−GQ −

(
∂PC

∂Q
C + PCCQ

)
, (292b)

ΛZj ≡ ∂Ȧ

∂Zj
= (WZjL+WLZj )−GZj −

(
∂PC

∂Zj
C + PCCZj

)
. (292c)

Linearizing (291) in the neighborhood of the steady-state, making use of (292a) and
(292b), inserting solutions for K(t) and Q(t) given by (280) and solving yields the general
solution for the stock of non human wealth:

A(t) = A+ [(A0 −A)−∆1D1 −∆2D2] e
r?t +∆1D1e

ν1t +∆2D2e
ν2t, (293)
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where A0 is the initial stock of financial wealth and we set

Mi = AK +AQω
i
2, (294a)

∆i =
Mi

νi − r?
. (294b)

The linearized version of the representative household’s intertemporal solvency condition
is:

A−A0 = ∆1 (K −K0) , (295)

where A0 is the initial stock of non human wealth.

O Semi-Small Open Economy Model with CES Production
Functions

In section N, we have laid out a model with Cobb-Douglas production functions. The
steady-state of this model is used to normalize CES production functions. This section
extends the model with Cobb-Douglas production functions in two directions. First, in
the baseline model we allow for CES production functions and factor-biased technological
change (FBTC henceforth). Second, we assume that factor-augmenting efficiency has both
a symmetric and an asymmetric component. The first order conditions from households’
maximization problem detailed in subsection N.1 remain almost identical and we emphasize
only the main changes.

O.1 Households

Households choose the level of capital utilization in sector j, which includes both a sym-
metric and an asymmetric component, denoted by uK,j

S (t) and uK,j
D (t):

uK,j(t) =
(
uK,j
S (t)

)η (
uK,j
D (t)

)1−η
. (296)

Both components of the capital utilization rate collapse to one at the steady-state. The
capital utilization adjustment costs are assumed to be an increasing and convex function
of the capital utilization rate:

CK,j
S (t) = ξj1,S

(
uK,j
S (t)− 1

)
+

ξj2,S
2

(
uK,j
S (t)− 1

)2
, (297a)

CK,j
D (t) = ξj1,S

(
uK,j
D (t)− 1

)
+

ξj2,D
2

(
uK,j
D (t)− 1

)2
, (297b)

where ξj2,S > 0, ξj2,D > 0, are free parameters which indicate the extent of the cost of

adjusting the intensity in the use of capital. When we let ξj2,c → ∞ (c = S,D), capital
utilization is fixed at unity and TFP growth collapses to technological change.

The dynamic equation of the shadow price of capital (220e) and the optimal decision
about the capital utilization rate (220f) are modified as follows:

Q̇(t) = (r? + δK)Q(t)−
{ ∑

j=H,N

αj
K(t)uK,j(t)RK(t)

−
∑

j=H,N

P j(t)
(
CK,j
S (t) + CK,j

D (t)
)
νK,j(t)− PJ(t)

∂J(t)

∂K(t)

}
, (298a)

Rj(t)

P j(t)
η
uK,j(t)

uK,j
S (t)

= ξj1,S + ξj2,S

(
uK,j
S (t)− 1

)
, j = H,N, (298b)

Rj(t)

P j(t)
(1− η)

uK,j(t)

uK,j
D (t)

= ξj1,D + ξj2,D

(
uK,j
D (t)− 1

)
, j = H,N, (298c)

where η is the share of aggregate technology shocks driven by symmetric technology im-
provements.
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O.2 Firms

Both the traded and non-traded sectors use physical capital, K̃j , and labor, Lj , according
to constant returns to scale production functions which are assumed to take a CES form:

Y j(t) =

[
γj

(
Aj(t)Lj(t)

)σj−1

σj +
(
1− γj

) (
Bj(t)K̃j(t)

)σj−1

σj

] σj

σj−1

, (299)

where γj and 1− γj are the weight of labor and capital in the production technology, σj is
the elasticity of substitution between capital and labor in sector j = H,N , Aj and Bj are
labor- and capital-augmenting efficiency. Both sectors face two cost components: a capital
rental cost equal to Rj , and a labor cost equal to the wage rate W j .

Factor-augmenting productivity is made up of a symmetric component (across sectors)
denoted by the subscript S and an asymmetric component denoted by the subscript D:

Aj(t) =
(
Aj

S(t)
)η (

Aj
D(t)

)1−η
, Bj(t) =

(
Bj

S(t)
)η (

Bj
D(t)

)1−η
, (300)

where the elasticity of factor-augmenting productivity w.r.t. to its symmetric component is
denoted by η which is assumed to be symmetric across sectors. As we shall see below, this
parameter determines the share of technology improvements which are symmetric across
sectors.

Firms rent capital K̃j(t) and labor Lj(t) services from households. We assume that
the movements in capital and labor across sectors are subject to frictions which imply that
the capital rental cost equal to Rj(t), and the wage rate W j(t), are sector-specific. Both
sectors are assumed to be perfectly competitive and thus choose capital services and labor
by taking prices P j as given:

max
K̃j(t),Lj(t)

Πj(t) = max
K̃j(t),Lj(t)

{
P j(t)Y j(t)−W j(t)Lj(t)−Rj(t)K̃j(t)

}
. (301)

We drop the time index when it does not cause confusion. Costly labor and capital mobility
implies a labor and capital cost differential across sectors:

P j(t)γj
(
Aj(t)

)σj−1

σj
(
Lj(t)

)− 1

σj
(
Y j(t)

) 1

σj ≡ W j(t), (302a)

P j(t)
(
1− γj

) (
Bj(t)

)σj−1

σj
(
uK,j(t)Kj(t)

)− 1

σj
(
Y j(t)

) 1

σj = Rj(t). (302b)

Some Useful Results
Multiplying both sides of (302a)-(302b) by Lj and K̃j , respectively, and dividing by

sectoral value added leads to the labor and capital income share:

sjL = γj
(
Aj

yj

)σj−1

σj

, 1− sjl = γj
(
BjuK,jkj

yj

)σj−1

σj

, (303)

where

yj =

[
γj

(
Aj

)σj−1

σj +
(
1− γj

) (
BjuK,jkj

)σj−1

σj

] σj

σj−1

. (304)

Dividing eq. (303) by eq. (304), the ratio of the labor to the capital income share

denoted by Sj =
sjL

1−sjL
reads as follows:

Sj =
γj

1− γj

(
BjuK,jKj

AjLj

) 1−σj

σj

. (305)

Dividing (302a) by (302b) leads to a positive relationship between the relative cost of
labor and the capital-labor ratio in sector j:

W j

Rj
=

γj

1− γj

(
Bj

Aj

) 1−σj

σj

(
K̃j

Lj

) 1

σj

. (306)
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To determine the conditional demands for both inputs, we make use of (306) which leads
to:

Lj = K̃j

(
γj

1− γj

)σj (
Bj

Aj

)1−σj (
W j

Rj

)−σj

, (307a)

K̃j = Lj

(
1− γj

γj

)σj (
Bj

Aj

)σj−1(
W j

Rj

)σj

. (307b)

Inserting eq. (307b) (eq. (307a) resp.) in the CES production function and solving for Lj

(K̃j resp.) leads to the conditional demand for labor (capital resp.):

Lj = Y j
(
Aj

)σj−1
(

γj

W j

)σ (
Xj

) σj

1−σj , K̃j = Y j
(
Bj

)σj−1
(
1− γj

Rj

)σj (
Xj

) σj

1−σj , (308)

where Xj is given by:

Xj =
(
γj
)σj (

Aj
)σj−1 (

W j
)1−σj

+
(
1− γj

)σj (
Bj

)σj−1 (
Rj

)1−σj

. (309)

Total cost is equal to the sum of the labor and capital cost:

Cj = W jLj +RjKj . (310)

Inserting conditional demand for inputs (307) into total cost (310), we find Cj is homoge-
nous of degree one with respect to the level of production

Cj = cjY j , with cj =
(
Xj

) 1

1−σj . (311)

Using the fact that
(
cj
)1−σj

= Xj , conditional demand for labor (307a) can be rewritten

as Lj = Y j
(
Aj

)σj−1
(

γj

W j

) (
cj
)σj

which gives the labor income share denoted by sjL:

sjL =
W jLj

P jY j
=

(
γj
)σj

(
W j

Aj

)1−σj (
cj
)σj−1

, (312a)

1− sjL =
RjK̃j

P jY j
=

(
1− γj

)σj
(
Rj

Bj

)1−σj (
cj
)σj−1

. (312b)

O.3 Short-Run Solutions

Sectoral Wages and Capital-Labor Ratios
Plugging the short-run solutions for LH , LN , KH , KN , given by (245)-(247) into the

demand for capital and labor (302a)-(302b), the system of four equations can be solved
for sectoral wages W j and sectoral capital rental rates Rj . Log-differentiating (302a)-
(302b)yields in matrix form:




−
[(

1−sHL
σH

)
LH
WH

LH + 1
WH

]
−

(
1−sHL
σH

)
LH
WN

LH

(
1−sHL
σH

)
KH

RH

KH

(
1−sHL
σH

)
KH

RN

KH

−
(

1−sNL
σN

)
LN
WN

LN −
[(

1−sNL
σN

)
LN
WN

LN + 1
WN

] (
1−sNL
σN

)
KN

RH

KN

(
1−sNL
σN

)
KN

RN

KN

sHL
σH

LH
WH

LH

sHL
σH

LH
WN

LH −
[

sHL
σH

KH
RH

KH + 1
RH

]
sHL
σH

KH
RN

KH

sNL
σN

LN
WH

LN

sNL
σN

LN
WN

LN

sNL
σN

KN
RH

KN −
[

sNL
σN

KN
RN

KN + 1
RN

]




×




dWH

dWN

dRH

dRN




=




(
1−sHL
σH

)
LH
PN

LH dPN +

[(
1−sHL
σH

)
LH
PH

LH − 1
PH

]
dPH −

(
1−sHL
σH

)
KH

K
KH dK −

(
1−sHL
σH

)
duK,H −

[ (
σH−1

)
+sHL

σH

]
ÂH −

(
1−sHL
σH

)
B̂H

[(
1−sNL
σN

)
LN
PN

LN − 1
PN

]
dPN +

(
1−sNL
σN

)
LN
PH

LN dPH −
(

1−sNL
σN

)
KN

K
KN dK −

(
1−sNL
σN

)
duK,N −

[ (
σN−1

)
+sNL

σN

]
ÂN −

(
1−sNL
σN

)
B̂N

− sHL
σH

LH
PH

LH dPN −
[

sHL
σH

LH
PH

LH + 1
PH

]
dPH +

sHL
σH

KH
K

KH dK +
sHL
σH duK,H −

(
σH−sHL

σH

)
B̂H −

(
sHL
σH

)
ÂH

−
[

sNL
σN

LN
PN

LN + 1
PN

]
dPN − sNL

σN

LN
PH

LN dPH +
sNL
σN

KN
K

KN dK +
sNL
σN duK,N −

(
σN−sNL

σN

)
B̂N −

(
sNL
σN

)
ÂN




.(313)
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From eq. (296), i.e., uK,j(t) =
(
uK,j
S

)η (
uK,j
D

)1−η
, the capital utilization rate is a

function of its symmetric and asymmetric components:

uK,j = uK,j
(
uK,j
S , uK,j

D

)
, (314)

where
∂uK,j

∂uK,j
S

= η,
∂uK,j

∂uK,j
D

= 1− η. (315)

By using the implicit function theorem, eq. (313) together with eq. (314) leads to the
short-run solutions for sectoral wages

W j = W j
(
λ̄,K, P j , Aj , Bj , uK,j

S , uK,j
D

)
, j = H,N, (316)

and capital rental rates

Rj = Rj
(
λ̄,K, P j , Aj , Bj , uK,j

S , uK,j
D

)
, j = H,N. (317)

Inserting sectoral wages (316) into (245), sectoral hours worked can be solved as func-
tions of the shadow value of wealth, the capital stock, the price of non-traded goods in
terms of foreign goods, PN , the terms of trade, factor-augmenting productivity and capital
utilization rates:

Lj = Lj
(
λ̄,K, P j , Aj , Bj , uK,j

S , uK,j
D

)
, j = H,N. (318)

Inserting capital rental rates (317) into (247), sectoral capital stock can be solved as func-
tions of the shadow value of wealth, the aggregate capital stock, the price of non-traded
goods in terms of foreign goods, PN , the terms of trade, factor-augmenting productivity
and capital utilization rates:

Kj = Kj
(
λ̄,K, PN , PH , Aj , Bj , uK,j

S , uK,j
D

)
. j = H,N. (319)

Finally, plugging solutions for sectoral hours worked (318) and sectoral capital stock
(319), and using (296), production functions (299) can be solved for sectoral value added:

Y j = Y j
(
λ̄,K, P j , Aj , Bj , uK,j

S , uK,j
D

)
, j = H,N. (320)

Symmetric and Asymmetric Components of Capital Utilization Rates, uK,j
S (t)

and uK,j
D (t)

Inserting firm’s optimal decision for capital (302b) in sector j in the optimal intensity
in the use of physical capital (298b) leads to:

η
uK,j(t)

uK,j
S (t)

= ξj1,S + ξj2,S

(
uK,j
S (t)− 1

)
=

(
1− γj

) (
Bj(t)

)σj−1

σj
(
uK,j(t)Kj(t)

)− 1

σj
(
Y j(t)

) 1

σj .

(321)
Inserting intermediate solutions (318) for sectoral hours worked and (319) for sectoral cap-
ital into (321) and log-differentiating leads to in a matrix form:




a11 a12 − sHL
σH

LH

u
K,N
S

LH +
sHL
σH

KH

u
K,N
S

KH − sHL
σH

LH

u
K,N
D

LH +
sHL
σH

KH

u
K,N
D

KH

a21 a22 − sHL
σH

LH

u
K,N
S

LH +
sHL
σH

KH

u
K,N
S

KH − sHL
σH

LH

u
K,N
D

LH +
sHL
σH

KH

u
K,N
D

KH

− sNL
σN

LN

u
K,H
S

LN +
sNL
σN

KN

u
K,H
S

KN − sNL
σN

LN

u
K,H
D

LN +
sNL
σN

KN

u
K,H
D

KN a33 a34

− sNL
σN

LN

u
K,H
S

LN +
sNL
σN

KN

u
K,H
S

KN − sNL
σN

LN

u
K,H
D

LN +
sNL
σN

KN

u
K,H
D

KN a43 a44




×




û
K,H
S

û
K,H
D

û
K,N
S

û
K,N
D




=




∑
Xj=Aj,Bj,Pj,j=H,N

(
sHL
σH

LH
Xj

LH − sHL
σH

KH
Xj

KH

)
dXj +

(
sHL
σH

LH
K

LH − sHL
σH

KH
K

KH

)
dK +

sHL
σH ÂH −

(
σH−sHL

σH

)
B̂H

∑
Xj=Aj,Bj,Pj,j=H,N

(
sHL
σH

LH
Xj

LH − sHL
σH

KH
Xj

KH

)
dXj +

(
sHL
σH

LH
K

LH − sHL
σH

KH
K

KH

)
dK +

sHL
σH ÂH −

(
σH−sHL

σH

)
B̂H

∑
Xj=Aj,Bj,Pj,j=H,N

(
sNL
σN

LN
Xj

LN − sNL
σN

KN
Xj

KN

)
dXj +

(
sNL
σN

LN
K

LN − sNL
σN

KN
K

KN

)
dK +

sNL
σN ÂN −

(
σN−sNL

σN

)
B̂N

∑
Xj=Aj,Bj,Pj,j=H,N

(
sNL
σN

LN
Xj

LN − sNL
σN

KN
Xj

KN

)
dXj +

(
sNL
σN

LN
K

LN − sNL
σN

KN
K

KN

)
dK +

sNL
σN ÂN −

(
σN−sNL

σN

)
B̂N




, (322)
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where Xj =, PH , PN , ZH , ZN and

a11 =

[
ξH2,S

ξH1,S
+ η

sHL
σH

+ (1− η)

]
− sHL

σH

LH
uK,H
S

LH
+

sHL
σH

KH
uK,H
S

KH
, (323a)

a12 = −
(
σH − sHL

σH

)
(1− η)− sHL

σH

LH
uK,H
D

LH
+

sHL
σH

KH
uK,H
D

KH
, (323b)

a21 = −
(
σH − sHL

σH

)
η − sHL

σH

LH
uK,H
S

LH
+

sHL
σH

KH
uK,H
S

KH
, (323c)

a22 =

[
ξH2,D

ξH1,D
+ (1− η)

sHL
σH

+ η

]
− sHL

σH

LH
uK,H
D

LH
+

sHL
σH

KH
uK,H
D

KH
, (323d)

a33 =

[
ξN2,S

ξN1,S
+ η

sNL
σN

+ (1− η)

]
− sNL

σN

LN
uK,N
S

LN
+

sNL
σN

KN
uK,N
S

KN
, (323e)

a34 = −
(
σN − sNL

σN

)
(1− η)− sNL

σN

LN
uK,N
D

LN
+

sNL
σN

KN
uK,N
D

KN
, (323f)

a43 = −
(
σN − sNL

σN

)
η − sNL

σN

LN
uK,N
S

LN
+

sNL
σN

KN
uK,N
S

KN
, (323g)

a44 =

[
ξN2,D

ξN1,D
+ η

sNL
σN

+ (1− η)

]
− sNL

σN

LN
uK,N
D

LN
+

sNL
σN

KN
uK,N
D

KN
. (323h)

The short-run solutions for capital and technology utilization rates are:

uK,j
c = uK,j

c

(
λ̄,K, P j , Aj , Bj

)
, c = S,D, j = H,N. (324)

Intermediate Solutions for Rj ,W j ,Kj , Lj , Y j

Plugging back solutions for the capital utilization rates (324) into the intermediate
solutions for the sectoral wage rates (316) and the capital rental rates (317), for sectoral
hours worked (318) and sectoral capital stocks (319), and for sectoral value added (320)
leads to intermediate solutions for sectoral wages, sectoral capital rental rates, sectoral
hours worked, sectoral capital stocks, sectoral value added:

W j , Rj , Lj ,Kj , Y j
(
λ̄,K, PN , PH , AH , BH , AN , BN

)
. (325)

O.4 Market Clearing Conditions

Finally, we have to solve for non-traded good prices and the terms of trade. The role of
the price of non-traded goods in terms of foreign goods is to clear the non-traded goods
market:

Y N = CN +GN + JN +
(
CK,N
S + CK,N

D

)
KN . (326)

The role of the price of home-produced goods in terms of foreign-produced goods or the
terms of trade is to clear the home-produced traded goods market:

Y H = CH +GH + JH +XH +
(
CK,H
S + CK,H

D

)
KH . (327)
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As shall be useful to write formal expressions in a compact form, we wet

∆H
PH = Y H

PH − CH
PH − JH

PH −XH
PH − ξH1,S

∂uK,H
S

∂PH
− ξH1,D

∂uK,H
D

∂PH
, (328a)

∆H
PN = Y H

PN − CH
PN − JH

PN − ξH1,S
∂uK,H

S

∂PN
− ξH1,D

∂uK,H
D

∂PH
, (328b)

∆H
K = Y H

K − CH
K − JH

K − ξH1,S
∂uK,H

S

∂K
− ξH1,D

∂uK,H
D

∂K
, (328c)

∆H
Aj = Y H

Aj − CH
Aj − ξH1,S

∂uK,H
S

∂Aj
− ξH1,D

∂uK,H
D

∂Aj
, j = H,N, (328d)

∆H
Bj = Y H

Bj − CH
Bj − ξH1,S

∂uK,H
S

∂Bj
− ξH1,D

∂uK,H
D

∂Bj
, j = H,N, (328e)

∆N
P j = Y N

P j − CN
P j − JN

P j − ξN1,S
∂uK,N

S

∂P j
− ξN1,D

∂uK,N
D

∂P j
, j = H,N, (328f)

∆N
K = Y N

K − CN
K − JN

K − ξN1,S
∂uK,N

S

∂K
− ξN1,D

∂uK,N
D

∂K
, (328g)

∆N
Aj = Y N

Aj − CN
Aj − JN

Aj − ξN1,S
∂uA

j ,N
S

∂Aj
− ξN1,D

∂uA
j ,N

D

∂Aj
, j = H,N, (328h)

∆N
Bj = Y N

Bj − CN
Bj − JN

Bj − ξN1,S
∂uB

j ,N
S

∂Bj
− ξN1,D

∂uB
j ,N

D

∂Bj
, j = H,N. (328i)

Totally differentiating the market clearing conditions (326)-(327) leads to in a matrix
form:
(

∆H
PH ∆H

PN

∆N
PH ∆N

PN

)(
dPH

dPN

)
=

( −∆H
KdK + JH

Q dQ−∑
j=H,N ∆H

AjdA
j −∑

j=H,N ∆H
BjdB

j

−∆N
KdK + JN

Q dQ−∑
j=H,N ∆N

AjdA
j −∑

j=H,N ∆N
BjdB

j

)
.

(329)
Applying the implicit functions theorem leads to the short-run solutions for the terms of
trade and non-traded good prices:

PH , PN
(
λ̄,K,Q,AH , BH , AN , BN

)
. (330)

Plugging back the solutions (330) for sectoral prices into (324) and (325) allow us to
find the final versions of solutions of capital utilization rates, sectoral wages, sectoral capital
rental rates, sectoral hours worked, sectoral capital stocks, sectoral value added:

uK,j
S , uK,j

D ,W j , Rj , Lj ,Kj , Y j
(
λ̄,K,Q,AH , BH , AN , BN

)
. (331)

Inserting the solutions for prices into the intermediate solutions for consumption (243) and
investment (263)

Cg, Qg
(
λ̄,K,Q,AH , BH , AN , BN

)
. (332)

where g = H,N,F .
Using the fact that factor-augmenting efficiency Xj (with X = A,B, j = H,N) has

both a symmetric S and an asymmetric D component across sectors,

Xj = Xj
(
Xj

S , X
j
D

)
. (333)

where

Xj

Xj
S

=
∂Xj

∂Xj
S

= η
Xj

Xj
S

, Xj

Xj
D

=
∂Xj

∂Xj
D

= (1− η)
Xj

Xj
D

, (334)

and inserting (333) into (330), (331) and (332) leads to the following solutions for capital
utilization rate, sectoral wages, sectoral capital rental rates, sectoral hours worked, sectoral
capital stocks, sectoral value added:

P j , uK,j
S , uK,j

D ,W j , Rj , Lj ,Kj , Y j
(
λ̄,K,Q,Xj

c

)
, j = H,N, (335)

and for consumption and investment in good g = H,N,F :

Cg, Qg
(
λ̄,K,Q,Xj

c

)
, (336)

where X = A,B, j = H,N , c = S,D.
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O.5 Solving the Model

In our model, there are nine state variables, namely K, Xj
c where X = A,, j = H,N ,

c = S,D, and one control variable, Q. The capital accumulation equation reads as follows:

K̇ =
Y N − CN −GN −

(
CK,N
S + CK,N

D

)
KN

(1− ι)
(
PN

PJ

)−φJ
− δKK − κ

2

(
I

K
− δK

)2

K. (337)

Inserting short-run solutions for value added and the capital utilization rate (335), in-
vestment and consumption in non-tradables (336), into the physical capital accumulation
equation (337), and plugging the short-run solution for the return on domestic capital (335)
into the dynamic equation for the shadow value of capital stock (298a), the dynamic system
reads as follows:16

K̇ ≡ Υ
(
K,Q,X

j
c

)
=

EN
(
K,Q,Xj

c

)

(1 − ι)

{
PN (.)

PJ

[
PH (.),PN (.)

]
}−φJ

− δKK −
K

2κ

{
Q

PJ
[
PH (.) , PN (.)

] − 1

}2

, (338a)

Q̇ ≡ Σ
(
K,Q,X

j
c

)
=

(
r
?
+ δK

)
Q −

[∑
j Rj

(
K,Q,Xj

c

)
Kj

(
K,Q,Xj

c

) (
u
K,j
S

(
K,Q,Xj

c

))η (
u
K,j
D

(
K,Q,Xj

c

))1−η

K

−
∑

j

[
C

K,j
S

u
K,j
S

(
K,Q,X

j
c

)
+ C

K,j
D

u
K,j
D

(
K,Q,X

j
c

)] Kj
(
K,Q,Xj

c

)

K

+ PJ

[
P

H
(.) , P

N
(.)

] κ

2
v(.) (v(.) + 2δK)

]
, (338b)

where EN = Y N − CN −GN −
(
CK,N
S + CK,N

D

)
KN

O.6 Current Account Equation and Intertemporal Solvency Condition

Following the same steps as in subsection N.6, the current account reads as:

Ṅ = r?N + PHXH −MF , (339)

where XH = Y H − CH − GH − JH stands for exports of home goods and we denote by
MF imports of foreign consumption and investment goods:

MF = CF +GF + JF . (340)

Substituting first solutions for sectoral prices P j given by (335) into export function
(267) and substituting solutions for consumption and investment (336) into (340) allows us
to write the current account equation as follows:

Ṅ ≡ r?N + Ξ
(
λ̄,K,Q,Xj

c

)
,

= r?N + PH
(
λ̄,K,Q,Xj

c

)
XH

(
λ̄,K,Q,Xj

c

)

−MF
(
λ̄,K,Q,Xj

c

)
. (341)

O.7 CES Technology Frontier

We assume that firms in sector j choose labor and capital efficiency along the technology
frontier which is assumed to take a CES form:


γjZ

(
Aj(t)

)σ
j
Z
−1

σ
j
Z +

(
1− γjZ

) (
Bj(t)

)σ
j
Z
−1

σ
j
Z




σ
j
Z

σ
j
Z
−1

≤ Zj(t), (342)

where Zj > 0 is the height of the technology frontier, 0 < γjZ < 1 is the weight of labor

efficiency in technology and σj
Z > 0 corresponds to the elasticity of substitution between

16We omit the shadow value of wealth from short-run solutions for clarity purposes as λ remains constant
over time.
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labor and capital efficiency. Performing the minimization of the unit cost for producing
(53) subject to the technology frontier (342) leads to:

γjZ
1− γjZ

(
Aj

Bj

)σ
j
Z
−1

σ
j
Z =

sjL
1− sjL

, (343)

where we used the fact that
(
γj
)σj

(
W j(t)
Aj(t)

)1−σj (
cj(t)

)σj−1
= sjL(t), see eq. (312a), and

(
1− γj

)σj
(
Rj(t)
Bj(t)

)1−σj (
cj(t)

)σj−1
= 1− sjL(t), see eq. (312b). As shall be useful later, we

solve eq. (343) for sjL:

sjL =
γjZ

(
Aj

)σ
j
Z
−1

σ
j
Z

γjZ (Aj)

σ
j
Z
−1

σ
j
Z +

(
1− γjZ

)
(Bj)

σ
j
Z
−1

σ
j
Z

,

= γjZ

(
Aj

Zj

)σ
j
Z
−1

σ
j
Z , (344)

where we made use of (342) to obtain the last line.
Log-linearizing (342) in the neighborhood of the initial steady-state and making use of

eq. (344) leads to:

Ẑj(t) = γjZ

(
Aj

Zj

)σ
j
Z
−1

σ
j
Z Âj(t) +

(
1− γjZ

)(
Bj

Zj

)σ
j
Z
−1

σ
j
Z B̂j(t),

= sjLÂ
j(t) +

(
1− sjL

)
B̂j(t). (345)

Solving eq. (345) and the log-linearized version of the demand for factors of production
(305) leads to the solutions for Âj(t) and B̂j(t). By using the fact that factor-augmenting
productivity has a symmetric and an asymmetric component across sectors, i.e., Xj =

Xj
(
Xj

S , X
j
D

)
(see eq. (333)), leads to the solutions for Âj

c(t) and B̂j
c(t) described by

(32a)-(32b) in Online Appendix J.10.

P Solving for Permanent Technology Shocks

In this section, we detail the steps to solve the model for permanent technology shocks
which have a symmetric and an asymmetric component.

The percentage deviation of factor-augmenting efficiency Xj
c = Aj

c, B
j
c relative to its

long-run new value Xj
c (c = S,D, j = H,N) is described by:

X̂j
S(t) = e−ξjX,St −

(
1− xjS

)
e−χj

X,St, (346a)

X̂j
D(t) = e−ξjX,Dt −

(
1− xjD

)
e−χj

X,Dt, (346b)

where X̂j
c (t) = Xj

c (t)−Xj
c

Xj
c

, xjc (c = S,D, j = H,N) parameterizes the impact response of

factor-augmenting technological change; ξjX > 0 and χj
X > 0 are (positive) parameters

which are set in order to reproduce the dynamic adjustment of factor-augmenting techno-
logical change.

Linearizing the dynamic equations of physical capital and its shadow price in the neigh-
borhood of the steady-state, we get in a matrix form:

(
K̇(t)

Q̇(t)

)
=

(
ΥK ΥQ

ΣK ΣQ

)(
dK(t)
dQ(t)

)
+

( ∑
c=S,D

∑N
j=H Υ

Aj
c
dAj

c(t) +
∑

c=S,D

∑N
j=H Υ

Bj
c
dBj

c(t)∑
c=S,D

∑N
j=H Σ

Aj
c
dAj

c(t) +
∑

c=S,D

∑N
j=H Σ

Bj
c
dBj

c(t)

)
,

(347)
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where the coefficients of the Jacobian matrix are partial derivatives evaluated at the steady-
state, e.g., ΥX = ∂Υ

∂Y with Y = K,Q, and the direct effects of an exogenous change in

factor-augmenting productivity on K and Q are described by ΥX = ∂Υ
∂X and ΣX = ∂Σ

∂X ,
also evaluated at the steady-state.

Now define the auxiliary vector X̂(t) =

(
X̂1(t)

X̂2(t)

)
as follows:

X̂(t) = V−1Ŷ (t) (348)

Given this renaming, we can write the system as:

˙̂
X(t) = ΛX̂(t) +V−1ΣŜ(t)

where Λ =

(
ν1 0
0 ν2

)
, V−1 is the inverse of the matrix of eigenvectors; let us write out

the product V−1Σ



u11 u12

u21 u22


×

(
ΥAH

S
ΥBH

S
ΥAN

S
ΥBN

S
ΥAH

D
ΥBH

D
ΥAN

D
ΥBN

D

ΣAH
S

ΣBH
S

ΣAN
S

ΣBN
S

ΣAH
D

ΣBH
D

ΣAN
D

ΣBN
D

)
.

The product leads to a matrix of the same size as the matrix of shocks, i.e., with two
rows and eight columns with elements denoted by s1k = u11ΥXj

c
+ u12ΣXj

c
and s2k =

u21ΥXj
c
+ u22ΣXj

c
(l indexes the row, k indexes the column).

The differential equation for X1(t) reads:

Ẋ1(t) = ν1X1(t) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

s1kX
j
c

[
e−ξjX,ct −

(
1− xjc

)
e−χj

X,ct
]
, (349a)

Ẋ2(t) = ν2X2(t) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

s1kX
j
c

[
e−ξjX,ct −

(
1− xjc

)
e−χj

X,ct
]
. (349b)

Solving (349a)-(349b) for X1(t) and X2(t) leads to:

dX1(t) = dX1(0) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

s1kX
j
c

ν1 + ξjX,c

[(
eν1t − e−ξjX,ct

)
−
(
1− xjc

)
(
ν1 + ξjX,c

ν1 + χj
X,c

)(
eν1t − e−χj

X,ct
)]

,

(350a)

dX2(t) = dX2(0) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

s1kX
j
c

ν1 + ξjX,c

[(
eν2t − e−ξjX,ct

)
−
(
1− xjc

)
(
ν2 + ξjX,c

ν2 + χj
X,c

)(
eν2t − e−χj

X,ct
)]

.

(350b)

As shall be useful to write the solutions in a compact form, we set

∆Xj
c

1 = − s1kX
j
c

ν1 + ξjX,c

, (351a)

∆Xj
c

2 = − s2kX
j
c

ν2 + ξjX,c

. (351b)

ΘXj
c

1 =
(
1− xjc

) ν1 + ξjX,c

ν1 + χj
X,c

, (351c)

ΘXj
c

2 =
(
1− xjc

) ν2 + ξjX,c

ν2 + χj
X,c

, (351d)

The solution for X1(t) and the ’stable’ solution for X2(t), i.e., consistent with convergence
toward the steady-state when t tends toward infinity, is thus given by:

dX1(t) = X11e
ν1t +

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1

[
e−ξjX,ct −

(
1− xjc

)
e−χj

X,ct,
]
, (352a)

dX2(t) = −
∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

2

[
e−ξjX,ct −

(
1− xjc

)
e−χj

X,ct,
]
, (352b)
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where
X11 = dX1(0)−

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1

(
1−ΘXj

c
1

)
. (353)

Using the definition of Xi(t) (with i = 1, 2) given by (348), we can recover the solutions
for K(t) and Q(t):

K(t)− K̃ = X1(t) +X2(t), (354a)

Q(t)− Q̃ = ω1
2X1(t) + ω2

2X2(t). (354b)

Linearizing the current account equation around the steady-state:

Ṅ(t) = r?dN(t) + ΞKdK(t) + ΞQdQ(t) +
∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
dXj

c (t),

=
(
ΞK + ΞQω

1
2

)
X1(t) +

(
ΞK + ΞQω

2
2

)
X2(t)

+
∑

c=S,D

∑

j=H,N

∑

X=A,B

Xj
c

[
e−ξjX,ct −

(
1− xjc

)
e−χj

X,ct
]
. (355)

Setting N1 = ΞK +ΞQω
1
2, N2 = ΞK +ΞQω

2
2, inserting solutions for K(t) and Q(t) given by

(354), solving yields the solution for traded bonds:

dN(t) = er
?t

[
(N0 −N)− ω1

N

ν1 − r?
+

∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
Xj

c

ξjX,c + r?

(
1−ΘXj

c ,′
)

+ N1

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξjX,c + r?

(
1−ΘXj

c ,′
1

)
−N2

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξjX,c + r?

(
1−ΘXj

c ,′
2

)]

+
ω1
N

ν1 − r?
eν1t −

∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
Xj

c

ξjX,c + r?

[
e−ξjX,ct −ΘXj

c ,′e−χj
X,ct,

]

− N1

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξjX,c + r?

[
e−ξjX,ct −ΘXj

c ,′
1 e−χj

X,ct,
]

+ N2

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

2 Xj
c

ξjX,c + r?

[
e−ξjX,ct −ΘXj

c ,′
2 e−χj

X,ct,
]
, (356)

where ω1
N = N1X11 and we set

ΘXj
c ,′ =

(
1− xjc

) ξjX,c + r?

χj
X,c + r?

, (357a)

ΘXj
c ,′

1 = ΘXj
c

1

ξjX,c + r?

χj
X,c + r?

, (357b)

ΘXj
c ,′

2 = ΘXj
c

2

ξjX,c + r?

χj
X,c + r?

. (357c)

Inserting the transversality condition into (356) leads to the ’stable’ solution for the stock
of foreign assets:

dN(t) =
ω1
N

ν1 − r?
eν1t −

∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
Xj

c

ξjX,c + r?

[
e−ξjX,ct −ΘXj

c ,′e−χj
X,ct,

]

− N1

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξjX,c + r?

[
e−ξjX,ct −ΘXj

c ,′
1 e−χj

X,ct,
]

+ N2

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

2 Xj
c

ξjX,c + r?

[
e−ξjX,ct −ΘXj

c ,′
2 e−χj

X,ct,
]
, (358)
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which is consistent with the intertemporal solvency condition

dN = − ω1
N

ν1 − r?
+

∑

c=S,D

∑

j=H,N

∑

X=A,B

Ξ
Xj

c
Xj

c

ξjX,c + r?

(
1−ΘXj

c ,′
)

+ N1

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

1 Xj
c

ξjX,c + r?

(
1−ΘXj

c
1

)
−N2

∑

c=S,D

∑

j=H,N

∑

X=A,B

∆Xj
c

2 Xj
c

ξjX,c + r?

(
1−ΘXj

c
2

)
,(359)

where dN = N − N0. Eq. (359) determines the change in the equilibrium value of the
marginal utility of wealth which adjusts once for al once the permanent shock hits the
economy so that the open economy remains solvent.

Q Semi-Small Open Economy Model with Sticky Prices

In this section, we extend our baseline model by introducing nominal price rigidities on
non-traded goods. We allow for non-separable preferences and assume both imperfect
mobility of labor and capital across sectors. Sectoral goods are produced by means of CES
production functions. We do not repeat the main elements of the model, see section O, and
emphasize the main changes caused by the assumption of sticky prices.

Building on Farhi and Werning [2016] and Kaplan, Moll, and Violante [2018], we propose
a New Keynesian model with heterogeneous good producers. Like Farhi and Werning [2017]
we consider a two-sector open economy with sticky prices in the non-traded sector. While
Farhi and Werning [2017] abstract from capital accumulation, in the lines of Kaplan et al.
[2018], we allow for capital accumulation and generate sticky prices by assuming quadratic
adjustment costs. Time is continuous.

There are five agents: households, the government, intermediate good firms, retailers
and final goods producers. While the terms of trade deteriorate significantly on impact
and along the dynamics, non-traded goods prices adjustment only gradually. Therefor we
assume that only non-traded goods are subject to sticky prices. To allow for sticky prices
in the non-traded sector, we assume that there are imperfectly competitive intermediate
good producers in the non-traded sector which produce differentiated goods which are sold
at (flexible) prices MN to retailers. Monopolistically competitive retailers purchase input
goods from the input good firms, differentiate them and sell them to final good producers.
Each retailer i chooses the sales price to maximize profits subject to price adjustment costs
as in Rotemberg [1982], taking as given the demand curve and the price of input goods
MN . Adjustment costs are assumed to be quadratic in the rate of price change and to be
proportional to value added in the non-traded sector:

θ

(
ṖN
i

PN
i

)
=

θ

2

(
ṖN
i

PN
i

)2

PNY N , (360)

where
ṖN
i

PN
i

stands for the individual price inflation πN
i ; θ > 0 determines the degree of price

stickiness in the non-traded sector. Existence of quadratic costs generates profits in the
retail sector, ΠN,R

i . While the government provides a subsidy τN to retailers so as to reduce
the price over the marginal cost to one, the subsidy is financed by means of a lump-sump tax
TN which is transferred to the households lump sum. Finally, a competitive representative
final goods producer aggregates a continuum of output produced by retailers.

The small open economy takes as given the world interest rate. Like Chodorow-Reich
et al. [2023], we consider an open economy with a fixed exchange rate regime which has
removed all capital controls so that the domestic interest rate collapses to the world interest
rate. While this assumption avoids adding too much complexity because the Taylor rule
collapses to r = r?, this ensures that the baseline model is obtained when we let the
parameter of the price adjustment cost function be zero.
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Q.1 Households

All elements which characterize the behavior of households is detailed in section N.1. While
households supply labor and capital services, they also choose the capital utilization rates.
They are the owners of retailers and thus receive the profit ΠN,R

i which will be detailed
later:

Ṅ(t) +PC(t)C(t) + PJ(t)J(t) +
∑

j=H,N

P j(t)CK,j(t)νK,j(t)K(t) +
θ

2

(
πN (t)

)2
PN (t)Y N (t)

= r?N(t) +W (t)L(t) +

∫ 1

0
ΠN,R

i (t)di+RK(t)K(t)
∑

j=H,N

αj
K(t)uK,j(t)− T (t). (361)

Households maximize their lifetime utility where instantaneous utility is assumed to be
non-separable in consumption and leisure (214)-(215) (i.e., we consider Shimer [2009] pref-
erences) subject to the budget constraint (361). First-order conditions are described by the
set of equations (220a)-(220f).

Q.2 Home-Produced Traded Good Firms: Flexible Terms of Trade

Firms in the traded sector faces two cost components: a capital rental rate RH(t) and a
wage rate WH(t):

max
K̃H(t),LH(t)

ΠH
I (t) = max

K̃H(t),LH(t)

{
PH(t)Y H(t)−WH(t)LH(t)−RH(t)K̃H(t)

}
. (362)

The first order conditions of the firm problem in the traded sector are:

PH
(
1− γH

) (
BH

)σH−1

σH
(
uK,HKH

)− 1

σH
(
Y H

) 1

σH = RH , (363a)

PHγH
(
AH

)σH−1

σH
(
LH

)− 1

σH
(
Y H

) 1

σH ≡ WH . (363b)

Q.3 Final and Intermediate Non-Traded Good Producers

We assume that within the non-traded sector, there are a large number of intermediate good
producers which produce differentiated varieties and thus are imperfectly competitive.

Final Non-Traded Good Firms
The final non-traded output, Y N , is produced in a competitive retail sector using a

constant-returns-to-scale production function which aggregates a continuum measure one
of sectoral goods:

Y N =

[∫ 1

0

(
XN

i

)ω−1
ω di

] ω
ω−1

, (364)

where ω > 0 represents the elasticity of substitution between any two different varieties and
XN

i stands for intermediate consumption of ith-variety (with i ∈ (0, 1)). The final good
producers behave competitively, and the households use the final good for both consumption
and investment.

Denoting by PN and PN
i the price of the final good in the non-traded sector and the

price of the ith variety of the intermediate good, respectively, the profit of the final good
producer reads:

ΠN
F = PN

[∫ 1

0

(
XN

i

)ω−1
ω di

]ω
ω

−
∫ 1

0
PN
i XN

i di. (365)

Total cost minimizing for a given level of final output gives the (intratemporal) demand
function for each input:

XN
i =

(
PN
i

PN

)−ω

Y N , (366)

and the price of the final output is given by:

PN =

(∫ 1

0

(
PN
i

)1−ω
di

) 1
1−ω

, (367)
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where PN
i is the price of variety i in sector j and PN is the price of the final good in sector

j = H,N . According to eq. (366), the price-elasticity of output of the ith variety within
the non-traded sector is:

−∂XN
i

∂PN
i

PN
i

XN
i

= ω. (368)

Intermediate Goods Firms
Each intermediate good producer faces two cost components: a capital rental cost equal

to RN (t) = RN (t), and a labor cost equal to the wage rate WN (t) = WN (t),. Intermediate
good producers choose capital services and labor by taking prices as given:

max
K̃N (t),LN (t)

ΠN
I (t) = max

K̃N (t),LN (t)

{
MN (t)Y N (t)−WN (t)LN (t)−RN (t)K̃N (t)

}
, (369)

where K̃N = uK,NKN and Y N is given by eq. (364).
The first-order conditions of the firm problem are:

MN
(
1− γN

) (
BN

)σN−1

σN
(
uK,NKN

)− 1

σN
(
Y N

) 1

σN ≡ RN , (370a)

MNγN
(
AN

)σN−1

σN
(
LN

)− 1

σN
(
Y N

) 1

σN ≡ WN . (370b)

Q.4 Retailers and Price Stickiness

We assume that the monopolistic competition occurs at the retail level. The retailers
purchase input goods from intermediate good producers, differentiate them and sell them to
final good producers. Each retailer chooses the sales price PN

i to maximize profits subject to
price adjustment costs as they differentiate and sell them to final good producers. Retailers
experience quadratic costs in adjusting type-i good variety and thus are the source of sticky
prices: the price PN

i is therefore a state variable. Each retailer i in the non-traded sector
charges a price PN

i to maximize profits subject to price adjustment costs à la Rotemberg
[1982], taking as given the demand curve for type-i good variety and the aggregate price
index in the non-traded sector PN . The adjustment costs are assumed to be quadratic in
the rate of change of non-traded prices and are assumed to be proportional to value added
in non-traded sector:

θ

(
ṖN
i

PN
i

)
=

θ

2

(
ṖN
i

PN
i

)2

PNY N , (371)

where θ > 0 the individual wage inflation is πN
i =

ṖN
i

PN
i
; θ determines the degree of price

stickiness in the non-traded sector. We assume that retailers receive a proportional constant
subsidy on type-i good variety, τN , setting the steady-state markup to one. This subsidy
is financed by a lump sum tax on retailers TN .

Each retailed maximizes the expected profit stream discounted at the real rate rN (s) =
r? − πN (s), i.e.,

max
ṖN
i ,PN

i

ΠN
i (t)

PN (t)
,

≡ max
ṖN
i ,PN

i

∫ ∞

0
e−

∫ t
0 rN (s)ds


PN

i

(
1 + τN

)
−MN

PN
XN

i − θ

2

(
ṖN
i

PN
i

)2

Y N


 , (372)

subject to ṖN
i (t) = πN

i (t)PN
i (t). Note that in line with the current practice, we divide the

profit by the price index. The control variable is ṖN
i (t) and the state variable is PN

i (t).
To solve the optimization problem, we set up the current-value Hamiltonian for the i-th
retailers (R) in the non-traded sector (N):

HR,N
i =

PN
i

PN

(
1 + τN

)(PN
i

PN

)−ω

Y N − MN

PN

(
PN
i

PN

)−ω

Y N − θ

2

(
ṖN
i

PN
i

)2

Y N + ΛN
i ṖN

i ,

=

(
PN
i

PN

)1−ω (
1 + τN

)
Y N − MN

(PN )1−ω

(
PN
i

)−ω
Y N − θ

2

(
ṖN
i

PN
i

)2

Y N + ΛN
i ṖN

i ,(373)
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where we have inserted XN
i =

(
PN
i

PN

)−ω
Y N (see eq. (366)). First-order conditions read:

∂HR,N
i

∂ṖN
i

= 0, θ
πN
i

PN
i

= ΛN
i , (374a)

∂HR,N
i

∂PN
i

=
(
r? − πN

)
ΛN
i − Λ̇N

i ,

(1− ω)
(
PN
i

)−ω

(PN )1−ω

(
1 + τN

)
Y N +

MN

(PN )1−ωω
(
PN
i

)−ω−1
Y N + θ

(
ṖN
i

)2

(
PN
i

)3 Y
N

=
(
r? − πN

)
ΛN
i − Λ̇N

i ,

(1− ω)
(
1 + τN

)
Y N

PN
+

MNωY N

(PN )2
+ θ

(
πN

)2

PN
Y N

=
(
r? − πN

)
θ
πN

PN
Y N − θ

π̇N

PN
Y N − θ

πN

PN
L̇j + θ

πN

PN

Ẇ j

PN
Y N ,

(1− ω)
(
1 + τN

)

θ
+

MN

θ

ω

PN
+
(
πN

)2
=

(
r? − πN

)
πN − π̇N − πN L̇j

Y N
+
(
πN

)2
,

π̇N +
ω

θ

[
MN

PN
−
(
ω − 1

ω

)(
1 + τN

)]
= πN

[
r? − πN − L̇j

Y N

]
,

π̇N +
ω

θ

[
MN

PN
− 1

]
= πN

[
r? − πN − Ẏ N

Y N

]
, (374b)

where we assume a symmetric situation to get the second line of the second first-order
condition, i.e., PN

i = PN , and we have inserted (374a) which has also been differentiated
w.r.t. time:

Λ̇N
i = θ

π̇N

PN
Y N + θ

πN

PN
Ẏ N − θ

πN

PN

ṖN

PN
Y N .

To get the last line, we assume that the government sets the revenue subsidy τN so that(
ω−1
ω

) (
1 + τN

)
= 1, i.e.,

τN =
1

ω − 1
> 0. (375)

This subsidy τN is financed by a lump sum tax on retailers TN which is transferred to the
households lump sum. We drop the subindex i because we consider a symmetric situation.
The total profit of retailers, net of the lump sum tax, is:

∫ 1

0
ΠR,N

i di = ΠN =
(
PN −MN

)
XN

i − θ

2

(
ṖN
i

PN
i

)2

PNY N . (376)

where XN
i = XN = Y N in a symmetric steady-state.

Q.5 Solving the Model

Totally differentiating (363a)-(363b), (370a)-(370b) and inserting solutions for LH and LN

given by eq. (245) and solutions for KH and KN given by eq. (247) into (363a)-(363b)
allow us to solve the demand for labor and capital in the traded and the non-traded sector
for sectoral wage rates and sectoral capital rental rates:

WH ,WN , RH , RN
(
MN , PH ,K, PN , uK,H , uK,N , AH , BH , AN , BN , λ̄

)
. (377)

Plugging the demand for capital (370a) in the non-traded sector into the decision about
capital utilization rate (298b), and totally differentiating leads to:

[
ξN2
ξN1

+
sNL
σN

]
ûK,N +

sNL
σN

(
K̂N − L̂N

)
=

(
σN − sNL

σN

)
B̂N +

(
sNL
σN

)
ÂN , (378)
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where we do not repeat the log-linearized versions of the optimal decisions for the capital
utilization rates for the traded sector described by eq. (321). Inserting first solutions for
Lj , Kj , and Y j , and invoking the implicit functions theorem leads to:

uK,j
(
MN , PH ,K, PN , AH , BH , AN , BN , λ̄

)
. (379)

Plugging back solutions for capital and technology utilization rates into (377) yields:

Lj ,Kj , Y j , Cg
(
MN , PH ,K, PN , AH , BH , AN , BN , λ̄

)
, (380)

Inserting appropriate solutions, the non-traded goods market clearing condition (326)
can be rewritten as follows:

Y N
(
MN , PH ,K, PN , AH , BH , AN , BN , λ̄

)
= CN

(
λ̄, PN , PH

)
+GN + JN

(
K,Q,PN , PH

)

+ CK,N
[
uK,N

(
MN , PH ,K, PN , AH , BH , AN , BN , λ̄

)]
KN +

θ

2

(
πN (t)

)2
Y N (t) (381)

Linearizing (381) leads to:

dY N (t) = dCN (t) + dJN (t) +KNξN1 duK,N (t), (382)

where we used the fact that πN = 0 at the steady-state so that the term θπNY NdπN (t)
vanishes.

Inserting appropriate solutions, the traded goods market clearing condition (327) can
be rewritten as follows:

Y H
(
MN , PH ,K, PN , AH , BH , AN , BN , λ̄

)
= CH

(
λ̄, PN , PH

)
+GH + JH

(
K,Q,PN , PH

)

+ CK,H
[
uK,H

(
MN , PH ,K, PN , AH , BH , AN , BN , λ̄

)]
KH . (383)

Linearizing (383) leads to:

dY H(t) = dCH(t) + dJH(t) + dXH(t) +KHξH1 duK,H(t), (384)

The market clearing conditions for the home-produced and non-traded goods, i.e., (381)
and (383) allow us to solve for terms of trade and non-traded intermediate good prices:

PH ,MN
(
K,PN , AH , BH , AN , BN , λ̄

)
. (385)

Inserting (385) into (379) and (380) leads to:

Lj ,Kj , Y j , Cg, uK,j
(
K,PN , AH , BH , AN , BN , λ̄

)
. (386)

Dynamic System
The dynamic system comprises four dynamic equations:

K̇ =
Y N − CN −GN − CK,N

(
uK,N

)
KN − θ

2

(
πN

)2
Y N

(1− ι)
[
PN

PJ

]−φJ
− δKK − K

2κ

[
Q

PJ
− 1

]2
,

(387a)

Q̇ = (r? + δK)Q−
{

1

K

[
RHuK,HKH +RNuK,NKN

]

−PHCK,HνK,H − PNCK,NνK,N + PJ
κ

2

(
I

K
− δK

)(
I

K
+ δK

)}
, (387b)

ṖN = πNPN , (387c)

π̇N = πN

[
r? − πN − Ẏ N

Y N

]
− ω

θ

[
MN

PN
− 1

]
(387d)
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where Y N , CN , JN , uK,H , uK,N ,MN
(
K,Q,PN , AH , BH , AN , BN , G

)
. The dynamic system

can be rewritten in a compact form:

K̇ = Υ
(
K,Q,PN , AH , BH , AN , BN

)
, (388a)

Q̇ = Σ
(
K,Q,PN , AH , BH , AN , BN

)
, (388b)

ṖN = πNPN , (388c)

π̇N = Π
(
K,Q,PN , AH , BH , AN , BN

)
. (388d)

Linearization and Solutions
Linearizing (388a)-(388d) in the neighborhood of the steady-state, we get in a matrix

form:




K̇(t)

Q̇(t)

ṖN (t)
π̇N (t)


 =




ΥK ΥQ ΥPN 0
ΣK ΣQ ΣPN 0
0 0 0 πN

ΠK ΠQ ΠPN r?







dK(t)
dQ(t)
dPN (t)
dπN (t)




+




∑N
j=H ΥAjdAj(t) +

∑N
j=H ΥBjdBj(t)∑N

j=H ΣAjdAj(t) +
∑N

j=H ΣBjdBj(t)

0∑N
j=H ΠAjdAj(t) +

∑N
j=H ΠBjdBj(t)


 , (389)

where the coefficients of the Jacobian matrix are partial derivatives evaluated at the steady-
state.

We define auxiliary variables Ẋ(t) = ΛX(t) + V −1ΣZ(t) where Z(t) is the vector of
technology shocks and Σ is a matrix which collects the effects of shocks on the dynamics,
and Λ is the matrix of eigenvalues with ν1, ν2 < 0 and ν3, ν4 > 0 on its diagonal, and V is
the matrix of eigenvectors. We define V −1Σ = S which is a matrix which has the same size
as the matrix of shocks.

The solutions for capital, the shadow price of capital, non-traded prices and inflation of
non-tradables read:

K(t)−K =
4∑

i=1

Xi(t), (390a)

Q(t)−Q =

4∑

i=1

ωi
2Xi(t), (390b)

PN (t)− PN =
4∑

i=1

ωi
3Xi(t), (390c)

πN (t)− πN =
4∑

i=1

ωi
4Xi(t), (390d)

where πN = 0 at the steady-state.
Current Account and Intertemporal Solvency Condition
The current account reads:

Ṅ(t) = r?N(t) + PH(t)XH(t)−MF (t), (391)

where XH = Y H − CH − GH − JH − CK,HKH stands for exports of home goods and we
denote by MF imports of foreign consumption and investment goods:

MF = CF +GF + JF . (392)

Inserting appropriate solutions, the current account equation reads:

Ṅ(t) = r?N(t) + Ξ
(
K(t), Q(t), PN (t), Xj(t)

)
, j = H,N, (393)

171



where Xj = Aj , Bj . Let us denote by ΞK , ΞQ, ΞPN , ΞXj the partial derivatives evaluated
at the steady-state of the dynamic equation for the current account w.r.t. K, Q, PN ,
and Xj . Linearizing (393) in the neighborhood of the steady-state, inserting solutions for
K(t), Q(t), PN (t), together with the law of motion of Xj(t) and solving yields the general
solution for the net foreign asset position:

dN(t) =

[
(N0 −N)−

4∑

i=1

ΨiDi −Ψ2D2

]
er

?t +Ψ1D1e
ν1t +Ψ2D2e

ν2t, (394)

where N0 is the initial stock of traded bonds and we set

Ei = ΞK + ΞQω
i
2 + ΞPNωi

3, (395a)

Ψi =
Ei

νi − r?
. (395b)

Invoking the transversality condition, we eliminate explosive paths and setD3 = D4 = 0.
It leads to the linearized version of the nations’s intertemporal solvency condition

N0 −N = Ψ1D1 +Ψ2D2. (396)

Setting t = 0 into (390a) and (390c) leads toK0−K = D1+D2 and PN
0 −PN = ω1

3D1+ω2
3D2

which can be written in a matrix form:
(

1 1
ω1
3 ω2

3

)(
D1

D2

)
=

(
K0 −K
PN
0 − PN

)
.

The solutions are:

D1 =
(K0 −K)ω2

3 −
(
PN
0 − PN

)

ω2
3 − ω1

3

, (397a)

D2 =

(
PN
0 − PN

)
− (K0 −K)ω1

3

ω2
3 − ω1

3

. (397b)

Inserting (397) into (396) leads to the linearized version of the net foreign asset position

N0 −N = ΦK (K0 −K) + ΦPN

(
PN
0 − PN

)
, (398)

where

ΦK =
E1ω

2
3 (ν2 − r?)− E2ω

1
3 (ν1 − r?)

(ν1 − r?) (ν2 − r?)
(
ω2
3 − ω1

3

) , (399a)

ΦPN =
E2 (ν1 − r?)−E1 (ν2 − r?)

(ν1 − r?) (ν2 − r?)
(
ω2
3 − ω1

3

) . (399b)

Accumulation Equation of Non Human Wealth
Remembering that the stock of financial wealth A(t) is equal to N(t) + Q(t)K(t), dif-

ferentiating w.r.t. time, i.e., Ȧ(t) = Ṅ(t) + Q̇(t)K(t) + Q(t)K̇(t), plugging the dynamic
equation for the marginal value of capital (220e), inserting the accumulation equations for
physical capital (217) and foreign assets (361), yields the accumulation equation for the
stock of financial wealth or the dynamic equation for private savings:

Ȧ(t) = r?N(t) +W (t)L(t) +RK(t)K(t)
∑

j=H,N

αj
K(t)uK,j(t) + Y N (t)

(
PN (t)−MN (t)

)
−G(t)

− θ

2

(
πN (t)

)2
PN (t)Y N (t)− PC(t)C(t) + PJ(t)J(t)−

∑

j=H,N

P j(t)CK,j(t)νK,j(t)K(t) +Q(t) [I(t)− δKK(t)] ,

+ K(t) (r? + δK)Q(t)−K(t)

{∑

j

αj
K(t)uK,j(t)RK(t)−

∑

j

P j(t)CK,j(t)νK,j(t)− PJ(t)
∂J(t)

∂K(t)

}
,

= r?A(t) + Π̃N (t) +W (t)L(t)− T (t)− PC(t)C(t), (400)

where j = H,N and we used the fact that Π̃N (t) ≡
∫ 1
0 ΠN,R

i (t)di = PNY N − MNY N −
θ
2

(
πN

)2
PNY N and we assume that the government levies lump-sum taxes, T , to finance

purchases of foreign-produced, home-produced and non-traded goods, i.e., T = G =(
GF + PH(.)GH + PN (.)GN

)
.
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Q.6 Solutions to Permanent Technology Shocks

When we solve the model with sticky prices, we consider an aggregate technology shock
as we are not investigating the effects of a rising share of asymmetric technology shocks.
We calibrate the shocks to Aj(t) and Bj(t) so that the adjustment in Zj(t) they generate
is identical to its adjustment when consider we consider shocks to the symmetric and
asymmetric components of Aj

c(t) and Bj
c(t). The percentage deviation of factor-augmenting

efficiency Xj = Aj , Bj relative to its long-run new value Xj (j = H,N) is described by:

X̂j(t) = e−ξjX t −
(
1− xj

)
e−χj

X t, j = H,N. (401)

where X̂j(t) = Xj(t)−Xj

Xj with Xj the new steady-state level, xj (j = H,N) parameterizes

the impact response of factor-augmenting technological change; ξjX > 0 and χj
X > 0 are

(positive) parameters which are set in order to reproduce the dynamic adjustment of factor-
augmenting technological change.

We define auxiliary variables Ẋ(t) = ΛX(t) + V −1ΣZ(t) where Z(t) is the vector of
technology shocks and Σ is a matrix which collects the effects of shocks on the dynamics,
and Λ is the matrix of eigenvalues with ν1, ν2 < 0 and ν3, ν4 > 0 on its diagonal, and V is
the matrix of eigenvectors. We define V −1Σ = S which is a matrix which has the same size
as the matrix of shocks. More specifically, let us write out the elements of V −1Σ:




u11 u12 u13 u14
u21 u22 u23 u24
u31 u32 u33 u34
u41 u42 u43 u44


×




ΥAH ΥBH ΥAN ΥBN

ΣAH ΣBH ΣAN ΣBN

PN
AH PN

BH PN
AN PN

BN

ΠAH ΠBH ΠAN ΠBN


 =




s11 s12 s13 s14
s21 s22 s23 s24
s31 s32 s33 s34
s41 s42 s43 s44


 .

(402)
The product leads to a matrix of the same size as the matrix of shocks, i.e., with four rows
and four columns with elements denoted by s1k = u11ΥXj + u12ΣXj + u13P

N
Xj + u14ΠXj ,

s2k = u21ΥXj + u22ΣXj + u23P
N
Xj + u24ΠXj , s3k = u31ΥXj + u32ΣXj + u33P

N
Xj + u34ΠXj ,

s4k = u41ΥXj + u42ΣXj + u43P
N
Xj + u44ΠXj (l indexes the row, k indexes the column).

As shall be useful below to write the solutions in a compact form, we index eigenvalues
with the subscript i (i.e., νi) and we denote

∆Xj

i = − sikX
j

νi + ξjX
, (403a)

ΘXj

i =
(
1− xj

) ν1i + ξjX
νi + χj

X

, (403b)

where ∆Xj

i and ∆Xj

i are terms which are functions of eigenvalue νi and shock parameters.
Solving Ẋi(t) = νiXi(t) +

∑4
i=1 sikdXi(t), the solutions for Xi(t) are:

X1(t) = X11e
ν1t +

∑

Xj

∆Xj

1

[
e−ξjX t −

(
1− xj

)
e−χj

X t
]
, (404a)

X2(t) = X21e
ν2t +

∑

Xj

∆Xj

2

[
e−ξjX t −

(
1− xj

)
e−χj

X t
]
, (404b)

X3(t) = −
∑

Xj

∆Xj

3

[
e−ξjX t −

(
1− xj

)
e−χj

X t
]
, (404c)

X4(t) = −
∑

Xj

∆Xj

4

[
e−ξjX t −

(
1− xj

)
e−χj

X t
]
, (404d)
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where Xj = Aj , Bj (with j = H,N) and

X11 = X1(0)−
∑

Xj

∆Xj

1

(
1−ΘXj

1

)
, (405a)

X21 = X2(0)−
∑

Xj

∆Xj

2

(
1−ΘXj

2

)
, (405b)

∆Xj

1 = − u1xX
j

ν1 + ξjX
, ∆Xj

2 = − u2xX
j

ν2 + ξjX
, (405c)

∆Xj

3 =
u3xX

j

ν3 + ξjX
, ∆Xj

4 =
u4xX

j

ν4 + ξjX
, (405d)

where Xj = Aj , Bj with j = H,N and x = 1, 2, 3, 4. Solutions for X1(0) and X2(0) are
given by

X1(0) =
ω2
3(K0 −K)− (PN

0 − PN )−X3(0)
(
ω2
3 − ω3

3

)
−X4(0)

(
ω2
3 − ω4

3

)

ω2
3 − ω1

3

, (406a)

X1(0) =
(PN

0 − PN )− ω1
3(K0 −K) +X3(0)

(
ω1
3 − ω3

3

)
+X4(0)

(
ω1
3 − ω4

3

)

ω2
3 − ω1

3

, (406b)

where K(0) = K0 and PN (0) = PN
0 . Using the definition of Y (t) = VX(t), we obtain

solutions for capital, the shadow price of capital, non-traded goods prices and inflation
rate of non-tradables which are described by (390). Setting t = 0 into the solutions of
state variables (390a) and (390c) leads to K(0) − K =

∑4
i=1Xi(0) and PN (0) − PN =∑4

i=1 ω
i
3Xi(0). Solutions for X1(0) and X2(0) are:

X1(0) =
ω2
3(K0 −K)− (PN

0 − PN )−X3(0)
(
ω2
3 − ω3

3

)
−X4(0)

(
ω2
3 − ω4

3

)

ω2
3 − ω1

3

, (407a)

X1(0) =
(PN

0 − PN )− ω1
3(K0 −K) +X3(0)

(
ω1
3 − ω3

3

)
+X4(0)

(
ω1
3 − ω4

3

)

ω2
3 − ω1

3

. (407b)

Linearizing the current account equation, inserting solutions and solving leads to:

dN(t) =
ω1
B

ν1 − r?
eν1t +

ω2
B

ν2 − r?
eν2t −

∑

Xj

ΞXjXj

ξXj + r?

(
e−ξ

Xj t −ΘXj ,′e−χ
Xj t

)

− E1

∑

Xj

∆Xj

1

ξXj + r?

(
e−ξ

Xj t −ΘXj ,′
1 e−χ

Xj t
)
−E2

∑

Xj

∆Xj

2

ξXj + r?

(
e−ξ

Xj t −ΘXj ,′
2 e−χ

Xj t
)
,

+ E3

∑

Xj

∆Xj

3

ξXj + r?

(
e−ξ

Xj t −ΘXj ,′
3 e−χ

Xj t
)
+E4

∑

Xj

∆Xj

4

ξXj + r?

(
e−ξ

Xj t −ΘXj ,′
4 e−χ

Xj t
)

(408)

where ω1
B = E1X11, ω

2
B = E2X21 and indexing eigenvalues with i = 1, 2, 3, 4, we set

X11 = dX1(0)−
∑

j=H,N

∑

Xj=Aj ,Bj

∆Xj

1

(
1−ΘXj

1

)
, (409a)

X21 = dX2(0)−
∑

j=H,N

∑

Xj=Aj ,Bj

∆Xj

2

(
1−ΘXj

2

)
, (409b)

ΘXj ,′
i = ΘXj

i

ξjX + r?

χj
X + r?

, (409c)

ΘXj ,′ =
(
1− xj

) ξjX + r?

χj
X + r?

. (409d)

where Xj = Aj , Bj and j = H,N . To get the convergent solution (408), we have imposed
the transversality condition which in turn requires that the intertemporal solvency condition
holds:

(N −N0) =
ω1
B

r? − ν1
+

ω2
B

r? − ν2
+
∑

Xj

ωXj

B

r? + ξXj

, (410)
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Figure 44: Theoretical vs. Empirical Responses Following a Technology Shock. Notes:
’LP (data)’ refers to the solid blue line which displays point estimate from local projections with shaded areas
indicating 90% confidence bounds; ’Sticky Prices’ refers to the thick solid black line with squares which displays
model predictions in the non-traded goods sticky price extension of the baseline model. We consider a permanent
technology improvement normalized to one percent in the long-run, see Fig. 44(a).

where we set

ωXj

B = ΞXjXj
(
1−ΘXj ,′

)
+E1∆

Xj

1

(
1−ΘXj ,′

1

)
+ E2∆

Xj

2

(
1−ΘXj ,′

2

)

− E3∆
Xj

3

(
1−ΘXj ,′

3

)
−E4∆

Xj

4

(
1−ΘXj ,′

4

)
. (411)

Q.7 Numerical Results

In this subsection, we explore quantitatively the dynamic effects of a permanent technology
improvement normalized to 1% in the long-run. We consider the same model as in the main
text except that we assume that non-traded goods prices are sticky and thus adjust only
gradually. The calibration is identical to that in the main text. We have to calibrate two
new parameters. Following Kaplan et al. [2018] we choose a value of 10 for the elasticity
of substitution ω between intermediate goods for final goods producers, implying a steady-
state markup of 11%. We set θ in the price adjustment cost function to 100, so that the
slope of the Phillips curve is ω

θ = 0.1.
Fig. 44 contrasts dynamic responses estimated empirically which are displayed by solid

blue lines with model’s predictions which are shown in solid black lines with squares. As
in the main text, we consider the same dynamic adjustment of utilization-adjusted-TFP
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associated with a productivity differential between tradables and non-tradables as shown
in Fig. 44(a) and Fig. 44(b). For the purpose of comparison, we consider the same
macroeconomic variables as in Fig. 5 in the main text except that we replace the relative
price of non-tradable (i.e., PN (t)/PH(t)) with the price of non-traded goods PN (t). In a
one-sector closed economy model as in Gali [1999], assuming that money supply is fixed, a
technology shock unambiguously lowers hours. A model with flexible prices can account for
the decline in hours once we assume that the economy has access to world capital markers
and trades with the rest of the world. Intuitively, when the country is open to international
trade and world capital markets, households can work less as they can import goods from
abroad to meet a higher demand for traded goods. As long as mobility costs are not
prohibitive, labor shifts away from the traded sector and toward the non-traded sector to
meet the higher demand for non-traded goods. However, since technology improvements are
concentrated within traded industries, the higher marginal cost leads non-traded firms to set
higher prices which mitigate the rise in the demand for non-traded goods. In the model with
flexible prices, non-traded hours decline disproportionately compared with traded hours.
By contrast, when non-traded good prices are sticky, see Fig. 44(k), hours increase in the
non-traded sector, as displayed by Fig. 44(d). Intuitively, in a model with flexible prices,
higher demand for non-tradables gives rise to an appreciation in non-traded goods prices
which eliminates the excess demand in the non-traded sector. Conversely, when non-traded
goods prices are sticky, the excess demand which arises in the non-traded sector must give
rise to an increase in non-traded hours worked as prices cannot adjust to eliminate the
excess demand. Because non-traded hours significantly increase and the non-traded sector
accounts for two-third of labor, total hours worked increase as displayed by the black line
in Fig. 44(c)

R Skilled vs. Unskilled Labor: Evidence

So far, we have considered that workers’ skills were homogenous across sectors. One key
question is whether the decline in total hours worked is uniformly distributed across workers’
skills and if not, how does the skill composition effect drive the time-increasing response of
hours. The evidence we document below reveals that the decline in total hours worked in
the short-run caused by a technology improvement is concentrated among skilled workers.

R.1 Skill Composition Effects: The Framework

R.1.1 Households

The representative household supplies both skilled and unskilled labor. We denote hours
worked for skilled and unskilled labor by S(t) and U(t). In exchange for offering skilled and
unskilled labor services, the worker receives a wage rate of WS(t) and WU (t), respectively.
Total labor income is:

W (t)L(t) = WS(t)S(t) +WU (t)U(t). (412)

We thus assume that the disutility from aggregate labor supply is split into the disutility
from the supply of skilled labor and the supply of unskilled labor:

ζ
σL

1 + σL
L

1+σL
σL =

[
ζS

σL
1 + σL

(S)
σL+1

σL + ζU
σL

1 + σL
(U)

σL+1

σL

]
, (413)

where 0 < ζs < 1 (s = S,U) is the weight of skilled (unskilled) labor supply to the labor
index L(.) and σL is the Frisch elasticity of labor supply. The aggregage wage index is:

W (t) =
[
ζS

(
WS(t)

)σL+1
+ ζU

(
WU (t)

)σL+1
] 1

σL+1
. (414)

The supply of skilled and unskilled hours worked is described by:

S(t) = ζS

(
WS(t)

W (t)

)σL

L(t), (415a)

U(t) = ζU

(
WU (t)

W (t)

)σL

L(t). (415b)
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Log-linearizing (414) leads to:

Ŵ (t) = αSŴ
S(t) + (1− αS) Ŵ

U (t), (416)

where αS and αU stands for the skilled and unskilled share of labor income, respectively:

αS =
WSS(t)

W (t)L(t)
= ζS

(
WS(t)

W (t)

)σL+1

, (417a)

αU =
WUU(t)

W (t)L(t)
= ζU

(
WU (t)

W (t)

)σL+1

. (417b)

We made use of (415a) and (415b) to get (417a)-(417b).
Following Horvath [2000], we assume that hours worked in the traded and the non-

traded sectors are aggregated by means of a CES function:

S(t) =

[
ϑ
−1/εS
S

(
SH

) εS+1

εS + (1− ϑS)
−1/εS

(
SN

) εS+1

εS

] εS
εS+1

, (418a)

U(t) =

[
ϑ
−1/εU
U

(
UH

) εU+1

εU + (1− ϑU )
−1/εU

(
UN

) εU+1

εU

] εU
εU+1

, (418b)

where 0 < ϑS < 1 (ϑU ) is the weight of skilled (unskilled) labor supply to the traded sector
in the skilled (unskilled) labor index S(.) (U(.)) and εS (εU ) measures the ease with which
skilled (unskilled) hours worked can be substituted for each other and thereby captures the
degree of skilled (unskilled) labor mobility across sectors.

The aggregate wage index W (.) associated with the above defined labor index for skilled
(418a) and unskilled (418b) labor supply is:

WS(t) =
[
ϑS

(
WS,H(t)

)εS+1
+ (1− ϑS)

(
WS,N (t)

)εS+1
] 1

εS+1
, (419a)

WU (t) =
[
ϑU

(
WU,H(t)

)εU+1
+ (1− ϑU )

(
WU,N (t)

)εU+1
] 1

εU+1
, (419b)

where WS,H(t) (WU,H(t)) and WS,N (t) (WU,N (t)) are wages paid in the traded and the
non-traded sectors for skilled (unskilled) labor.

Given the aggregate wage index for skilled labor (419a) and unskilled labor (419b), we
can derive the allocation of labor supply to the traded and the non-traded sector for each
type of skill:

SH(t) = ϑS

(
WS,H(t)

WS(t)

)εS

S(t), SN (t) = (1− ϑS)

(
WS,N (t)

WS(t)

)εS

S(t). (420a)

UH(t) = ϑU

(
WU,H(t)

WU (t)

)εU

U(t), SN (t) = (1− ϑU )

(
WU,N (t)

WU (t)

)εU

U(t). (420b)

Aggregating labor compensation across sectors and skills leads to:

WS,HSH +WS,NSN = WSS, (421a)

WU,HUH +WU,NUN = WUU, (421b)

where W is the aggregate wage and L is aggregate labor supply.
As will be useful later, log-linearizing the wage index in the neighborhood of the initial

steady-state leads to:

ŴS(t) = αH
S ŴS,H(t) +

(
1− αH

S

)
ŴS,N (t), (422a)

ŴU (t) = αH
U ŴU,H(t) +

(
1− αH

U

)
ŴU,N (t), (422b)

where αH
S = WS,HSH

WSS
and αH

U = WU,HUH

WUU
tradable content of aggregate labor compensation:

αH
S = ϑS

(
WS,H

WS

)1+εS

, 1− αH
S = (1− ϑS)

(
WS,N

WS

)1+εS

, (423a)

αH
U = ϑU

(
WU,H

WU

)1+εU

, 1− αH
U = (1− ϑU )

(
WU,N

WU

)1+εU

. (423b)
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R.1.2 Firms

Each sector consists of a large number of identical firms which use labor, Lj , and physical
capital (inclusive of capital utilization), K̃j , according to a technology described by a CES
production function:

Y j(t) =

[
γj

(
Aj(t)Lj(t)

)σj−1

σj +
(
1− γj

) (
Bj(t)K̃j(t)

)σj−1

σj

] σj

σj−1

, (424)

where 0 < γj < 1 is the weight of labor in the production technology, σj is the elasticity of
substitution between capital and labor in sector j = H,N , and Aj(t) and Bj(t) are labor-
and capital-augmenting efficiency.

We assume that efficient labor is a CES aggregator of skilled and unskilled labor:

AjLj(t) =


γjL

(
Aj

S(t)S
j(t)

)σ
j
L
−1

σ
j
L +

(
1− γjL

)(
Aj

U (t)U
j(t)

)σ
j
L
−1

σ
j
L




σ
j
L

σ
j
L
−1

, (425)

where 0 < γjL < 1 is the weight of skilled labor in the efficient labor index, σj
L is the

elasticity of substitution between skilled and unskilled labor in sector j = H,N , and Aj
S(t)

and Aj
U (t) are skilled labor- and unskilled labor-augmenting efficiency.

Because we assume that goods and factor products are perfectly competitive and since
CES production functions display constant returns to scale, one can define the labor content
of value added in sector j = H,N or the labor income share:

∂Y j

∂Lj

Lj

Y j
=

W jLj

P jY j
≡ sjSL, (426)

and the skilled (unskilled) content of labor in sector j = H,N denoted by sjS (sjU ) or the
skilled (unskilled) labor income share:

∂Lj

∂Sj

Sj

Lj
=

WS,jSj

W jLj
≡ sjS , (427a)

∂Lj

∂U j

Sj

Lj
=

WU,jU j

W jLj
≡ sjU = 1− sjS . (427b)

Aggregating labor compensation across skills leads to:

WS,HSH +WU,HUH = WHLH , (428a)

WS,NSN +WU,NUN = WNLN . (428b)

Aggregating labor compensation across sectors leads to:

W (t)L(t) = WH(t)LH(t) +WN (t)LN (t), (429)

where W is the aggregate wage and L is aggregate labor supply.

R.2 Skill-Biased Technological Change and Sectoral Labor Income

As shall be useful later, we draw on Caselli and Coleman [2006] and Caselli [2016] to
construct time series for SBTC. Denoting the elasticity of substitution between skilled and
unskilled labor in sector j by σj

L, skilled-labor- and unskilled-labor-augmenting efficiency

by AS,j
t and AU,j

t , respectively, and the skilled labor income share by sjS,it =
WS,j

it Sj
it

W j
itL

j
it

, our

measure of capital-utilization-adjusted-FBTC, denoted by SBTCj
t , reads:

SBTCj
it =

(
AS,j

it /ĀS,j
i

AU,j
it /ĀU,j

i

)σ
j
L
−1

σ
j
L

=

(
Sj
S,it

S̄j
S,i

)(
Sj
it/S̄

j
i

U j
it/Ū

j
i

)−
(

σ
j
L
−1

σ
j
L

)

, (430)
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Tradables Non-Tradables

(a) Skill-Biased
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Change in the
Traded Sector

(b) Skill-Biased
Technological
Change in the

Non-Traded Sector

Figure 45: Technology Shock and Skill-Biased Technological Change Notes: The solid blue line shows
the response of skill-biased technological change to an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run.
Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate the dynamic responses
to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes utilization-adjusted
aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology shock is identified by imposing long-run
restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the second step, we
estimate the effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate years. Vertical axes measure percentage
deviation from trend in total hours worked units (sectoral hours worked). Sample: 11 OECD countries, 1970-2017, annual data.

where a bar refers to averaged values of the corresponding variable over 1970-2017. To
construct time series for SBTCj

it, we plug time series for the ratio of the skilled to unskilled

labor income share, Sj
S,t = sjS,t/

(
1− sjS,t

)
, the ratio of skilled to unskilled hours worked,

Sj(t)
Uj(t)

. We also plug values for σj
L we have estimated for each country of the sample (11

OECD countries, 1970-2017). We find values for σj
L larger than one for the whole sample

(and most of countries/sectors) thus corroborating the gross substitutability between skilled
and unskilled workers documented by Havranek et al. [2024]. When SBTCj

it increases,
technological change is biased toward skilled labor while a fall indicates that technological
change is biased toward unskilled labor. Since sjS,t and Sj/Lj falls in both sectors, we expect

a decline in SBTCj
it. This hypothesis is corroborated by our evidence shown in Fig. 45. Both

panels plot the dynamic response of SBTC in the traded and the non-traded sector after a
technology shock. For both sectors, our measure (430) of SBTC declines. Since σj

L > 1 (with
j = H,N), it means that unskilled-labor-augmenting increases relative to skilled-labor-
augmenting productivity. Intuitively, as unskilled-labor-augmenting productivity increases
more rapidly than skilled-labor-augmenting productivity, because skilled and unskilled labor
are gross substitutes in production, firms find it more profitable to increase the demand for
unskilled labor, which makes production more intensive in unskilled hours and less intensive
in skilled labor.

R.3 Data Construction and Source

To disentangle the labor effects of a technology improvement across workers’ skills, we use
time series from EU KLEMS [2008] which are available for eleven OECD countries, see
below. The maximum time period of time is 1970-2017 and the minimum time period is
2008-2017. As shown in subsection R.4, the responses of high- and medium-skilled labor are
very similar and quite distinct from those obtained for low-skilled workers. Thus, for the
purpose of clarity, we consider two types of workers: those who are skilled by aggregating
high- and medium-skilled labor and those who are unskilled. Skilled hours worked are
denoted by Sit and unskilled hours worked are denoted by Uit.

Source. Time series about high- (denoted by the superscript S), medium- (denoted
by the superscript M), and low-skilled labor (denoted by the superscript U) are taken
from EU KLEMS Database, Timmer et al. [2008]. Data are available for eleven OECD
countries. The baseline period is running from 1970 to 2017 but is different and shorter
for several countries as indicated in braces for the corresponding countries: Austria (1980-
2017), Belgium (1980-2017), Canada (1970-2005), Denmark (1980-2017), Finland (1970-
2017), Italy (1970-2017), Japan (1973-2017), the Netherlands (1979-2017), Spain (1980-
2017), the United Kingdom (1970-2017), and the United States (1970-2005). We calculate
the share of labor compensation in industry j for skilled labor as the ratio of the sum of
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(a) Hours Worked for
High-Skilled Labor,

Sit

(b) Hours Worked for
Medium-Skilled

Labor, Mit

(c) Hours Worked for
Low-Skilled Labor,

Uit
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Labor, SH
it
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Medium-Skilled
Labor, MH

it

(f) Hours Worked for
Traded Low-Skilled

Labor, UH
it

(g) Hours Worked for
Non-Traded

High-Skilled Labor,
SN
it

(h) Hours Worked for
Non-Traded

Medium-Skilled
Labor, MN

it

(i) Hours Worked for
Non-Traded

Low-Skilled Labor,
UN

it

Figure 46: Effects of a Technology Shock across Workers’ Skills Notes: The solid blue line shows the
response of labor hours across workers’ skills to an exogenous increase in utilization-adjusted aggregate TFP by 1% in the long-run.
Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. To estimate the dynamic responses
to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model that includes utilization-adjusted
aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology shock is identified by imposing long-run
restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted aggregate TFP. In the second step, we
estimate the effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate years. Vertical axes measure percentage
deviation from trend in total hours worked units (sectoral hours worked). Sample: 11 OECD countries, 1970-2017, annual data.

labor compensation of high- and medium-skilled labor to total labor compensation in sector
j, i.e., sjS = WS,jSj+WM,jMj

W jLj . To calculate the intensity of industry j in skilled labor, we
multiply the share of labor compensation is skilled labor by the labor income share, i.e.,
sjS × sjL, to ensure a consistency with the measure of capital intensity which is expressed as
a percentage of value added.

R.4 Evidence about the Labor Market Effects of a Technology Shock
across Workers’ Skills

In the data, there are three types of labor, say high-, medium-, and low-skilled. As it stands
out from the evidence we document in Fig. 46 and Fig. 47 which shows the dynamic effects
of a 1% permanent increase in utilization-adjusted-aggregate-TFP, the responses of both
high- and medium-skilled labor are quite distinct from the responses of low-skilled labor.
More specifically, the evidence reveals that both high- and medium-skilled labor decline
significantly at both an aggregate and sectoral level while the fall in hours of low-skilled
workers is never statistically significant at any horizon. Importantly, as can be seen in Fig.
47, the labor income shares of both high- and medium-skilled labor, i.e., sjS = WS,jSj

W jLj and

sjM = WM,jMj

W jLj , decline dramatically while the labor income share of low-skilled labor, i.e.,

sjU = WU,jUj

W jLj , increases.
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(a) High-Skilled Labor
Income Share of
Tradables, sHS,it

(b) Medium-Skilled
Labor Income Share
of Tradables, sHM,it

(c) Low-Skilled Labor
Income Share of
Tradables, sHU,it

(d) High-Skilled Labor
Income Share of

Non-Tradables, sNS,it

(e) Medium-Skilled
Labor Income Share
of Non-Tradables,

sNM,it

(f) Low-Skilled Labor
Income Share of

Non-Tradables, sNU,it

Figure 47: Effects of a Technology Shock on Labor Income Shares across Workers’ Skills
Notes: The solid blue line shows the response of labor hours across workers’ skills to an exogenous increase in utilization-adjusted
aggregate TFP by 1% in the long-run. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors.
To estimate the dynamic responses to a technology shock, we adopt a two-step method. In the first step, we estimate a VAR model
that includes utilization-adjusted aggregate TFP, real GDP, total hours worked, the real consumption wage and the technology shock
is identified by imposing long-run restrictions, i.e., technology shocks are driven by the permanent increase in utilization-adjusted
aggregate TFP. In the second step, we estimate the effects by using Jordà’s [2005] single-equation method. Horizontal axes indicate
years. Vertical axes measure percentage deviation from trend in labor compensation units. Sample: 11 OECD countries, 1970-2017,
annual data.

S Semi-Small Open Economy with Skilled and Unskilled La-
bor

This Appendix puts forward an open economy model with tradables and non-tradables,
imperfect mobility of labor and capital across sectors, capital adjustment costs, endogenous
terms of trade where we make the distinction between skilled and unskilled labor and allow
for skill-biased technological change in addition to factor-biased technological change.

S.1 Households

At each instant of time, the representative household consumes traded and non-traded
goods denoted by CT and CN , respectively, which are aggregated by means of a CES
function:

C =

[
ϕ

1
φ
(
CT

)φ−1
φ + (1− ϕ)

1
φ
(
CN

)φ−1
φ

] φ
φ−1

, (431)

where 0 < ϕ < 1 is the weight of the traded good in the overall consumption bundle and φ
corresponds to the elasticity of substitution between traded goods and non-traded goods.
The index CT is defined as a CES aggregator of home-produced traded goods, CH , and
foreign-produced traded goods, CF :

CT =

[(
ϕH

) 1
ρ
(
CH

) ρ−1
ρ + (1− ϕH)

1
ρ
(
CF

) ρ−1
ρ

] ρ
ρ−1

, (432)

where 0 < ϕH < 1 is the weight of the home-produced traded good in the overall traded
consumption bundle and ρ corresponds to the elasticity of substitution between home-
produced traded goods goods and foreign-produced traded goods.

The investment good is produced using inputs of the traded good and the non-traded
good according to a constant-returns-to-scale function which is assumed to take a CES
form:

JK =

[
ι

1
φJ

(
JT

)φJ−1

φJ + (1− ι)
1
φJ

(
JN

)φJ−1

φJ

] φJ
φJ−1

, (433)
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where ι is the weight of the investment traded input (0 < ι < 1) and φJ corresponds to
the elasticity of substitution in investment between traded and non-traded inputs. The
index JT is defined as a CES aggregator of home-produced traded inputs, JH , and foreign-
produced traded inputs, JF :

JT =

[
(ιH)

1
ρJ

(
JH

) ρJ−1

ρJ + (1− ιH)
1
ρJ

(
JF

) ρJ−1

ρJ

] ρJ
ρJ−1

, (434)

where 0 < ιH < 1 is the weight of the home-produced traded in input in the overall traded
investment bundle and ρJ corresponds to the elasticity of substitution between home- and

We allow for imperfect mobility of capital across sectors by assuming that the capital
stock in the traded and the non-traded sectors are aggregated by means of a CES function:

K =

[
ϑ
−1/εK
K

(
KH

) εK+1

εK + (1− ϑK)−1/εK
(
KN

) εK+1

εK

] εK
εK+1

, (435)

where 0 < ϑK < 1 is the weight of capital supply to the traded sector in the aggregate
capital index K(.) and εK measures the ease with which tangible assets can be substituted
for each other and thereby captures the degree of capital mobility across sectors.

The aggregate capital rental index RK(.) associated with the above defined capital index
(435) is:

RK(t) =
[
ϑK

(
RH(t)

)εK+1
+ (1− ϑK)

(
RN (t)

)εK+1
] 1

εK+1
, (436)

where RH(t) and RN (t) are capital rental rates paid in the traded and the non-traded
sectors.

The representative agent is endowed with one unit of time, supplies a fraction L(t) as
labor, and consumes the remainder 1 − L(t) as leisure. At any instant of time, house-
holds derive utility from their consumption and experience disutility from working. The
representative household maximizes the following objective function:

U =

∫ ∞

0
Λ (C(t), L(t)) e−βtdt, (437)

where β > 0 is the discount rate. We allow for non-separability in consumption and leisure
in preferences. The household’s period utility function is increasing in his/her consumption
C and decreasing in his/her labor supply L, with functional form (see Shimer [2009]):

Λ (C,L) ≡ C1−σV (L)σ − 1

1− σ
, if σ 6= 1, V (L) ≡

(
1 + (σ − 1) ζ

σL
1 + σL

L
1+σL
σL

)
(438)

and

U (C,L) ≡ logC − ζ
σL

1 + σL
L

1+σL
σL , if σ = 1. (439)

These preferences are characterized by two crucial parameters: σL is the Frisch elasticity of
labor supply, and σ > 0 determines the substitutability between consumption and leisure.

Each household supplies skilled and unskilled labor denoted by S(t) and U(t), respec-
tively. We keep the labor-supply side of our model simple and do not model flows between
occupations in order to focus on the role of skills in driving both the labor reallocation and
wage effects of technology shocks. We thus assume that the disutility from aggregate labor
supply is split into the disutility from the supply of skilled labor and the supply of unskilled
labor:

ζ
σL

1 + σL
L

1+σL
σL =

[
ζS

σL
1 + σL

(S)
σL+1

σL + ζU
σL

1 + σL
(U)

σL+1

σL

]
, (440)

where 0 < ζs < 1 (s = S,U) is the weight of skilled (unskilled) labor supply to the labor
index L(.).
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As shall be useful below, we write down the partial derivatives of (439):

ΛC = C−σV (L)σ, (441a)

ΛCC = −σ
ΛC

C
, (441b)

ΛS =
C1−σσVSV

σ−1

1− σ
, (441c)

ΛSS = ΛS

[
VSS

VS
+ (σ − 1)

VS

V

]
, (441d)

ΛU =
C1−σσVUV

σ−1

1− σ
, (441e)

ΛUU = ΛU

[
VUU

VU
+ (σ − 1)

VU

V

]
, (441f)

ΛCS = σC−σVSV
σ−1, (441g)

ΛCU = σC−σVUV
σ−1, (441h)

ΛSU = ΛS (σ − 1)
VU

V
, (441i)

where ΛC = ∂Λ
∂C . According to eq. (441g) and (441h), the marginal utility of consumption

is increasing in labor supply as long as σ > 1, i.e., if consumption and leisure are gross
substitutes. To get (441i), we have used the fact that VSU = 0 which comes from our
assumption that skills are immobile across occupations although they are mobile (to a
certain extent) across sectors. To see it formally, we write out the partial derivatives of the
disutility from labor supply:

VS = (σ − 1) ζS (S)
1

σL , (442a)

VSS = (σ − 1)
ζS
σL

(S)
1

σL
−1

, (442b)

VSU = 0, (442c)

VU = (σ − 1) ζU (U)
1

σL , (442d)

VUU = (σ − 1)
ζU
σL

(U)
1

σL
−1

. (442e)

Following Horvath [2000], we assume that hours worked in the traded and the non-
traded sectors are aggregated by means of a CES function:

S(t) =

[
ϑ
−1/εS
S

(
SH(t)

) εS+1

εS + (1− ϑS)
−1/εS

(
SN (t)

) εS+1

εS

] εS
εS+1

, (443a)

U(t) =

[
ϑ
−1/εU
U

(
UH(t)

) εU+1

εU + (1− ϑU )
−1/εU

(
UN (t)

) εU+1

εU

] εU
εU+1

, (443b)

where 0 < ϑS < 1 (ϑU ) is the weight of skilled (unskilled) labor supply to the traded sector
in the skilled (unskilled) labor index S(.) (U(.)) and εS (εU ) measures the ease with which
skilled (unskilled) hours worked can be substituted for each other and thereby captures the
degree of skilled (unskilled) labor mobility across sectors.

The aggregate wage index W (.) associated with the above defined labor index for skilled
(443a) and unskilled (443b) labor supply is:

WS(t) =
[
ϑS

(
WS,H(t)

)εS+1
+ (1− ϑS)

(
WS,N (t)

)εS+1
] 1

εS+1
, (444a)

WU (t) =
[
ϑU

(
WU,H(t)

)εU+1
+ (1− ϑU )

(
WU,N (t)

)εU+1
] 1

εU+1
, (444b)

where WS,H(t) (WU,H(t)) and WS,N (t) (WU,N (t)) are wages paid in the traded and the
non-traded sectors for skilled (unskilled) labor.
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We assume that the households own the physical capital stock and choose the level of
capital utilization uK,j(t). Households lease capital services (the product of utilization and
physical capital) to firms in sector j at rental rate Rj(t). Thus capital income received by
households reads

∑
j R

j(t)uK,j(t)Kj(t). Households supply labor services to firms in sector

j at a wage rate W j(t). Thus labor income received by households reads
∑

j W
j(t)Lj(t).

In addition, households accumulate internationally traded bonds, N(t), that yield net in-
terest rate earnings of r?N(t). Denoting lump-sum taxes by T (t), households’ flow budget
constraint states that real disposable income can be saved by accumulating traded bonds,
consumed, PC(t)C(t), invested in tangible assets, PJ(t)J

K(t), and covers the capital uti-
lization cost:

Ṅ(t) = r?N(t) +
[
αK(t)uK,H(t) + (1− αK(t))uK,N (t)

]
RK(t)K(t) +WS(t)S(t)

+ WU (t)U(t)− T (t)− PC(t)C(t)− PJ(t)J
K(t)−

∑

j

P j(t)CK,j(t)νK,jK(t),(445)

where we denote the capital return share of tradables by αK = RHKH

RKK
and the share of

sectoral capital in the aggregate capital stock by νK,j(t) = Kj(t)/K(t).
The role of the capital utilization rate is to mitigate the effect of a rise in the capital

cost. We let the function CK,j(t) denote the adjustment costs associated with the choice
of capital and technology utilization rates which are increasing and convex functions of
utilization rates uK,j(t):

CK,j(t) = ξj1
(
uK,j(t)− 1

)
+

ξj2
2

(
uK,j(t)− 1

)2
, (446)

where ξj2 > 0 is a free parameter; as ξj2 → ∞, utilization is fixed at unity; ξj1 must be
restricted so that the optimality conditions are consistent with the normalization of steady
state utilization of 1.

The accumulation of tangible assets is governed by the following law of motions:

K̇(t) = IK(t)− δKK(t), (447)

where IK is investment and 0 ≤ δK < 1 is a fixed depreciation rate. We assume that capital
accumulation is subject to increasing and convex cost of net investment:

JK(t) = IK(t) + Ψ
(
IK(t),K(t)

)
K(t), (448)

where Ψ (.) is increasing (i.e., Ψ′(.) > 0), convex (i.e., Ψ′′(.) > 0), is equal to zero at δK (i.e.,
Ψ(δK) = 0), and has first partial derivative equal to zero as well at δK (i.e., Ψ′(δK) = 0).
We suppose the following functional form for the adjustment cost function:

ΨK
(
IK(t),K(t)

)
=

κ

2

(
IK(t)

K(t)
− δK

)2

. (449)

Using (442), partial derivatives of total investment expenditure are:

∂JK(t)

∂IK(t)
= 1 + κ

(
IK(t)

K(t)
− δK

)
, (450a)

∂JK(t)

∂K(t)
= −κ

2

(
IK(t)

K(t)
− δK

)(
IK(t)

K(t)
+ δK

)
. (450b)

To solve the representative household’s optimization problem, we set up the current-
value Hamiltonian:

HH(t) = Λ (C(t), S(t), U(t)) + λ(t)Ḃ(t) +Q′
KK̇(t), (451)

where we denote the co-state variables associated with the flow budget constraint (445),
investment in tangible assets (447) by λ, Q′

K , respectively,
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The representative household chooses C(t), L(t), JK(t), uK,jt), which are control vari-
ables, B(t), K(t), which are state variables. Denoting QK(t) = Q′

K(t)/λ(t), the first-order
conditions characterizing the representative household’s optimal plans are:

ΛC(t) = PC(t)λ(t), (452a)

−ΛS(t) = λ(t)WS(t), (452b)

−ΛU (t) = λ(t)WU (t), (452c)

QK(t) = PJ(t)

[
1 + κ

(
IK(t)

K(t)
− δK

)]
, (452d)

RH(t) = PH(t)
[
ξH1 + ξH2

(
uK,H(t)− 1

)]
, (452e)

RN (t) = PN (t)
[
ξN1 + ξN2

(
uK,N (t)− 1

)]
, (452f)

λ̇(t) = λ (β − r?) , (452g)

Q̇K(t) = (r? + δK)QK(t)−
{[

αK(t)uK,H(t) + (1− αK(t))uK,N (t)
]
RK(t)

−PH(t)CK,H(t)αK(t)− PN (t)CK,N (t) (1− αK(t))− PJ(t)
∂JK(t)

∂K(t)

}
, (452h)

and the transversality conditions limt→∞ λ̄B(t)e−βt = 0, limt→∞QK(t)K(t)e−βt = 0. We

used the fact that Q̇K(t) =
Q̇′

K(t)

λ(t) − λ̇(t)
λ(t)

Q′
K(t)

λ(t) .
Given the above consumption indices, we can derive appropriate price indices. With

respect to the general consumption index, we obtain the consumption-based price index
PC :

PC =
[
ϕ
(
P T

)1−φ
+ (1− ϕ)

(
PN

)1−φ
] 1

1−φ
, (453)

where the price index for traded goods is:

P T =
[
ϕH

(
PH

)1−ρ
+ (1− ϕH)

] 1
1−ρ

. (454)

Given the consumption-based price index (453), the representative household has the
following demand of traded and non-traded goods:

CT = ϕ

(
P T

PC

)−φ

C, (455a)

CN = (1− ϕ)

(
PN

PC

)−φ

C. (455b)

Given the price indices (453) and (454), the representative household has the following
demand of home-produced traded goods and foreign-produced traded goods:

CH = ϕ

(
P T

PC

)−φ

ϕH

(
PH

P T

)−ρ

C, (456a)

CF = ϕ

(
P T

PC

)−φ

(1− ϕH)

(
1

PT

)−ρ

C. (456b)

As will be useful later, the percentage change in the consumption price index is a
weighted average of percentage changes in the price of traded and non-traded goods in
terms of foreign goods:

P̂C = αC P̂
T + (1− αC) P̂

N , (457a)

P̂ T = αH P̂H , (457b)
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where αC is the tradable content of overall consumption expenditure and αH is the home-
produced goods content of consumption expenditure on traded goods:

αC = ϕ

(
P T

PC

)1−φ

, (458a)

1− αC = (1− ϕ)

(
PN

PC

)1−φ

, (458b)

αH = ϕH

(
PH

P T

)1−ρ

, (458c)

1− αH = (1− ϕH)

(
1

P T

)1−ρ

. (458d)

Given the CES aggregator functions above, we can derive the appropriate price indices
for investment. With respect to the general investment index, we obtain the investment-
based price index PJ :

PJ =
[
ι
(
P T
J

)1−φJ + (1− ι)
(
PN

)1−φJ
] 1

1−φJ , (459)

where the price index for traded goods is:

P T
J =

[
ιH

(
PH

)1−ρJ +
(
1− ιH

)] 1
1−ρJ . (460)

Given the physical investment-based price index (459), we can derive the demand for
inputs of the traded good and the non-traded good:

JT = ι

(
P T
J

PJ

)−φJ

J, (461a)

JN = (1− ι)

(
PN

PJ

)−φJ

J. (461b)

Given the price indices (459) and (460), we can derive the demand for inputs of home-
produced traded goods and foreign-produced traded goods:

JH = ι

(
P T
J

PJ

)−φJ

ιH
(
PH

P T
J

)−ρJ

J, (462a)

JF = ι

(
P T
J

PJ

)−φJ (
1− ιH

)( 1

P T
J

)−ρJ

J. (462b)

As will be useful later, the percentage change in the investment price index is a weighted
average of percentage changes in the price of traded and non-traded inputs in terms of
foreign inputs:

P̂J = αJ P̂
T
J + (1− αJ) P̂

N , (463a)

P̂ T
J = αH

J P̂H , (463b)

where αJ is the tradable content of overall investment expenditure and αH
J is the home-

produced goods content of investment expenditure on traded goods:

αJ = ι

(
P T
J

PJ

)1−φJ

, (464a)

1− αJ = (1− ι)

(
PN

PJ

)1−φJ

, (464b)

αH
J = ιH

(
PH

P T
J

)1−ρJ

, (464c)

1− αH
J =

(
1− ιH

)( 1

P T
J

)1−ρJ

. (464d)
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Given the aggregate wage index for skilled labor (444a) and unskilled labor (444b), we
can derive the allocation of labor supply to the traded and the non-traded sector for each
type of skill:

SH(t) = ϑS

(
WS,H(t)

WS(t)

)εS

S(t), SN (t) = (1− ϑS)

(
WS,N (t)

WS(t)

)εS

S(t). (465a)

UH(t) = ϑU

(
WU,H(t)

WU (t)

)εU

U(t), SN (t) = (1− ϑU )

(
WU,N (t)

WU (t)

)εU

U(t). (465b)

Aggregating labor compensation across sectors and skills leads to:

WS,HSH +WS,NSN = WSS, (466a)

WU,HUH +WU,NUN = WUU, (466b)

WSS +WUU = WL, (466c)

where W is the aggregate wage and L is aggregate labor supply.
As will be useful later, log-linearizing the wage index in the neighborhood of the initial

steady-state leads to:

ŴS(t) = αH
S ŴS,H(t) +

(
1− αH

S

)
ŴS,N (t), (467a)

ŴU (t) = αH
U ŴU,H(t) +

(
1− αH

U

)
ŴU,N (t), (467b)

where αH
S = WS,HSH

WSS
and αH

U = WU,HUH

WUU
tradable content of aggregate labor compensation:

αH
S = ϑS

(
WS,H

WS

)1+εS

, 1− αH
S = (1− ϑS)

(
WS,N

WS

)1+εS

, (468a)

αH
U = ϑU

(
WU,H

WU

)1+εU

, 1− αH
U = (1− ϑU )

(
WU,N

WU

)1+εU

, (468b)

Given the aggregate capital rental index, we can derive the allocation of aggregate
capital supply to the traded and the non-traded sector:

KH = ϑK

(
RH

RK

)εK

K, KN = (1− ϑK)

(
RN

RK

)εK

K, (469)

where the elasticity of capital supply across sectors ε captures the degree of capital mobility.
As will be useful later, log-linearizing the capital rental index in the neighborhood of the
initial steady-state leads to:

R̂K(t) = αKR̂H(t) + (1− αK) R̂N (t), (470)

where αK = RHKH

RKK
is the tradable content of aggregate capital return which reads as

follows:

αK = ϑK

(
RH

RK

)1+εK

, 1− αK = (1− ϑK)

(
RN

RK

)1+εK

. (471)

S.2 Firms

Each sector consists of a large number of identical firms which use labor, Lj , and physical
capital (inclusive of capital utilization), K̃j , according to a technology described by a CES
production function:

Y j(t) =

[
γj

(
Aj(t)Lj(t)

)σj−1

σj +
(
1− γj

) (
Bj(t)K̃j(t)

)σj−1

σj

] σj

σj−1

, (472)

where 0 < γj < 1 is the weight of labor in the production technology, σj is the elasticity of
substitution between capital and labor in sector j = H,N , and Aj(t) and Bj(t) are labor-
and capital-augmenting efficiency.
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We assume that efficient labor is a CES aggregator of skilled and unskilled labor:

AjLj(t) =


γjL

(
Aj

S(t)S
j(t)

)σ
j
L
−1

σ
j
L +

(
1− γjL

)(
Aj

U (t)U
j(t)

)σ
j
L
−1

σ
j
L




σ
j
L

σ
j
L
−1

, (473)

where 0 < γjL < 1 is the weight of skilled labor in the efficient labor index, σj
L is the elasticity

of substitution between skilled and unskilled labor in sector j = H,N , and Aj
S(t) and Aj

U (t)
are skilled labor- and unskilled labor-augmenting efficiency. While capital-augmenting pro-
ductivity has a symmetric and an asymmetric component across sectors, see eq. (7), both
skilled- and and unskilled-labor augmenting productivity are made up of a symmetric com-
ponent across sectors denoted by the subscript S and an asymmetric component denoted
by the subscript D:

AS,j(t) =
(
AS,j

S (t)
)η (

AS,j
D (t)

)1−η
, AU,j(t) =

(
AU,j

S (t)
)η (

AU,j
D (t)

)1−η
, (474)

where η is assumed to be symmetric across sectors.
Both sectors are assumed to be perfectly competitive and thus choose capital and labor

by taking prices as given:

max
Sj ,Uj ,K̃j

Πj = max
Sj ,Uj ,K̃j

{
P jY j −WS,jSj −WU,jU j −RjK̃j

}
. (475)

Since skilled, unskilled and capital cannnot move freely between the two sectors, the value
of marginal revenue products in the traded and non-traded sectors do not equalize while
costly labor and capital mobility implies a wage and a capital rental rate differential across
sectors. The demand for skilled and unskilled labor together with the demand for capital
by traded firms are described by:

PH ∂Y H

∂LH

∂LH

∂SH
= γH

(
AH

)σH−1

σH
(
LH

)− 1

σH
(
Y H

) 1

σH γHS

(
AH

S

AH

)σH
L −1

σH
L (

SH
)− 1

σH
L

(
LH

) 1

σH
L

= WS,H , (476a)

PH ∂Y H

∂LH

∂LH

∂UH
= γH

(
AH

)σH−1

σH
(
LH

)− 1

σH
(
Y H

) 1

σH
(
1− γHS

)(AH
U

AH

)σH
L −1

σH
L (

UH
)− 1

σH
L

(
LH

) 1

σH
L

= WU,H , (476b)

PH ∂Y H

∂K̃H
= PH

(
1− γH

) (
BH

)σH−1

σH

(
K̃H

)− 1

σH (
Y H

) 1

σH = RH . (476c)

The demand for skilled and unskilled labor together with the demand for capital by
traded firms are described by:

PN ∂Y N

∂LN

∂LN

∂SN
= γN

(
AN

)σN−1

σN
(
LN

)− 1

σN
(
Y N

) 1

σN γNS

(
AN

S

AN

)σN
L −1

σN
L (

SN
)− 1

σN
L

(
LN

) 1

σN
L

= WS,N , (477a)

PN ∂Y N

∂LN

∂LN

∂UN
= γN

(
AN

)σN−1

σN
(
LN

)− 1

σN
(
Y N

) 1

σN
(
1− γNS

)(AN
U

AN

)σN
L −1

σN
L (

UN
)− 1

σN
L

(
LN

) 1

σN
L

= WU,N , (477b)

PN ∂Y N

∂K̃N
= PN

(
1− γN

) (
BN

)σN−1

σN

(
K̃N

)− 1

σN (
Y N

) 1

σN = RN . (477c)

Pre-multiplying the equality between the marginal revenue product of skilled labor by
Sj/Lj , i.e., P j ∂Y j

∂Lj
∂Lj

∂Sj
Sj

Lj = WS,jSj

Lj and using the fact that P j ∂Y j

∂Lj = W j , leads to the
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equality between the elasticity of labor w.r.t. skilled labor and the skilled labor income
share denoted by sjS . Applying the same logic to unskilled labor leads to:

∂Lj

∂Sj

Sj

Lj
=

WS,jSj

W jLj
≡ sjS , (478a)

∂Lj

∂U j

Sj

Lj
=

WU,jU j

W jLj
≡ sjU = 1− sjS . (478b)

Dividing the skilled labor income share by the unskilled labor income share and using
(476a)-(476b) leads to a relationship between the skilled labor income share sjS and skilled-
biased technological change:

sjS
1− sjS

=
γjS

1− γjS

(
Aj

S

Aj
U

)σ
j
L
−1

σ
j
L

(
Sj

U j

)σ
j
L
−1

σ
j
L (479)

We can recover the dynamics
Aj

S

Aj
U

by using the dynamic responses of sjS and Sj

Uj .

S.3 Skill-Biased Technological Change (SBTC)

Costly labor and capital mobility implies a labor and capital cost differential across sectors:

(
1− sjL(t)

)
P j(t)Y j(t)

K̃j(t)
= Rj(t), (480a)

sjL(t)s
j
S(t)P

j(t)Y j(t)

Sj(t)
= WS,j(t), (480b)

sjL(t)
(
1− sjS(t)

)
P j(t)Y j(t)

U j(t)
= WU,j(t), (480c)

where sjS(t) is the share of skilled labor in labor compensation in sector j = H,N , i.e.,

sjS(t) =
WS,j(t)Sj(t)

W j(t)Lj(t)
= γjS

(
AS,j(t)Sj(t)

Aj(t)Lj(t)

)σ
j
L
−1

σ
j
L . (481)

Dividing the demand for skilled labor by the demand for unskilled labor, inserting (481),

and denoting the ratio of skilled to unskilled labor income share by Sj
S(t) ≡

sjS(t)

1−sjS(t)
, leads

to:

Sj
S(t) ≡

sjS(t)

1− sjS(t)
=

γjS
1− γjS

(
SBTCj

)−1
(
Sj(t)

U j(t)

)− 1−σ
j
L

σ
j
L , (482)

where SBTCj(t) =
(
AS,j(t)
AU,j(t)

) 1−σ
j
L

σ
j
L is skill-biased technological change (SBTC henceforth).

We assume imperfect substitution between skill types and one important question is whether
skilled and unskilled labor are substitutes or complements. If σj

L > 1, an increase in
unskilled- relative to skilled-labor-augmenting productivity increases the demand for un-
skilled labor.

Rearranging eq. (482) leads to the measure of SBTC within sector j = H,N :

SBTCj(t) =

(
Aj

U

Aj
S

) 1−σ
j
L

σ
j
L

=
1− γjL
γjL

Sj
S(t)

(
Sj(t)

U j(t)

)
(

1−σ
j
L

σ
j
L

)

, (483)

Sj
S =

sjS
1−sjS

with sjS = WS,jSj

W jLj . To construct time series for SBTCj
it, we plug time series

for the ratio of the skilled to unskilled labor income share, Sj
S(t) = sjS(t)/

(
1− sjS(t)

)
, and

the ratio of skilled to unskilled hours worked, Sj(t)
Uj(t)

. We also plug values for σj
L we have

estimated for each country of the sample (11 OECD countries, 1970-2017), see section J.7.
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S.4 Technology Frontier

While we keep assuming that firms within each sector j = H,N decide about the split
of capital-utilization-adjusted-TFP Zj(t) between labor- and capital-augmenting efficiency,
we assume that firms choose a mix of skilled- and unskilled-labor-augmenting productivity
AS,j(t) and AU,j(t) along a technology frontier (which is assumed to take a CES form):


γS,jZ

(
AS,j(t)

)σ
j
L,Z

−1

σ
L,j
Z +

(
1− γS,jZ

) (
AU,j(t)

)σ
L,j
Z

−1

σ
L,j
Z




σ
j
Z

σ
L,j
Z

−1

≤ Aj(t). (484)

where Aj(t) > 0 is the height of the technology frontier, 0 < γS,jZ < 1 is the weight of skilled

labor efficiency in labor-augmenting efficiency and σL,j
Z > 0 corresponds to the elasticity of

substitution between skilled labor- and unskilled labor-augmenting productivity. The unit
cost minimization requires that

sjS = γS,jZ

(
AS,j(t)

Aj(t)

)σ
L,j
Z

−1

σ
L,j
Z . (485)

Inserting this equality into the log-linearized version of the technology frontier shows that
labor-augmenting technological change is driven by variations in skilled labor- and unskilled-
labor-augmenting technological change (weighted by their contribution to the decline in the
unit cost for labor in sector j):

Âj(t) = sjSÂ
S,j(t) +

(
1− sjS

)
ÂU,j(t). (486)

S.5 Calibration

The calibration procedure is identical to that described in section 4.1 except that we have
to choose values for both production and preference parameters related to workers’ skills.
Because data for skilled and unskilled labor at a sectoral level are available for eleven
countries only over a long enough time length, we calibrate the model to the data by
estimating parameters such as ε and φ and computing ratios for this group of countries
only.

Production parameters. Since we choose the initial steady-state in a model with
Cobb-Douglas production functions as the normalization point, we set both σj and σj

L to
one. Building on pour estimates, the labor income share for the traded and non-traded
sectors are set to sHL = 0.636 and sNL = 0.682 and and for the skilled labor income share to
sHS = 0.636 and sNS = 0.699.

Preference parameters. We keep assuming σ = 2 and σL = 3 and choose a value
for ζS so as to target a ratio of skilled to unskilled labor of S/L = 56%. To pin down
the degree of labor mobility of skilled (unskilled) labor across sectors, i.e., εS (εU ), we
run the regression in panel format on annual data of the percentage change in the skilled
(unskilled) hours worked share of sector j on the percentage change in the relative share
of value added paid to skilled ((unskilled) workers in sector j. In accordance with the
evidence documented by Kambourov and Manovskii [2009] which reveals that industry
(and occupational) mobility declines with education, our empirical findings reveal that the
elasticity of labor supply across sectors is twice larger for unskilled than skilled workers.
More specifically, we set εS = 0.63 and εU = 1.13, in line with our panel data estimates, see
section J.4. We choose values for ϑS and ϑU so as to target a weight of skilled and unskilled
labor supply of SN/S = 69% and UN/U = 59%, respectively. Note that for the eleven
countries of our sample, we set εK = 0.18 and choose ϑK so as to target KH/K = 38%.

We estimate a value for the elasticity of substitution φ between traded and non-traded
goods of 0.19 and choose a value for ϕ so as to target a non-tradable of consumption
expenditure 1−αC = 58%. Keeping assuming φJ = 1, we choose 1−αJ = 68%. We choose
ϕH and ιH so as to target αH = 66% and αH

J = 43%. Using the fact that ωJ = 23%,
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ωC = 57% and ωG = 20%, the demand components for home-produced traded goods gives
a value added share of tradables PHY H/Y of 35% in line with our estimates.

CES economy. In line with our panel data estimates, we choose for the elasticity of
substitution between capital and labor σH = 0.86 and σN = 0.83 and for the elasticity of
substitution between skilled and unskilled labor σH

L = 0.77 and σN
L = 0.69.

Factor-augmenting efficiency. We assume that factor-augmenting productivity is
made up of a symmetric component across sectors denoted by the subscript S and an
asymmetric component denoted by the subscript D. To recover the dynamics of Bj(t)
and Aj(t), and the dynamics of AS,j(t) and AU,j(t), we proceed as in section J.10. Be-
cause the equations are identical for Bj(t) and Aj(t) (see eq. (32a)-(32b)), we focus on
labor-augmenting efficiency across workers’ skills. Log-linearizing the demand for skilled
labor relative to the demand for unskilled labor (479), this equation together with the log-
linearized versions of the technology frontier (486) can be solved for deviations of AS,j

c (t)
and AU,j

c (t) relative to their initial steady-state values:

ÂS,j
c (t) = Âj

c(t)−
(
1− sjS

)[(
σj
L

1− σj
L

)
Ŝj
S,c(t)−

(
Ŝj
c (t)− Û j

c (t)
)]

, c = S,D (487a)

ÂU,j
c (t) = Âj

c(t) + sjS

[(
σj
L

1− σj
L

)
Ŝj
S,c(t)−

(
Ŝj
c (t)− Û j

c (t)
)]

, c = S,D. (487b)

Plugging estimated values for σj
L and empirically estimated responses for sjS,c(t), S

j
c (t)/U

j
c (t),

following a symmetric (asymmetric) technology shock across sectors into above equations
enables us to recover the dynamics for AS,j

S (t) (AS,j
D (t)) and AU,j

S (t) (AU,j
D (t) consistent with

the demand for factors of production (167) and the technology frontier (486).
Share of symmetric technology shocks across sectors. By using the fact that

technology improvements are a weighted average of symmetric and asymmetric technology
shocks, we find that a value of η = 80% minimizes the discrepancy between the empirical re-
sponse of ZA(t) following a permanent technology improvement and its response computed
from ẐA(t) = ηẐA

S (t) + (1− η) ẐA
D(t). Note that the capital utilization rates are found to

quite muted after a technology improvement for the eleven countries of our sample, and
thus we let ξj2,S , ξ

j
2,D tend toward infinity.

S.6 Taking the Model to the Data

In this subsection, we analyze the effects of a permanent technology improvement by dif-
ferentiating between skilled and unskilled labor. Our objective is twofold. First, we assess
the ability of our model to account for the labor composition effects across workers’ skills
of a permanent technology improvement. Second, we investigate whether the model can
generate the rise in impact responses of skilled and unskilled hours worked on rolling sub-
periods.

Framework. The framework we have in mind which is detailed in section S is a
model where a representative household supplies both skilled and unskilled labor. We
assume that skilled and unskilled hours worked are imperfect substitutes, thus giving rise
to a costly transition from unskilled to skilled labor. Both skilled and unskilled workers
experience costs of switching sectors. As described by eq. (6), we assume that sectoral
goods are produced with labor and capital by means of a CES production function. We
relax the assumption that labor is homogenous and suppose that efficient labor is a CES
aggregator of skilled and unskilled labor. In addition to assuming that firms within each
sector j = H,N decide about the split of capital-utilization-adjusted-TFP Zj(t) between
labor- and capital-augmenting efficiency, we also assume that firms choose a mix of skilled-
and unskilled-labor-augmenting productivity AS,j(t) and AU,j(t) along a technology frontier
whose height is measured by labor efficiency Aj(t).

Labor composition effects across workers’ skills. In Fig. 48, we contrast the
dynamic effects of a 1% permanent technology improvement we estimate empirically (shown
in the solid blue line) with the responses we compute numerically in the baseline model
(shown in black line with squares). For comparison purposes, we show the predictions of
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the same model where we shut down skill- and factor-biased technological change in the
dashed red lines.

A permanent increase in utilization-adjusted-aggregate-TFP shown in Fig. 48(a) leads
both skilled and unskilled workers to work less although the decline in hours is mostly con-
centrated on skilled labor. Quantitatively, hours worked of skilled workers decline by -0.33
percentage point of total hours worked while hours worked of unskilled workers decline by
-0.15 percentage point of total hours worked, see Fig. 48(b) and Fig. 48(c). Therefore,
total hours worked is reduced by -0.48% on impact which is very close to what we estimate
empirically, i.e., -0.45%. Such a dramatic decline comes from the dominance of symmetric
technology shocks which account for 80% of technology improvements. As mentioned in
the main text, when technological change is uniformly distributed across sectors, higher
productivity puts downward pressure on sectoral prices which curbs the increase in sec-
toral wages. In addition, symmetric technology shocks are strongly biased toward capital,
especially in the traded sector.

As displayed by Fig. 48(b), the restricted model tends to understate the fall in skilled
labor. In contrast, a model with FBTC and SBTC reproduces well the adjustment in skilled
labor. Importantly, the decline in skilled labor (by -0.33 ppt of total hours in the model)
contributes 69% to the fall in total hours worked. Inspection of Fig. 48(e) and Fig. 48(f)
reveals that the baseline model reproduces well the dynamic responses of traded and non-
traded hours of skilled labor. On impact, traded hours worked of skilled workers decline
by -0.11 percentage point of total hours worked while non-traded hours worked of skilled
workers fall twice as much, i.e., by -0.22 percentage point. The decline in non-traded skilled
accounts for two-third of the fall in skilled labor and almost half of the reduction of total
hours worked on impact.

Skilled and unskilled labor are not impacted uniformly by a technology improvement.
More specifically, as displayed by Fig. 48(d), a permanent technology improvement signifi-
cantly lowers the ratio of skilled hours to total hours worked over time. The gradual decline
in the skilled labor income share is driven by the decrease in the skilled labor income shares
in both the traded and the non-traded sector which reveal that the demand for labor is
tilted toward unskilled workers in both sectors. Intuitively, the combined effect of the rise in
the unskilled workers efficiency and the gross substitutability between skilled and unskilled
labor leads to an increase in the demand for unskilled labor and therefore causes a decrease
in the skilled labor intensity of production of both sectors. As shown in the dashed red line
in Fig. 48(d), a model abstracting from SBTC predicts a flat ratio of skilled labor to total
labor in contrast to our evidence.

A shown in Fig. 48(l), labor shifts away from traded industries and toward non-traded
industries but only gradually. While households shifts both skilled and unskilled hours
toward the non-traded sector, both the ratio of skilled hours of tradables and non-tradables
to total hours worked, see Fig. 48(i)-48(j), decline in line with the evidence because both
traded and non-traded firms use more intensively unskilled labor following a permanent
technology improvement. By contrast, as shown in Fig. 48(k), the share of unskilled hours
of non-tradables in total hours worked increases significantly over time both because labor
shifts toward the non-traded sector but also because there is a dramatic increase in labor
demand for unskilled labor whose productivity increases.

Time-increasing impact response of hours worked across workers’ skills. As
in section 4.4, we assess the ability of the model to account for the time-increasing response
of hours worked by letting the share of asymmetric technology shocks increase over time.
For the eleven countries of our sample, the share of asymmetric technology shocks increases
from 19% to 39% in line with our empirical estimates for the sample of eleven OECD coun-
tries. As displayed by Fig. 49(a), the model reproduces well the shrinking contractionary
effect of a permanent technology improvement on total hours worked. Fig. 49(b) and Fig.
49(c) reveal that both skilled labor and unskilled labor experience a time-increasing impact
response to an aggregate technology shock and our model predictions shown in the black
lines can account for these time-varying effects. The decline in total hours worked shrinks
by 0.2 percentage point of total hours worked, i.e., the fall in labor shrinks from -0.49% to
-0.29%. We find that half of the vanishing decline in total hours worked is driven by the
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Figure 48: Theoretical vs. Empirical Responses Following a Technology Shock: Labor
Composition Effects across Workers’ Skills. Notes: The solid blue line which displays point estimate
from local projections with shaded areas indicating 90% confidence bounds; the thick solid black line with squares
displays model predictions in the baseline scenario with FBTC and SBTC, while the dashed red line shows predictions
of a model with Cobb-Douglas production functions (which amount to shutting down FBTC and SBTC).
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Figure 49: Time-Varying Impact Effects of a Technology Shock. Notes: Fig. 49(a)-49(c) show the impact
responses on total hours worked together with its skilled vs. unskilled components to a 1% permanent increase in utilization-adjusted
aggregate TFP. The solid blue line shows the impact response we estimate empirically on rolling sub-periods by using Jordà’s [2005]
single-equation method. Shaded areas indicate the 90 percent confidence bounds based on Newey-West standard errors. The solid black
line shows the impact response we compute numerically by calibrating the contribution of symmetric technology shocks to variations
in utilization-adjusted-aggregate-TFP to what we estimate empirically. Note that we have normalized the rise in utilization-adjusted
aggregate TFP to 1% at time t = 0 as we focus on impact effect. The horizontal axis shows the end year of the period of the sub-sample
and the vertical line displays the of the impact effect of technology expressed n ppt of total hours worked. Sample: 11 OECD countries,
1970-2017
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reduction in the decline in skilled hours worked from -0.34 ppt to -0.24 ppt of total hours
worked and the rest is driven by the vanishing decline in unskilled hours. While the last
thirty years, the decline in hours worked by skilled workers is still significant, the slight
decline in hours of unskilled labor turns out to be insignificant.
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