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Abstract:

The Bayes equivalent of the PD contains three essential information. 1) It provides

the players with the basic probability distribution. 2) there always exists a support

of these probabilities such that the difference between the expected payoff of coop-

eration and the one of defection is positive. Cooperation may be selected. 3) If this

difference dominates the expected utility evaluated at the mixed strategies Nash equi-

librium, then cooperation is trustable. Our modeling fits data with or without the use

of subjective probabilities. Extensions to Zero-sum games, War and Peace, BoS, Coor-

dination games, Head and Tail, Hawk Dove, Centipede game are studied.
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1 Introduction

This paper reconciles theory (defection is the unique theoretical output in the Pris-

oner’s Dilemma, hereafter PD, whatever the pure, mixed, sequential, trembling hand

strategies, etc.) and empirics (cooperation is played at huge rates). Our objective is

to explain with few assumptions this paradox, while keeping the rationality principle

and the solution concept of Nash equilibrium. Prior to presenting them, let us shortly

recall the history of useful concepts.

1.1 The history of the concepts

A first branch in game theory (game theoretic) started with Pascal (1654)[26], Fermat

(1654)[13] then Huygens (1657)[19] and definitely with Bernouilli (1715)[8] who were

the firsts to consider that an objective probability pi, i = 1, . . . , k can be affected to a ran-

dom event or a random gain gi. They propose the concept of mathematical expectation

B(pi, gi) :=
k∑
i=1

pigi. In this expression the gain gi stands for a cardinal utility.

A second branch in game theory (bayesians) started with Bayes (1763) [7] considers

that an action aj, j = 1, . . . , n may have several consequences ωjk, k = 1, . . . , K each of

them appearing with objective probabilities pik1, B(a) := p(ω|a). Laplace (1814)[22] pro-

poses to affect the concept of moral utility u to an action, L(pj, u(aj)) :=
n∑
j=1

pju(aj).

He suggested that L(pj, u(aj)) = B(pi, gi). After Von Neumann and Morgenstern

(1944)[31], economists associate an action to a random gain. They propose to replace

gi in B(pi, gi) by its subjective valuation s(gj(aj)), EU(pj, s(gj(aj))) :=
n∑
j=1

pjs(gj(aj)).

Savage (1939) suggests to replace the objective probability pj by a subjective one pj ,

SEU(pj, s(gj(aj))) :=
n∑
j=1

pjs(gj(aj)).

An important question has been debated between Kadane and Larkey (1982a[20],

1982b[21])) and Harsanyi (1982a[16],1982b[17]): how to choose the distribution of sub-

jective probabilities pj? Harsanyi (1967[15] p159 and 1982, p. 120[17]) argued that

subjective probability distributions entertained by different players are mutually "con-

sistent" in the sense that they can be regarded as conditional probability distributions

1Bayes mentions that is theory is "applicable to events and appearance of Nature, [. . .], as the burning
of wood on putting it into fire", p. 408.
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derived from a certain "basic probability distribution", which is obtained as follows.

Consider a sequential strategic game with incomplete information. Define the set of

histories H := {∅, 1, . . . , h, . . . , Z}, where z is the terminal history. Harsanyi suggested

to associate to the previous game another game in complete information where Na-

ture first conducts a lottery and randomly decides which particular sub-game will be

played after each history, h ∈ H\Z. Every player will know the "basic probability dis-

tribution" governing this lottery, which is objective, pj(h)(aj(h)). Harsanyi called it the

Bayes equivalent of the original game.

Aumann (1987)[3] reconciles Game theoretic with Bayesians by assuming that some

actions ai are linked to state of the Nature ωk. Nature plays first by choosing randomly

the true state of the World. The exogenous probability pk of a given state of the Na-

ture is objective. This solves the problem of choosing the "right" probability distribu-

tion. The true state of the World is public information and revealed to players. The

Aumann’s criterion is the following A(pk, s(ai(ωk)). In correlated equilibrium, players

always choose a definite pure strategy and have no incentive in deviating.

1.2 Our concepts

1.2.1 Generalities

PRINCIPLE 1 Actions of the opponents a−j are considered the states of the world for player

j, a−j(h) = ωj(h),∀h ∈ H\Z.

ASSUMPTION 1 Players know and use all the Properties of the Bayes equivalent.

1.2.2 Information

Players know the rule of a given PD, its primitive and all the properties of the Bayes

equivalent of the game. In particular, prior to selecting a strategy, they use three fol-

lowing essential information directly extracted from Bayes equivalent of the game.

1.2.3 Information 1: the basic probabilities

Every player knows the "basic probability distribution" governing the lottery in the

Bayes-equivalent of the PD. Due to the tree of decision of the sequential PD, it turns

out that the basic probability distribution is unique, discrete and binomial.
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1.2.4 Information 2: Emergence of cooperation

Let us denote EPC the expected payoff of cooperation and EPNC the one of defection.

PROPERTY 1 In a sequential 2-action, 2-player PD, H := {∅, 1, z}, the Bayes equiva-

lent of the PD possesses the following property: there always exists a non empty support of

basic probability such that the expected payoff of cooperation dominates the one of defection,

∆EP (pj(∅), pj(1)) := EPC(pj(∅)), pj(1))− EPNC(pj(∅), pj(1)) ≥ 0.

An immediate consequence of Assumption 1 is that cooperation can be selected as

a pure strategy by rational players. How do players trust their opponent to play it ?

1.2.5 Information 3. Emergence of trust

According to Assumption 1, the interval over which a pure strategy emerges as a pos-

sible choice is an endogenous, objective and public information.

ASSUMPTION 2 Players evaluate the expected utility in terms of the mixed strategy Nash

equilibrium EU(α?).

Define Ψ(pji(∅), pj(1), α?) = ∆EP (pj(∅), pj(1))− EU(α?).

DEFINITION 1 A strategy is called trustable if and only if the support of its basic probabil-

ities is determined by using the criterion C? := max{∆EP (pj(∅), pj(1)), EU(α?)}.

Note that the choice of the criterionC? is a Nash equilibrium: no player has an incentive

in deviating. Given a basic probability p0, cooperation is a trustable strategy if and only

if Ψ(p0
ji(∅), p0

j(1), α?) ≥ 0. As it will be shown, this is not always the case. Assumptions

1 and 2 are sufficient for explaining cooperation as a trustable strategy in PD.

From a theoretical point of view, the basic probability has the following economic

interpretation. Using a first-order reasoning, the basic probability pj(1) is attributed by

player i to his opponent j’s choice of action aj(h = 1). Using a second-order reasoning,

he simultaneously attributes to his opponent j a basic probability pji(ai(h = ∅)) about

his own strategy ai.

1.3 Our modeling accommodates data

Prior to selecting a strategy, players can (or not) use subjective probabilities. According

to Allais (1953)[1] (5. ELEMENT II p. 508):
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DEFINITION 2 A subjective probability is the consequence of a subjective distorsion of an

objective probability, ∃λ ∈ R+∃ξ ≤ 1 | pj(aj(h)) := λpj(aj(h)) + ξ.

Subjective probabilities are private information.

ASSUMPTION 3 If rational player use subjective probabilities, then they select their opti-

mal strategies according to the subjective expected payoff of an action. Cooperation occurs iff

∆SEP (pji(∅), pj(1)) ≥ 0 (defection if < 0).

Given observation µ̂, it always exists a couple (λ, ξ) that accommodates data µ̂ =

λpj(aj(h)) + ξ.

1.4 Extensions

Extension to static strategic games, Zero Sum games, Aumann’s War and Peace game,

Battle of the Sexes, Coordination game, Head and Tail and Hawk Dove/Tragedy of

Commons, as well as Centipede game are discussed in Section 4. It is shown that

cooperation may emerge with trust, or without trust, non-cooperation is possible with

trust or without trust. In the centipede game, McKelvey and Palfrey (1992) [24] we

explain why a rational player cooperate by choosing to pass rather than to take the

large pile. The end of the game is explained by the first period in the game for which

the strategy "take it" provides the 2 players with more subjective expected payoff than

the expected utility of the pure, mixed strategy Nash Equilibrium. Each player trusts

the opponent to pass until this period.

Section 2 presents the available information. Section 3 is devoted to the formation

of subjective probabilities. Section 4 presents the subjective expected payoff strategies

in one-shot PD. Section 5 is devoted to the selection of equilibria. Section 6 faces our

model to experiments, Section 7 discusses the results and proposes economic interpre-

tations, including trust. Section 8 Proposes extensions to other famous strategic games,

Section 9 concludes.

2 Information

The information available to the players consists in the rule of the game, the primitives

of the game and the general properties of the Bayes-equivalent of the PD.
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2.1 Rule of the PD

Consider a sequential 2-personal player / 2-action PD, i = 1, 2. If player i defects while

player j cooperates, player i gets the payoff Ai and player j gets Dj . If i defects while

j defects, both get the payoff Ci. If i cooperates while j cooperates, both get the payoff

Bi. In any PD, Ai > Bi > Ci > Di, i = 1, 2. Assume payoffs are symmetric such that

Ai = Aj = A,Bi = Bj = B,Ci = Cj = C,Di = Dj = D.

2.2 Primitives of the PD

Consider an extensive PD with imperfect information. Whoever leads the game, play-

ers know the primitives of the game according to the following definition.

DEFINITION 3 An extensive game with imperfect information denoted Γ :=< N,H, P, f0, I >

consists in

1. N = {1, 2} is the set of players where players 1, 2 are the personal players.

2. H is a set of (finite) sequences, each member h ∈ H is a history, each component of an

history is an action taken by a player i ∈ N . Z is the subset of terminal histories after

which no action is to be taken.

3. P is the player function that assigns to each history h ∈ H\Z a player i ∈ N .

4. f0 is the function that associates with every history h for which P (h) = i a probability

measure of f0(. | h) on A(h) ∈ Γ the set of actions available ∀h ∈ H\Z.

5. ∀i ∈ N , Ii is a partition of {h ∈ H : P (h) = i} with the property that A(h) = A(h′)

whenever h and h′ are in the same member of the partition. Ii is the information partition

of player i, and Ii ∈ Ii the information set of player i.

2.3 General properties of the Bayes-equivalent of the PD

Section 2.3 presents the Bayes-equivalent of the PD and its useful properties. To define

the Bayes-equivalent of the PD, replaceN byN0 = {0, 1, 2} in Definition 3, where player

0 is the "random" player who is responsible for the random decisions in the game,

Von Neuman and Morgenstern (1953)[32] p. 75 (10:A:f ?, 10:A:h?) p. 159, Harsanyi

(1967)[15] and Selten (1975)[29] p. 26. According to Harsaniy (1967)[15], p. 159, in the

7



"Bayes-equivalent of the PD", ∀h ∈ H\Z, P (h) = 0, player 0 chooses each sub-game and

assigns payoffs to players i = 1, 2. For this reason, we label it Γ̂0. In Γ̂0, H := {∅, 1, Z}.
The set of actions is ∀i = 1, 2,Ai(h) = {Ci : (h, Ci) ∈ H\Z,NCi : (h,NCi) ∈ H\Z)},
where Ci represents cooperation and NCi non-cooperation.

Players know the three following fundamental information: the basic probability

distribution, the conditions of emergence of cooperation, and the conditions of the

emergence of trust.

2.4 Information 1: the basic probability distribution

According to the "basic probability distribution", Ci|h occurs after history h = ∅ with

the objective probability ε∅ and after history h = 1 with the objective probability ε1.

The action NCi|h occurs after each history with the complementary probabilities, see

Figure 1. There is no particular reasons to consider that the random mechanism is the

same after each history. To illustrate that, consider a random draw after each history

without replacement.

—————– insert Figure 1 here ———————–

Figure 1: Γ̂0: the Bayes-equivalent of the PD

P (∅) = 0

(B,B)

Cj
ε1

(D,A)

1− ε1
NCj

Ci
ε∅

(A,D)

Cj
ε1

(C,C)

1− ε1
NCj

1− ε∅
NCi

P (1) = 0

2.5 Information 2: Emergence of Cooperation

Consider Figure 1. Denote EPa(ε∅, ε1) the expected payoff in terms of the " basic proba-

bility" of an action awhich can either be C orNC. Denote ∆EPi(ε∅, ε1) := EPCi(ε∅, ε1)−
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EPNCi(ε∅, ε1) and ∆EPj(ε1, ε∅) := EPCj(ε1, ε∅)−EPNCj(ε1, ε∅) the variation of expected

payoff between cooperation and non-cooperation for each player. The Bayes-equivalent

of the PD leads to the following Theorem.

THEOREM 1 In the Bayes-equivalent of any PD with symmetric payoffs, 2 players, 2 ac-

tions, ∃Iε∅ 6= ∅, Iε∅ := [ε∅, ε∅] ⊂ [0, 1] , ∃Iε1 6= ∅, Iε1 := [ε1, ε1] ⊂ [0, 1] such that given

A,B,C,D, ∀ (ε̃∅, ε̃1) ∈ Iε∅ × Iε1 | S0 :

{
∆EPi(ε̃∅, ε̃1) ≥ 0,
∆EPj(ε̃1, ε̃∅) ≥ 0.

Note that S0 exhibits non-linear relations in term of the product of the basic probabil-

ities ε∅ε1. There is no methodology to solve S0, one is proposed in Appendix A. The

importance of this theorem (see Proposition 6 Appendix A) is that there always exists a

non-empty support of probability for each basic probabilities over which the expected

payoff of cooperation dominates the one of defection in the Bayes equivalent of the PD.

Players knows this property prior to selecting their optimal strategy.

Theorem 2 proposes a typology of the Bayes-equivalent of any PD. Given the pay-

offs, Theorem 2 characterizes the endogenous non-empty support of probability over

which system S0 is satisfied

THEOREM 2 Typology of PDs. Denote J the support of basic probabilities over which system

S0 is satisfied, where hereafter ε, ε, ε, ε̂ are payoff-specific thresholds.

1. 4 or 3 positive payoffs, the unique support of basic probabilities is Jε := [ε, 1].

2. 2 positive payoffs, the supports of basic probabilities are Jε := [0, ε] and Jε := [ε, 1].

3. 1 or 0 positive payoffs, the unique support of basic probabilities is Jε̂ := [0, ε̂].

See Appendix B for the proof of Theorem 2 and the details of each support of proba-

bilities. When the support of probabilities is Jε := [ε, 1], the Bayes equivalent of the PD

provides the players with the information that cooperation arises at huge rate from a

random perspective, and reciprocally over Jε := [0, ε] at low rates. Such a typology in-

dicates also that the length of each support of basic probabilities J is endogenous since

payoff dependent. We now turn to study the emergence of trust.

2.6 Information 3: Emergence of Trust

Let us recall the literature relative to trust.
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2.6.1 The literature relative to trust

The concept of trust is important for economics, politics, psychology and sociology.

Prior to showing how it is related to our analysis, let us recall some important re-

sults in the literature. To be short, the sources of trust are direct or indirect. Direct

sources of trust means that trust is founded on circumstances or facts, Sako 1992[28].

Indirect sources of trust have been identified to be credible commitments, Williamson

(1983)[33], deterrence-based trust, Shapiro, Sheppard and Cheraskin (1992)[30] or trust

as an encapsulated interest, Russell (2001). For Williamson (1993)[34], there is no ten-

sion between interest and trust. Glaeser, Laibon, Scheinkman, Soutter (2000)[14] and

Coleman (1990) p. 99[10] underline that trust is compatible with the rational behavior

principle.

As Adam Smith (1776) (Wealth of Nations, p. 22) noticed "trust" is empirically based

and probabilistic. For Arrow (1969)[2] "Trust [...] is not a commodity which can be

bought very easily. If you have to buy it, you already have some doubts about what

you have bought". Departing Arrow, Dasgupta (1988)[11] considers trust a commodity,

and Milgrom, North and Barry (1997)[25] an asset. For Coleman (1990) p.99[10] it is a

bet: "An individual knows how much may be lost (the size of the bet), how much

may be gained (the amount that might be won) and the chance of winning. These

and only these are the relevant elements to define trust. If an individual has no risk

aversion it is a simple matter for him to decide whether to place the bet". Buchanan

(1991, p. 47) underlines "In that larger economic system, one is unlikely to have direct

information on the trustworthiness of the other parties involved, so in a laissez-faire

environment, one must resort to proxies: risk assessments by others who, in turn, must

themselves be assessed for risk." For Kenneth Arrow (1969)[2] "In the absence of trust

it would become very costly to arrange for alternative sanctions and guarantees, and

many opportunities for mutually beneficial cooperation would have to be, foregone".

2.6.2 The link with our modeling

Whatever the typology (good, asset or bet), trust is intangible. More precisely, trust is

an attitude that takes place ex-ante prior to making decision in Γ̂ which is free of risk

aversion considerations.

DEFINITION 4 We call attitude opinions or feelings about something that affects individ-

10



ual’s behavior.

DEFINITION 5 We call trust any rational and endogenous player’s attitude such that player

i leaves to player j the choice of an action that achieves i’s objective (in whole or in part) and

player i does not verify the j’s action.

REMARK 1 In the PD, players cannot communicate. Decisions are made ex ante, simulta-

neously and for ever. Consequently, there is no verification of any action.

REMARK 2 In Definition 5, an objective is not necessary an optimum.

Trust emerges under uncertainty (because of properties of the Bayes-equivalent of

the PD Γ̂0) and is probabilistic as Adam Smith (1776) and Buchanan (1991) noticed.

Indirect source of trust is compatible with the fact that players analyze the Bayes-

equivalent of the PD Γ̂0. According to Coleman, the size of the bet is an important

criterion for trust to emerge and in our Proposition 3 it depends on the sign of C, the

payoff of bilateral cooperation.

An important question is: why should a rational player i leave to another player j

the realization of his own objective ? Pure rational players find the best procedure to

get the highest possible outcome. Denote EU(α?) the expected utility evaluated at the

mixed (pure) strategy Nash equilibrium α?.

Consider system S0 with a unique random device after each history. In that par-

ticular case, ε∅ = ε1 = ε. Define Ψ((ε, α?) := ∆EP (ε) − EU(α?). If Ψ(ε, α?) ≥ 0 over

some restriction Ĵε of the support of basic probabilities of Theorem 2, then players get

the information that a pure strategy can be selected according to the ∆EP criterion. If

Ψ(ε, α?) < 0, over some restriction of the support of basic probabilities of Theorem 2,

then players get the information that the other pure strategy can be selected according

to the EU(α?) criterion, see Figures 4, 5 and 6 below. To sum up, the set of supports of

basic probabilities that is compatible with a given pure strategy is defined as ∪Ĵε.

2.6.3 Trust as the result of the properties of the Bayes equivalent of the PD

In the literature, trust is known to be the result of huge deviation from pure rationality.

In our paper this is the opposite: it is an endogenous and rational attitude. Trust is the

result of the properties of the Bayes equivalent of the PD. According to Definition 1, we

have the following Theorem.
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THEOREM 3 In any PD, the support of trustable strategies is non empty.

Proof. Consider the support of basic probabilities such that ∆EP (ε) ≥ 0. Over this

support, C ≤ 0 ⇒ Ψ(ε) ≥ 0. Note that the discriminant of Ψ(ε) = 0 is ∆Ψ =

8C(A + B − C − D) + (A − 2C − D)2 which is negative for C < 1
2

(
A + 2B − D −

√
2
√

(A−D)2 + 2B(A+B −D)
)

. If ∆Ψ < 0, then equation Ψ(ε) = 0 has no solutions

in R and by the convexity of the function, Ψ(ε) > 0, see Figure 4. A negative discrim-

inant is not a problem: it only means that the condition of positivity of the inequality

is never satisfied in R. It is easy to show that the discriminant cannot be nil, indeed

ε??1 = ε??2 ⇐⇒ B = C, which impossible in PDs. Consequently, Ψ(ε) = 0 admits two

distinct solutions ε??l , l = 1, 2, see Figure 5

ε??1 :=
A− 2C −D −

√
∆Ψ

2(A+B − C −D)
and ε??2 :=

A− 2C −D +
√

∆Ψ

2(A+B − C −D)
.

Note that if C > 0 at ε??1 = ε??2 we have ∂ε??2 /∂B < 0 and lim
A→∞

= 1, so that in the case of

4 and 3 positive payoffs, ε??2 < 1, see Figure 6.

ε?1

C < 0

∆EP

0 1• Figure 4

ε?2ε??2ε??1

ε?1

C < 0

∆EP

0 1•••• Figure 5

ε?2 ε??2

∆EP

C > 0

0 1• • Figure 6

In any PDs, there always exists a non empty support of basic probabilities that in-

duces a trustable strategy. This justifies our methodology. �

THEOREM 4 In any PD, defection is always a trustable strategy.
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Proof. See Figure 4, 5 and 6. �

In Figure 4, 5 and 6, it is shown that if the basic probability of cooperation is very

close to 0, then cooperation can be selected since it provides more objective expected

payoff than defection for certainty (the mixed strategy Nash equilibrium α? = 1). Each

player can trust his opponent to be able to select cooperation.

COROLLARY 1 Consider any PD, the support of cooperation with a unique random mech-

anism after each history is characterized as follows:

1. If 4 or 3 payoffs are ≥ 0 then cooperation emerges as a trustable strategy ∀ε̃ ∈ Jε :=

[ε??2 , 1] and defection as a trustable strategy over its complementary interval over [0, ε??2 ].

2. If 2 payoffs are ≥ 0, then cooperation emerges as a trustable strategy ∀ε̃ ∈ Jε := [0, ε?1] ∪
[ε?2, 1]. Defection as a trustable strategy emerges over its complementary interval over

[ε?1, ε
?
2].

3. If 1 or 0 payoff are≥ 0, then cooperation emerges as a trustable strategy either ∀ε̃ ∈ Jε :=

[0, ε?1]. Defection as a trustable strategy over its complementary interval over [ε?1, 1].

Proof : it is a consequence of Theorem 3.

3 Our model matches experiments

Players use all the information the Bayes equivalent of the PD provides prior to playing.

3.1 Formation of subjective probabilities

All the results relative to the Bayes-equivalent of the PD, Γ̂0, are fundamental for ex-

plaining the formation of subjective probabilities. It helps solving the problem of select-

ing a prior probability distribution among a huge collection of possible priors. Indeed,

in PDs the ’basic probability distribution’ is unique. Each player uses all the infor-

mation the Bayes-equivalent provides prior to playing a given PD, Γ̂, see Definition 3.

Since players do not communicate with each other and ignore the decision taken by the

other, the PD is a game with imperfect information. Each personal player understands

the game in the same way, and perfectly knows Theorem 1, Theorem 2, Theorem 3 and

Theorem 4.
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3.2 The Bayes-equivalent compatible subjective probabilities

3.2.1 Some general considerations

Denote µ the subjective probability of cooperation. By Definition 2: h ∈ H\Z :=

{∅, 1}, ∃λ ∈ R+ ∃ξ ≤ 1 | µ(h) := λε(h) + ξ. In this general notation, ξ allows to de-

form an objective probability equals to 0 into a subjective one equals to 1, with ξ = 1.

Similarly, it also allows to deform an objective probability equals to 1 into a subjective

probability equals to 0 with ξ = −λ, or λ = ξ = 0. These are two extreme cases and

without loss of generality, for the remaining of the paper it will be assumed ξ = 0.

Definition 2 reduces to ∃λ ∈ R?
+ | µ(h) := λε(h).

DEFINITION 6 Define ∆SEP (µ) := SEPC(µ) − SEPNC(µ) the variation of subjective

expected payoff between cooperation and non-cooperation and Sµ the system

Sµ :

{
∆SEPi(µ) ≥ 0
∆SEPj(µ) ≥ 0

DEFINITION 7 A subjective distortion λ of an objective probability ε is any subjective dis-

tortion such that ∆SEP (µ) ≥ 0, where µ = λε.

DEFINITION 8 A rational subjective distortion λ? of an objective probability ε is any sub-

jective distortion such that Ψ(µ?, α?) ≥ 0, where µ? = λ?ε.

DEFINITION 9 µ? is called a rational subjective probability.

In PDs such a rational subjective distortion leads to select the support of rational sub-

jective probabilities such that Ψ(µ?, α?) ≥ 0 ⇐⇒ ∆(µ?) ≥ C, where C is the payoff of

defection (in the PDs) reached for certainty in other alternative optimal strategies.

DEFINITION 10 We call rational subjective expected payoffs strategy Nash equilibrium any

support of rational subjective probabilities over which the choice of a given pure strategy a is

made by using the criterion C? := max{∆SEPa(µ?), EU(α?)}.

Note that according to Definition 1 any rational subjective expected payoffs strategy

Nash equilibrium supports a trustable strategy which is always selected. Players ex-

tend the objective basic probability ε to rational subjective probability Nash Equilib-

rium µ?. Note that if µ is the subjective probability of cooperation, players may be pes-

simistic for λ? < 1 or optimistic for λ? ≥ 1. The same reasoning applies ∀ε̃ ∈ [ε?2, 1]
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(Figure 5) or [ε??2 , 1] (Figure 6). Similarly non-cooperation is possible as a trustable

strategy explained by a rational subjective probability strategy Nash equilibrium over

[ε?1, ε
??
1 ] ∪ [ε??2 , ε

?
2], or by the mixed strategy Nash equilibrium (the expected utility crite-

rion) over [ε??1 , ε
??
2 ] (Figure 5) and over [0, ε??2 ] (Figure 6). We have shown that the key

concepts in presence are rationality and Nash equilibrium.

3.2.2 The methodology used to explain experiments

Let us detail the procedure by which our model fits data. According to Definition 2

(with ξ = 0) and Sµ, we hereafter restrict attention to the case of common rational

subjective probabilities (i.e., a random device with replacement after each history). As-

sume that in experiments, cooperation rate is observed at µ̂ = λε??i , i = 1, 2 the two

roots. We obtain λ = µ̂/ε??l which always fits data since λ ∈ R?
+. Indeed, if µ̂ < ε??l

then λ̂ < 1 (and reciprocally). The following Figures 4 and 5 help understand our

computations.

µ

ε
ε?2 ε??2

∆SEP
C > 0

µ̂
λ = 1/ε??2

λ = µ̂/ε??2

0 1
• • Figure 7

Figure 7 deals with the case of 4 or 3 positive payoffs. In those cases, ∀ε̃ ∈ [ε??2 , 1]

corresponds a unique value of the rational subjective distortion λ of the objective prob-

ability ε̃ that belongs over the interval [1/ε??2 , µ̂/ε
??
2 ]. Similarly for Figure 8.

µ

ε

µ̂

λ = +∞

λ = µ̂/ε?1

ε?1

C < 0

∆SEP

0 1• Figure 8
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3.2.3 Application to our model

In the Bayes-equivalent of the PD, Nature chooses a sub-game according to a given

random draw which provides the players with a basic probability distribution. From a

theoretical point of view, a basic probability has the following economic interpretation.

Consider P (∅) = i, P (1) = j. To keep notation simple we don’t use the upper-script

?s to characterize rational subjective probabilities or distortions. Denote µ the player

i’s rational subjective probability to cooperate and M the player j’s rational subjective

probability to cooperate. Denote λ the player i’s rational subjective distortion of the

basic probability of cooperation, and Λ the player j’s one. Players formulate first-order

reasoning and second-order reasoning.

DEFINITION 11 First-order reasoning: player i forms subjective probabilities about j’s

choice.

DEFINITION 12 Second-order reasoning: i forms subjective probabilities about j’s subjec-

tive probabilities about i’s choice.

The PD from player i’s point of view Player i forms the subjective probability M =

λε1 that player j chooses cooperation after h = 1. Player i takes into account that player

j forms the subjective probability µ = Λε∅ that Player i chooses cooperation after h = ∅.
———– insert Decision tree 2 here. ———

Figure 2: Decision Tree of Γ̂ with subjective probabilities from player i’s point of view
P (∅) = i

(Bi, Bj)

Cj
M

(Di, Aj)

1−M
NCj

Ci
µ

(Ai, Dj)

Cj
M

(Ci, Cj)

1−M
NCj

1− µ
NCi

P (1) = j
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The PD from player j’s point of view Player j forms the subjective probability µ =

Λε∅ that player i chooses cooperation after h = ∅. Player j takes into account the player

i forms the subjective probabilityM = λε1 that player j chooses cooperation after h = 1.

———– insert Figure 3 here. ———

Figure 3: Decision Tree of Γ̂ with subjective probabilities from player j’s point of view

P (∅) = i

(Bi, Bj)

Cj
M

(Di, Aj)

1−M
NCj

Ci
µ

(Ai, Dj)

Cj
µ

(Ci, Cj)

1−M
NCj

1− µ
NCi

P (1) = j

3.3 Subjective expected payoffs strategies

We now analyze the PD with imperfect information in which players select strategies

according to first-order reasoning and second-order reasoning in terms of their subjec-

tive probabilities. According to Definition 10, for cooperation to emerge in PDs, the

following system SµM must be satisfied.

SµM :

{
∆SEPi(µ,M) ≥ 0,

∆SEPj(µ,M) ≥ 0.

3.3.1 First-order reasoning

LEMMA 1 According to Property 3, given the properties of the Bayes-equivalent of the PD,

Γ̂0, if players only formulate first-order reasoning in terms of their subjective probabilities in

the PD, Γ̂, then non cooperation is the only one subjective expected payoffs strategy Nash equi-

librium.

Proof. ∆SEPNC
i (M) := SEPNCi(M)− SEPCi(M) and
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∆SEPNC
j (µ) := SEPNCj(µ)− SEPCj(µ), i = 1, 2, i 6= j.{

∆SEPNC
i (M) ≥ 0

∆SEPNC
j (µ) ≥ 0,

⇐⇒
{

(1−M)(A−B) +M(C −D) ≥ 0,
(1− µ)(A−B) + µ(C −D) ≥ 0.

According to Property 2, this system is always satisfied. �

PROPOSITION 1 Given the properties of the Bayes-equivalent of the PD, Γ̂0 and depending

on payoffs, if players only formulate first-order reasoning in terms of their subjective probabil-

ities in the PD, Γ̂, then non-cooperation is always selected, but may be a trustable or a non

trustable strategy.

Proof is given in Appendix C. If players only formulate first-order reasoning prior to

formulating rational subjective probabilities then they play bilateral non-cooperation,

but they cannot always trust each other to play it. For that reason, we investigate the

first-order reasoning and the second-order reasoning.

3.3.2 1st-order reasoning and 2nd-order reasoning

Consider that players formulate first-order reasoning and second-order reasoning. De-

fine ∆SEPi(µ,M) := SEPCi(µ,M)−SEPNCi(µ,M) and ∆SEPj(M,µ) := SEPCj(M,µ)−
SEPNCj(M,µ). Replace into SµM the corresponding expected payoffs and obtain

SµM :

{
(C − A+ µ(A+B − C −D))M + µ(C +D)− C ≥ 0,(1)

(C − A+M(A+B − C −D))µ+M(C +D)− C ≥ 0.(2)

System SµM is more complex than system S0 since there are two non-linear inequalities

with four unknowns. To solve it, we assume players formulate common subjective

probabilities. There are two cases: the first one is a random device after each history,

and the second one is a unique random device after each history.

3.3.3 Common subjective probabilities with a random device after each history

Assume that the random mechanism in the Bayes-equivalent of the PD consists in a dif-

ferent random draw2 after each history, i.e., ε∅ 6= ε1. In that particular case the subjec-

tive probabilities according to the first-order reasoning and the second-order reasoning

2For example: throw a dice after h = ∅ and choose a card in a 52 cards game after h = 1, or simply a
random draw after h = ∅without replacement after h = 1.
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are the following µ = Λε∅,M = λε1, µ = Λε∅,M = λε1. By the assumption of common

subjective probabilities, we have Λ = λ = Λ = λ = λ. Consequently,{
µ = µ = λε∅ = µ∅,

M = M = λε1 = µ1.

According with these new notations, system SµM becomes Sµ∅µ1

Sµ∅µ1 :

{
(C − A+ µ∅(A+B − C −D))µ1 + (C +D)µ∅ − C ≥ 0,
(C − A+ µ1(A+B − C −D))µ∅ + (C +D)µ1 − C ≥ 0.

REMARK 3 Note that system Sµ∅µ1 is exactly the same as S0.

THEOREM 5 In any PD with symmetric payoffs, 2 players, 2 actions, there always exists a

subjective expected payoff strategy Nash equilibrium that supports cooperation. More precisely

∃Iµ∅ 6= ∅, Iµ∅ :=
[
µ∅, µ∅

]
⊂ [0, 1] , ∃Iµ1 6= ∅, Iµ1 :=

[
µ

1
, µ1

]
⊂ [0, 1] , | ∀µ̃∅ ∈ Iµ∅ ,∀µ̃1 ∈

I1, we have ∆SEPi(µ̃∅, µ̃1) ≥ 0, and ∆SEPj(µ̃1, µ̃∅) ≥ 0, where µ∅, µ∅, µ1
, µ1 are interval-

specific thresholds.

Proof. See Theorem 1. �

THEOREM 6 Typology of PDs. Denote Jµ the support of subjective probabilities over which

system Sµ∅µ1 is satisfied, where m,m,m, m̂ are interval-specific thresholds.

1. 4 or 3 positive payoffs, the unique support of basic probabilities is Jµ := [ m, 1 [ .

2. 2 positive payoffs, the supports of basic probabilities are Jµ := ] 0,m ] and Jµ := [ m, 1 [ .

3. 1 or 0 positive payoffs, the unique support of basic probabilities is Jµ̂ := ] 0, m̂ ].

Proof. See Theorem 2. �

Moreover, by Theorems 5 and 6, if players simultaneously formulate first-order rea-

soning and second-order reasoning prior to formulating rational subjective probabil-

ities, then players can trust each other and play bilateral cooperation. Depending on

payoffs, if the PD has 4 or 3 positive payoffs, then the rational subjective distortion λ of

the basic probability ε is less that 1, i.e. players underestimate the possibility of coop-

eration. On the opposite, if there are 4 or 3 negative payoffs, player may overestimate

ε. Consequently, optimism or pessimism are trust compatible endogenous attitudes.
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3.3.4 Common subjective probabilities with a unique random device

From Definition 10, reversing some or all inequality signs into system Sµ∅µ1 would

generate 4 possible Nash equilibria. Even if this is empirically observed that all com-

binations of strategies are played, from a theoretical point of view it is interesting to

restrict the set of subjective payoff strategy Nash equilibria. Assume the same random

draw after each history, we have ε∅ = ε1 = ε, and consequently, µ∅ = µ1 = µ. System

Sµ∅µ1 reduces to Sµ as a single inequality (C−A+µ(A+B−C−D))µ+(C+D)µ−C ≥ 0.

Consider it as an equality and denote µ?1 and µ?2 the two distinct solutions.

THEOREM 7 Consider any PD, the support of cooperation with common subjective proba-

bilities and a unique random mechanism after each history is characterized as follows:

1. If 4 or 3 payoffs are ≤ 0 then cooperation emerges ∀µ̃ ∈ Jµ := [µ?2, 1] and defection over

its complementary interval over [0, µ?2].

2. If 2 payoffs are ≤ 0, then cooperation emerges ∀µ̃ ∈ Jµ := [0, µ?1] ∪ [µ?2, 1]. Defection

emerges over its complementary interval over [µ?1, µ
?
2].

3. If 1 or 0 payoff are ≤ 0, then cooperation emerges either ∀µ̃ ∈ Jµ := [0, µ?1]. Defection

over its complementary interval over [µ?1, 1].

Proof. See Theorem 2. �

According to Theorem 7, there are only two subjective expected payoff strategy

Nash equilibria: defection or cooperation. It is unimportant wether or not players

agree on the nature of the random device. Indeed, if one belief in two different random

devices, while the other one in a single one after each history, then the first player acts

according to the set-valued functions defined by (17) and (18) (see Appendix A) while

the other one acts on the restriction of these zone over the 45 degree line.

3.4 Applications to experiments

All the following simulations have been computed with Mathematica. Clark and Sefton

(2001)[9] p. 53 study sequential games with 4 positive payoffs. According to Theorem

6 , Table 1 shows how our results match experiments.

—————– insert Table 1 here —————
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Table 1: % of cooperation in 1-shot PD: Clark and Sefton

PD # A B C D µ̂ ε̃2 ∈ [ε??2 , 1] λ ∈
[
µ̂, µ̂

ε??2

]
Game of < 0

# payoffs
1 0 500 400 100 0 0.425 [0.7215, 1] [0.425, 0.58]

Marcus (2009)[23] experiments one-shot PD with 0, 1, 2, 3 or 4 negative payoffs.

According to Theorem 6 Table 2 shows that our results match experiments.

—————– insert Table 2 here —————

Table 2: % of cooperation in 1-shot PD: Marcus

PD # A B C D µ̂ ε̃2 ∈ [ε??2 , 1] λ ∈
[
µ̂, µ̂

ε??2

]
Game of < 0

# payoffs
1 0 150 110 50 30 0.32 [0.80, 1] [0.32, 0.40]
2 1 110 70 10 -10 0.22 [0.71, 1] [0.22, 0.31]

ε̃ ∈ [0, ε?1] ∪ [ε?2, 1] λ ∈ [ µ̂
ε?1
,∞ [ ∪

[
µ̂, µ̂

ε?2

]
3 2 70 30 -30 -50 0.27 [0, 0.21] ∪ [0.79, 1] [ 1.28,+∞ [ ∪ [0.27, 0.34]

ε̃ ∈ [0, ε?1] λ ∈ [ µ̂
ε?1
,∞ [

4 3 30 -10 -70 -90 0.24 [0, 0.36] [ 0.67,+∞ [
5 4 -10 -50 -110 -130 0.32 [0, 0.41] [ 0.77,+∞ [

Rapoport and Chammah (1970)[27] study the behavior in PD in relation to the pay-

offs. They build an index derived from the payoffs and underline the related behavior

to this index through the experiments of 7 different PD (among 12), played by 70 pairs

of males student 300 times. Each series of game is built in order to study the impact

on cooperation of the variation of one payoff at the time. All the games chosen by

Rapoport and Chammah have the property that the pure strategy Nash Equilibrium

corresponds to a negative payoff C < 0. For that reason, these experiments are very

interesting for our purpose. Results are summed up in Tables 3, 4 and 5. According

to Theorem 7, two negative payoffs involve two supports of subjective probabilities

[0, µ?1] ∪ [µ?2, 1]. In games 1, 11 and 3, A,C,D are constants and B changes 1, 5, 9

—————– insert Table 3 here —————

In games 4, 3, 5 B,C are constant but A and D evolve symmetrically.

—————– insert Table 4 here —————
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Table 3: Rapoport and Chammah (1970) P-D Experiments versus our theoretical results

PD # A B C D µ̂ ε̃ ∈ [0, ε?1] ∪ [ε?2, 1] λ ∈ [ µ̂
ε?1
,∞ [ ∪

[
µ̂, µ̂

ε?2

]
Game of < 0

# payoffs
1 2 10 9 -1 -10 0.73 [0, 0.05] ∪ [0.68, 1] [ 14.99,+∞ [ ∪ [0.73, 1.07]

11 2 10 5 -1 -10 0.63 [0, 0.05] ∪ [0.80, 1] [ 13.07,+∞ [ ∪ [0.63, 0.79]
3 2 10 1 -1 -10 0.46 [0, 0.04] ∪ [0.95, 1] [ 9.63,+∞ [ ∪ [0.46, 0.48]

Table 4: Rapoport and Chammah (1970) P-D Experiments versus our theoretical results

PD # A B C D µ̂ ε̃ ∈ [0, ε?1] ∪ [ε?2, 1] λ ∈ [ µ̂
ε?1
,∞ [ ∪

[
µ̂, µ̂

ε?2

]
Game of < 0

# payoffs
4 2 2 1 -1 -2 0.66 [0, 0.21] ∪ [0.79, 1] [ 3.12,+∞ [ ∪ [0.66, 0.84]
3 2 10 1 -1 -10 0.46 [0, 0.04] ∪ [0.95, 1] [ 9.63,+∞ [ ∪ [0.46, 0.48]
5 2 50 1 -1 -50 0.27 [0, 0.01] ∪ [0.99, 1] [ 27.27,+∞ [ ∪ [0.27, 0.2727]

In the last series of games 2, 12, 3 A,B,D are constant and the pure strategy Nash

equilibrium C < 0 evolves −9,−5,−1.

—————– insert Table 5 here —————

Table 5: Rapoport and Chammah (1970) P-D Experiments versus our theoretical results

PD # A B C D µ̂ ε̃ ∈ [0, ε?1] ∪ [ε?2, 1] λ ∈ [ µ̂
ε?1
,∞ [ ∪

[
µ̂, µ̂

ε?2

]
Game of < 0

# payoffs
2 2 10 1 -9 -10 0.77 [0, 0.31] ∪ [0.95, 1] [ 2.44,+∞ [ ∪ [0.77, 0.80]

12 2 10 1 -5 -10 0.59 [0, 0.20] ∪ [0.95, 1] [ 2.92,+∞ [ ∪ [0.59, 0.62]
3 2 10 1 -1 -10 0.46 [0, 0.04] ∪ [0.95, 1] [ 9.63,+∞ [ ∪ [0.46, 0.48]

Fudenberg, Rand and Dreber (2012) manipulate A and B.

—————– insert Table 6 here —————

—————– insert Table 7 here —————

4 Extensions to other famous games

How to start with other games? This section extends our methodology in the direction

of Zero-sum games, War and Peace, BoS, Coordination games, Head and Tail, Hawk

Dove and Centipede Game. We compute the rational subjective expected payoff strat-

egy Nash equilibrium for these famous static strategic games. We do not present all the
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Table 6: Fudenberg, Rand and Dreber AER 2012 P-D Perfect adjusted results

PD # A B C D µ̂ ε̃2 ∈ [ε??2 , 1] λ ∈
[
µ̂, µ̂

ε??2

]
Game of < 0

# payoffs
1 1 3 1 0 -2 0.54 [0.83, 1] [0.54, 0.65]
2 1 4 2 0 -2 0.75 [0.75, 1] [0.75, 1]

Table 7: Fudenberg, Rand and Dreber AER 2012 P-D Partial adjusted results

PD # A B C D µ̂ ε̃2 ∈ [ε??2 , 1] λ ∈
[
µ̂, µ̂

ε??2

]
Game of < 0

3 1 5 3 0 -2 0.79 [0.70, 1] [0.79, 1.12]
4 1 8 6 0 -2 0.76 [0.64, 1] [0.76, 1.17]

details but only significant examples in order to exhibit the potential of our technique

for other famous static strategic games.

In all the following games, we restrict attention to common subjective probabilities,

i.e., system Sµ, which solution are µ?1 and µ?2. Zones of trustable strategies are the result

of Ψ(µ, α) ≥ 0.

4.1 Zero-sum games

The methodology used in the context of sequential PD can be extended to zero-sum

games in normal form. Table 8 presents a 2-players, 2-actions zero-sum game which

has no pure strategy Nash equilibrium. Payoffs 0 ≥ A > B > C > D and K constant,

have been chosen since this game exhibits a subjective expected payoff strategy Nash

equilibrium without trust.

—————————– insert Table 8 here ————————-
Emergence of cooperation We show that there exists a unique subjective expected

payoff strategy Nash equilibrium. The condition ∆SEP (µ) := SEPbi(µ)− SEPai(µ) ≥
0, i = 1, 2 leads to the following system

S0ΣG
µ

{
−(A−B − C +D)µ2 − (2B + C −D)µ+B ≥ 0,(3)

(A−B − C +D)µ2 + (2B + C −D)µ−B + (1− 2µ)K ≥ 0.(4)

For K = 0, S0ΣG
µ leads to one unique 2nd degree polynomial which roots r = 1, 2 are

µ?r :=
D − 2B − C ±

√
(C −D)2 + 4AB

2(A−B − C +D)
.
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Table 8: Zero-sum game

Subj. Proba. by 2 SORSUP2 µ 1− µ
by 1 FORSUP1 M 1−M

SORSUP1 FORSUP2 Actions a2 b2

M a1 A C
µ K − A K − C

1−M b1 D B
1− µ K −D K −B

FORSUPi: First-order reasoning / subjective probability of player i,
SORSUPi: Second-order reasoning / subjective probability of player i.

For A = 0, µ?i2 = 1 and µ?i1 = 1/(1 + (C − D)/B) > 1 for |(C − D)/B| < 1. In that

case, the unique rational subjective expected payoff strategy Nash equilibrium is ∀µ ∈
[0, 1] , NRSEPS := {(b1, b2)}. If |(C − D)/B| > 1 then the root is negative and ∀µ ∈
[0, 1] , NRSEPS := {(a1, a2)}.

Emergence of trust As above A = K = 0. The mixed strategy Nash equilibrium is

0 < α? := 1/(1 + (A − D)(B − C)) < 1, 0 < β? := 1/(1 + (A − C)(B − D)) < 1 and

EU1(α?, β?) = −CD
B−C−D , EU2(α?, β?) = CD

B−C−D , so that EU1(α?, β?) = −EU2(α?, β?).

Consider B = −5, C = −10, D = −15 and find ∀ε ∈ [0, 1]] ,Ψ(ε) < 0 for player 1 as well

as for player 2. There is no trust.

4.2 Aumann’s game: War and Peace

Aumann (2006) [6] presents a static strategic game for which the cooperative outcome

cannot be reached, whatever the pure or mixed Nash strategies. Player 1 must decide

whether both she and player 2 will receive the same amount A or whether she will

receive n > 1 times more, and player 2 will receive n times less. Simultaneously, player

2 must decide whether or not to take a punitive action, which will harm both players;

if she does so, the division is cancelled, and instead, each player gets nothing.

—————————– insert Table 9 here ————————-
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Table 9: Aumann’ game War and Peace

Common subj. proba by 2 SOSUP2 µ 1− µ
by 1 FOSUP1 µ 1− µ

SOSUP1 FOSUP2 Actions a2 b2

µ a1 A 0
µ A 0

1− µ b1 nA 0
1− µ A

n
0

FOSUPi : First-order subjective probabilities of player i,
SOSUPi: Second-order subjective probabilities of player i.

Emergence of cooperative equilibrium System Sµ0 defined as the difference between

the subjective expected payoff of the cooperative action ai, i = 1, 2 and the subjective

expected payoff of action bi, leads to{
µ2A− µ(1− µ)nA ≥ 0,
µ2A+ µ(1− µ)A

n
≥ 0,

⇐⇒
{

(n+ 1)µ− n ≥ 0,
(n− 1)µ+ 1 ≥ 0.

{
µ?1 = n

1+n
,

µ?2 = 1
1−n .

Note that payoffs are irrelevant. Define 0 < µ? = 1/(1 + 1/n) < 1. Since 1/(1− n) < 0,

the cooperative action is played ∀µ̃ ∈ [µ?, 1]. The smaller n the higher the support of

the subjective distortion of the objective basic probability that supports the Aumann’s

cooperative outcome.

Emergence of trust The pure or mixed strategy Nash equilibrium provides player 1

with the expected utility EU1 = nA and player 2 with EU1 = A/n. The new system to

solve is{
µ2A− µ(1− µ)nA− nA ≥ 0,
µ2A+ µ(1− µ)A

n
− A

n
≥ 0,

⇐⇒
{

(1 + n)µ2 − µ− n ≥ 0,
(n− 1)µ2 + µ− 1 ≥ 0.{

µ??11 = n−
√
n
√

4+5n
2(1+n)

µ??12 = n+
√
n
√

4+5n
2(1+n)

µ??12 = 1+
√
−3+4n

2(1−n)
µ??22 = 1−

√
−3+4n

2(1−n)

µ??22µ??21

µ??12µ??11

µ?1µ?2

(n+ 1)µ− 1(n− 1)µ+ 1
Ψ2

Ψ1

Player 1 trusts player 2 over [µ??22, 1]
Cooperative action by player 2 over [0, 1]

Cooperative action by player 1 over [µ?1, 1]0 1• ••• •• Figure 9
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4.3 Battle of the Sexes

Consider the Battle of the Sexes. If player i = 1, 2 goes to his favorite concert (action

ai for player i while player j 6= i joins him, or action bj for the player j) then player i

gets A and player j gets B and reciprocally. If they go to a separate concert, each player

choose action ai or bi, both get C, where A > B > C and A > B ≥ 0.

Emergence of cooperation Assume that players evaluate ∆SEPi(µ) = SEPai(µ) −
SEPbi(µ) ≥ 0, which leads to the following system Sµ0{

(A−B)µ2 + 2Bµ−B ≥ 0
−(A−B)µ2 + 2Aµ− A ≥ 0

which has four solutions µ?1 = −
√
B√

A−
√
B
≤ 0, µ?11 =

√
B√

A+
√
B
< 1, µ?2 =

√
A√

A+
√
B
< 1

and µ?22 =
√
A√

A−
√
B
≥ 0. Consider the particular class of games where B = 0,∀A,C :

µ?1 = µ?11 = 0. By the convexity of the first relation in system Sµ0 , the solution is exactly

µ? = 0 for player 1. By the concavity of the second relation, the solution is µ? = 1.

Consequently, there is a unique subjective expected payoff strategy Nash equilibrium

in µ? = 1: Player 2 reneges to go to his first best concert. The set of optimal actions

is NRSEPS = {(a1, b2)}. Note that if both players evaluate ∆SEPi(µ) = SEPai(µ) −
SEPbi(µ) ≥ 0 then player 1 reneges. One can also see that forA = 0 results are reversed.

Emergence of trust The mixed strategy Nash equilibrium leads to α? = (B−C)/(A−
C +B −C) for player 1 and β? = (A−C)/(A−C +B −C) for player 2. The expected

utility evaluated in terms of the mixed strategy is EUi = (AB−C2)/(A−C+B−C). If

B = 0 then EUi < 0 and by definition all subjective probabilities are rational. For A = 0

it remains the same. Each player can trust each other.

4.3.1 Coordination games

Emergence of cooperation Similarly, consider the coordination game where payoffs

are A for each player if both go to player’s 1 concert, B = 0 if they both go to player’s

2 concert and C < B if they go alone, where A > B > C. Assume that the players

evaluate ∆SEPi(µ) = SEPai(µ)−SEPbi(µ) ≥ 0. System Sµ0 reduces to only one relation,

which is the same convex relation of BoS. If B = 0 then µ?1 = µ?11 = 0. The subjective

expected payoff strategy Nash equilibrium is unique and both players go to player’s 1
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concert. Again, reversing the criterium leads to the opposite conclusion. Both players

go to player’s 1 concert.

Emergence of trust The mixed strategy Nash equilibrium leads to α? = β? = (A −
C)/(A − C + B − C). The expected utility evaluated in terms of the mixed strategy

is EUi = (AB − C2)/(A − C + B − C). If B = 0 then EUi < 0 and by definition all

subjective probabilities are rational. Each player can trust each other.

This game can be extended to Stag and Hare or Assurance Game or Trust Dilemma.

Stag and Hare describes the conflict between safety and social cooperation. JJ Rousseau

was the first to point out this game in which 2 hunters cannot communicate and indi-

vidually have to choose to hunt a stag or a hare. Assume that payoffs are ranked as

follows A > B ≥ C > D. If both players hunt a stag, they have to cooperate and

each gets A. If one hunts a stag while the other hunts a hare then the first player

gets D while the other gets B. If both hunt a hare, then each gets C. The set of pure

strategy Nash equilibrium is Np = {(S1, S2); (H1, H2)}. Assume that the players eval-

uate ∆SEPi(µ) = SEPsi(µ) − SEPhi(µ) ≥ 0. System Sµ0 reduces to only one relation

(A + B − C − D)µ2 + (−B + 2C + D)µ − C ≥ 0. If A = −(B − D)2/4C the previous

inequality admits a single root and both players hunt a stag.

4.4 Head and Tail

The game Head and Tail is a particular case of the zero-sum game of subsection 4.1,

where k = 0, A = B = −1 and C = D = 1. System Sµ0 has only one point solution µ? =

1/2, which is exactly the mixed strategy Nash equilibrium. There is neither cooperation

nor trust in that game.

4.5 Hawk Doves or Tragedy of commons

Two players are fighting to share some benefit. Each can act as a hawk or a dove. The

best outcome for each is reached when she acts like a hawk A when the other acts like

a dove C. If both act like a Dove each gets B. If both act like a hawk each gets D, where

A > B > C > D.

Emergence of cooperation Assume that the players evaluate ∆SEPi(µ) = SEPDi
(µ)−

SEPHi
(µ) ≥ 0. In the case of common subjective probabilities with the same random
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mechanism for each player, system Sµ0 leads to a unique convex relation which has two

distinct roots.

µ?k :=
A− C + 2B ±

√
(A− C)2 + 4BD

2(A+B − C −D)
, k = 1, 2.

If D = 0, then 0 < µ?1 < 1 and µ?2 = 1, by the convexity of the relation, ∀µ ∈ [0, µ?1],

players choose to act as a Dove. Moreover ∀µ ∈ [µ?1, 1], players choose to act as a Hawk.

Note that Hawk Doves and the Tragedy of commons are the same games, see Hardin’s

in Diekert (2012)[12] p. 1779.

Emergence of trust The mixed strategy Nash equilibrium is α? = β? = (A−B)/(A−
B + C − D). The expected utility evaluated in terms of the mixed strategy is EUi =

(AC − CD)/(A−B + C −D). If D = 0 then EUi > 0. ∆SEPi(µ)− EUi ≥ 0 leads to

µ(1− µ)(A+ C) + (1− µ)2B − (AC)/(A−B + C) ≥ 0

Solutions are: µ??1 :=
C −B

A−B + C
< 0, 0 < µ??2 :=

A−B
A−B + C

=
1

1 + C
A−B

< 1.

and by definition all subjective probabilities belonging to [µ??2 , 1] are rational. The con-

dition for players to trust each other to act as a Dove is µ??2 < µ?1 which is possible if

A < B + C. Consequently, each player can trust each other over [µ??2 , µ
?
1]. If A > B + C

there are no trusts.

4.6 The centipede game

As in McKelvey and Palfrey (1992) [24], consider two piles of money are on the table.

One pile k × B is larger by a factor k > 1 than the other, denoted B . There are two

players, N := {1, 2}, each of whom alternately gets a turn in which he can choose

either to take T the larger of the two piles of money or to pass, P . The set of actions

is Ai := {T, P}. When one player takes, the game ends, with the player whose turn it

is getting the large pile and the other player getting the small pile. On the other hand,

whenever a player passes, both piles are multiplied by some fixed amount m > 1, and

the play proceeds to the next player. The finite number of moves to the game is known

in advance to both players. The next Figure presents the Bayes equivalent of the game,

where αh or βh′ stand for the basic probability to take the pile.
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T α∅ T β1 T α2 T β3 T α4 T β5

P
1− β5

P
1− α4

P
1− β3

P
1− α2

P
1− β1

P
1− α∅

1 1 12 2 2

kB
B

mB
mkB

m2kB
m2B

m3B
m3kB

m4kB
m4B

m5B
m5kB

m6kB
m6B

Emergence of cooperation In the Bayes equivalent of the centipede game with com-

mon subjective probabilities (the same random mechanism after each period), ∀h ∈
H, εh = εh′ = ε. The player function P (h) = i ∈ N indicates that player i chooses an

action a(h), h ∈ H . Assume that the players evaluate ∆SEP1(ε) = SEPPP (∅)=1
(ε) −

SEPTP (∅)=1
(ε = 1) ≥ 0. It is important to note that SEPTi(ε = 1) corresponds to the cer-

tain event "P (h) = i takes it". System Sε0 for player 1 leads to a unique concave relation

−B(k+m(−1+ε))εwhich has two distinct roots ε0 = 0 and ε1 = 1−k/m. Consequently,

Pass is possible. Apply this to McKelvey and Palfrey (1992) [24] where B = 0.1, k = 4

and m = 2 and find ε1 = −1. The the unique admissible solution is to Pass: ε0 = 0.

Similarly in Aumann (1988) [4] centipede game B = 0.5, k = 20 and m = 10 and find

ε0 = 0 and ε1 = −1.

System Sε0 for player 2 leads to a unique cubic relation Bm(k+m(−1 + ε))(−1 + ε)ε

which has three solutions ε0 = 0, ε1 = 1 and ε2 = 1 − k/m. Again, Pass is possible.

Apply this to McKelvey and Palfrey (1992) there are two admissible solutions Pass for

ε0 or take it for ε1 = 1. Similarly in Aumann centipede game.

Both player have an incentive to pass after each history. The reason why players

continue to pass and not to take it (since ε1 is a solution) is due to the emergence of

trust in the other player as we turn now to explain.

Emergence of trust In the Bayes-equivalent of the centipede game, it has been shown

that ε = 0 is a solution. Our concept of trust enlightens players’s behavior who coop-

erate during few periods. Indeed, as in previous subsections, the mixed strategy Nash

equilibrium is ∀h ∈ H,α?∅ = 1. The game ends at the first history and payoffs are kB for

player 1 and B for player 2. For trust to emerge, each player solves the following prob-

lem ∃?h? ∈ H | ∆SEPP (h?)=i(ε)−EUi(α?∅) ≥ 0. We show that during some few periods

the previous inequality is not satisfied, but generally, as in most experiments, players
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start to choose action T (h?) for h? = 4 or 5. Let us compute ∆SEPP (2)=1(ε)−EU1(α?∅) =

Bk(−1+m2(−1+ε)2ε) ≥ 0 which is a cubic relation that admits only one real root in R,

ε = 1.14 > 1. We have ∆SEPP (2)=1(ε) − EU1(α?∅) < 0 over [0, 1], consequently h = 2 is

not solution for player 1. Compute ∆SEPP (4)=1(ε)−EU1(α?∅) = Bk(−1+m4(−1+ε)4ε).

In McKelvey and Palfrey (1992), the criterion is positive over [0.092, 0.35]. There exists a

support of bayes equivalent probabilities over which player 1 may choose to take it all.

In Aumanns, the criterion is positive over the entire interval [0, 1]. Still pass is possible

since 0 belongs to the interval.

For player 2 in h = 1 ∆SEPP (1)=2(ε)−EU2(α?∅) = B(−1−km(−1+ε)ε) which admits

two solutions ε0 = 1
2
−
√
−4+km

2
√
km

or ε1 = 1
2

+
√
−4+km

2
√
km

. In McKelvey and Palfrey (1992), the

criterion is positive over [0.1465, 0.8535] and in Aumann over [0.005, 0.0995]. Whatever

the history, one can adjust µ̂ = λε so that the theory matches data.

4.7 Asymmetric payoffs in PDs

In this paper we assumed from beginning symmetric payoffs. Considering asymmetric

payoffs, one can easily see that as long as the sign of each player’s payoffs are the same,

all the previous results in terms of cooperation hold. Considering common subjective

probabilities, the only modification is that system Sµ0 leads to two different inequalities

(thus two roots per each) and cooperation will emerge as a subjective expected payoff

strategy Nash equilibrium. As long as ∆SEP dominates EU in terms of the mixed

strategy Nash equilibrium, trust emerges in the same way, but not necessarily for all

players.

5 Conclusion

The Bayes equivalent of the PD provides players with three information: Information 1.

The objective basic probability distribution of the game. This is a useful information

since players do not have to select the same priors among a huge collection of plausible

priors. Indeed, it turns out that the basic probability distribution is unique in PDs.

Information 2. The length of the support of these probabilities over which the expected

payoff of cooperation dominates the one of defection. This explains the emergence of

cooperation. Information 3. The length of the support of these probabilities over which

the difference between the expected payoff of cooperation and defection is greater (or
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equal) to the expected utility evaluated at the mixed strategy Nash equilibrium. This

explains the emergence of trust.

Prior to playing the PD, all players use these three information. Using information

1. players evaluate the expected payoff of an action in terms of the basic probabilities.

Using information 2. They compare the expected payoff of cooperation with the one

of defection. This helps players select cooperation as an expected payoff strategy Nash

equilibrium (or defection depending on the support of the basic probability distribu-

tion). For cooperation to be another Nash equilibrium, players use first-order reasoning

and second-order reasoning to evaluate the expected payoff of each action. Coopera-

tion is endogenous and consistent with the full rationality principle. Using information

3. They evaluate the length of the support over which the chosen strategy is trustable.

According to this support, they formulate subjective probabilities which are the result

of a rational subjective distortion of the objective basic probabilities.

Each Nash equilibrium remains locally stable even if players formulate different

(rational) subjective probabilities. No assumption about common beliefs in rationality

are required for cooperation or defection to be a Nash equilibrium. The methodology

reconciles ex-ante and ex-post rationality.

Our methodology matches observed cooperation rates. It can be applied to other

static strategic games, zero sum games, the War and Peace Aumann’s game, the Battle

of the Sexes, the coordination game, Head and Tail and Hawk Dove / the Tragedy of

Commons, the centipede game as discussed in Section 4. In Head and Tail the unique

equilibrium coincides with the mixed strategy Nash equilibrium. In War and Peace by

Aumann (2007)[3] the cooperative outcome can be played. Finally, there is no more

paradox in PDs.
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A Appendix

Proof. In S0, replace the expected payoffs of cooperation and non cooperation by their

respective expression and factorize according to the priors, see Figure 1: ε1 for player i

and ε∅ for player j.

S0 :

{
[C − A+ ε∅(A+B − C −D)] ε1 + ε∅(C +D)− C ≥ 0,(5)

[C − A+ ε1(A+B − C −D)] ε∅ + ε1(C +D)− C ≥ 0.(6)

Relation (5) is relative to player i = 1, 2 and relation (6) to player j 6= i.

PROPERTY 2 In any PD A+B − C −D > 0.

By definition of a PD, we have A > B > C > D, in particular A−C > 0 and B−D > 0

thus A + B − C − D > 0. By Property 2, relations 5 and 6 of system S0 are non-

linear and continuous in priors, ε∅ and ε1. Note that S0 exhibits non-linear relations

in term of the product ε∅ε1. To our knowledge, there is no methodology to solve S0.

We propose one. Consider relation (5) as a linear inequality in ε1 and respectively

relation (6) in ε∅. For the rest of the paper, si(ε∅) := C − A + ε∅(A + B − C − D) and

sj(ε1) := C − A + ε1(A + B − C −D) denote the positive slopes of inequalities (5) and

(6) in S0 or −σi(ε∅) and −σj(ε1) the negative ones. Similarly, gi(ε∅) := ε∅(C + D) − C
and gj(ε1) := ε1(C +D)− C denote the positive intercepts of inequalities (5) and (6) or

−γi(ε∅) and −γj(ε1) the negative ones.

PROPERTY 3 ∀A > B > C > D, ∀h = ∅, 1, dsi(εh)/dεh > 0.

Proof. From Property 2, inequality (5) reveals a slope in ε1 which has a positive slope

in ε∅ and conversely for inequality (6). �

For any PD, Theorem 1 proves the existence of two non empty sets of solutions Iε∅
and Iε1 such that ∀ε̃∅ ∈ Iε∅ ⊂ [0, 1] and ∀ε̃1 ∈ Iε1 ⊂ [0, 1] system S0 is satisfied. Theorem

2 characterizes these intervals over [0, 1].

Proof. Theorem 1 is proved with Propositions 2, 3, 4, 5, 6 and 7 which help prove

the existence of at least one (at most two) support(s) of probability over [0, 1] for which

system S0 is satisfied.

PROPOSITION 2
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1. Whatever the payoffs of a given PD ∃ε? ∈ ] 0, 1 [ | si(ε?) = 0 and ∀h = ∅, 1, ∀ε̃h ≥
ε?, si(ε̃h) > 0, otherwise the slope is negative, −σi(ε̃h).

2. Whatever the payoffs of the PD, ∃ε?? ∈ R | gi(ε??) = 0.

3. ε? > ε?? ⇐⇒ AD−BC
C+D

> 0.

4. ε?? 6= ε?.

5.a ∃A−γ > B−γ > C−γ > D−γ | ε?? ≤ 0. In that case ∀h = ∅, 1, d(−γi(ε̃h))/dε̃h ≤ 0 ⇒
−γi(0) < 0. The case dgi(ε̃h)/dε̃h > 0 and gi(0) > 0 is impossible.

5.b ∃Ag > Bg > Cg > Dg, | 0 ≤ ε?? ≤ 1, the slope of the intercept is negative over [0, 1].

5.c ∃Ag > Bg > Cg > Dg | 0 ≤ ε?? ≤ 1, the slope of the intercept is positive over [0, 1].

5.d ∃Ag > Bg > Cg > Dg | 1 ≤ ε??,∀h = ∅, 1,∀ε̃h ∈ [0, 1] , d(−γi(ε̃h)/dε̃h) ≥ 0 ⇒
−γi(0) < 0. The case dgi(ε̃h)/dε̃h < 0⇒ gi(0) > 0 is impossible.

Proof. Proof of item 1. ∀h = ∅, 1 s(εh) = 0, is obtained for 0 < ε? := 1
1+B−D

A−C

< 1

By Property 2 and Property 3, s(εh) is increasing in εh. Consequently, ∀h = ∅, 1,∀ε̃h ∈
[0, ε?] , d(−σi(ε̃h))/dε̃h > 0 ⇒ −σi(0) < 0 and ∀ε̃h ∈ [ε?, 1] , d(si(ε̃h))/dε̃h > 0 ⇒ si(1) >

0. For small values of ε̃h the slope is negative and positive above.

Proof of item 2 ∀h = ∅, 1 g(εh) = 0 leads to ε?? := C
C+D

.

Proof of item 3. Define zε := ε? − ε??. Compute zε = AD−BC
(A+B−C−D)(C+D)

= Nε

Dε
, where

Nε is the numerator and Dε the denominator. By Property 2, the condition reduces to
AD−BC
C+D

> 0.

Proof of item 4. The condition for ε? = ε?? is AD = BC which by Property 2 is

impossible.

Proof of item 5a.

• If C ≥ 0 > D and | C |<| D | then C + D < 0 ⇒ ε?? ≤ 0 and ∀h = ∅, 1,∀ε̃h ∈
[0, 1] , d(−γi(ε̃h))/dε̃h ≤ 0⇒ −γi(0) < 0. The slope of the intercept is negative, and

the intercept never crosses the horizontal axis over [0, 1].

• If C ≥ 0 > D and | C |>| D | then C +D > 0⇒ ε?? ≥ 0, a contradiction.

• If 0 > C > D or if C > D > 0 then ε?? ≥ 0, a contradiction.
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Consequently, the case ε?? ≤ 0, dgi(ε̃h)/dε̃h > 0 and gi(0) > 0 is impossible.

Proof of item 5b. Assume 0 ≥ C ≥ D ⇐⇒ 0 ≤ ε?? ≤ 1 and C + D < 0,∀h =

∅, 1,∀ε̃h ∈ [0, ε??] , dgi(ε̃h)/dε̃h ≤ 0,⇒ gi(0) > 0 and ∀ε̃h ∈ [ε??, 1] , d(−γi(ε̃h))/dε̃h ≤ 0 ⇒
−γi(1) < 0. This case splits into two subcases depending on zε > 0 or zε < 0.

Proof of item 5c. Assume C ≥ D ≥ 0 ⇐⇒ 0 ≤ ε?? ≤ 1 and C + D > 0,∀h =

∅, 1,∀ε̃h ∈ [0, ε??] , d(−γi(ε̃h))/dε̃h ≥ 0 ⇒ −γi(0) < 0 and ∀ε̃h ∈ [ε??, 1] , dgi(ε̃h)/dε̃h ≥
0,⇒ gi(1) > 0. This case splits into two subcases depending on zε > 0 or zε < 0.

Proof of item 5d. If C ≥ 0 > D and | C |>| D | then C + D > 0 ⇒ ε?? ≥ 1 and

∀h = ∅, 1, ∀ε̃h ∈ [0, 1] , d(−γi(ε̃h))/dε̃h ≥ 0 ⇒ −γi(0) < 0. The slope of the intercept is

positive, and the intercept never crosses the horizontal axis over [0, 1]. �

PROPOSITION 3 If the value of the payoff of the pure strategy N ash equilibrium of the PD

is negative, C < 0, and if in the Bayes-equivalent of the PD the priors (ε∅, ε1) tends toward 0+,

then System S0 is always satisfied.

Proof. If C < 0, then −C > 0, and if ε∅ → 0 and if ε1 → 0+ then S0 reduces to −C > 0.

�

We now study the conditions for which ∆EP (ε∅, ε1) ≥ 0. This generates a typology

of PD, since system S0 turns into 4 different expressions S1, S2, S3, S4.

PROPOSITION 4 Recall ∀h = ∅, 1, h 6= k, Iεh := [εh, εh] ⊂ [0, 1].

1. ∆EP (εk, εh) = s(εk)εh + g(εk) for zε < 0 and either ε̃h ∈ I11
εh

:= [ε?, ε??] (1 and

5b of Proposition 2) or ε̃h ∈ I12
εh

:= [ε??, 1] (1 and 5c of Proposition 2). For zε > 0

ε̃h ∈ I13
εh

:= [ε?, 1] (1 and 5c of Proposition 2).

2. ∆EP (εk, εh) = s(εk)εh − γ(εk): for either zε < 0 and either ε̃h ∈ I21
εh

:= [ε?, ε??] (1 and

5c of Proposition 2) or ε̃h ∈ I22
εh

:= [ε??, 1] (1 and 5b of Proposition 2), or ε̃h ∈ I23
εh

:=

[ε?, 1] (1 and 5d of Proposition 2). For zε > 0 and ε̃h ∈ I23
εh

:= [ε?, 1] (either 1 and 5a, or

1 and 5b of Proposition 2).

3. ∆EP (εk, εh) = −σ(εk)εh + g(εk): for either zε < 0 and ε̃h ∈ I31
εh

:= [0, ε?] (1 and 5b of

Proposition 2) or for zε > 0 and either ε̃h ∈ I32
εh

:= [ε??, ε?] (1 and 5c of Proposition 2) or

ε̃h ∈ I33
εh

:= [0, ε??] (1 and 5b of Proposition 2).

4. ∆EP (εk, εh) = −σ(εk)εh − γ(εk): for zε < 0 and ∀ε̃h ∈ I41
εh

:= [0, ε?] (either 1 and 5c

or 1 and 5d of Proposition 2). For zε > 0 and either ∀ε̃h ∈ I41
εh

:= [0, ε?] (1 and 5a of
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Proposition 2, or ∀ε̃h ∈ I42
εh

:= [ε??, ε?] (1 and 5b of Proposition 2) or ε̃h ∈ I43
εh

:= [0, ε??]

(1 and 5c of Proposition 2).

Proof. Proposition 4 is an immediate consequence of Proposition 2. One can easily

draw each corresponding case of Proposition 2 and check the existence of the corre-

sponding interval Iklεh , k = 1, 2, 3, 4 and l = 1, 2, 3 for each system. Indications of proof

are given in parenthesis for each item. �

Using Propositions 2 and 4, S0 can take four different forms labeled S1, S2, S3 or S4.

∀ε̃h ∈ I11
εh

or I12
εh

or I13
εh
, S1 :

{
si(ε∅)ε1 + gi(ε∅) ≥ 0,(7)

sj(ε1)ε∅ + gj(ε1) ≥ 0.(8)

∀ε̃h ∈ I21
εh

or I22
εh

or I23
εh
, S2 :

{
si(ε∅)ε1 − γi(ε∅) ≥ 0,(9)

sj(ε1)ε∅ − γj(ε1) ≥ 0.(10)

∀ε̃h ∈ I31
εh

or I32
εh

or I33
εh
, S3 :

{
−σi(ε∅)ε1 + gi(ε∅) ≥ 0,(11)

−σj(ε1)ε∅ + gj(ε1) ≥ 0.(12)

∀ε̃h ∈ I41
εh

or I42
εh

or I43
εh
, S4 :

{
−σi(ε∅)ε1 − γi(ε∅) ≤ 0,(13)

−σj(ε1)ε∅ − γj(ε1) ≤ 0.(14)

Note that S4 always supports defection. We now prove that the domains over which the

previous systems are satisfied coincide with the intervals of Proposition 4 for system

S1 and S4, and are restrictions of them for systems S2 and S3. We label them IS1
εh
, IS2
εh
, IS3
εh

and IS4
εh

. In Proposition 5, ε?1 and ε?2 characterize the restrictions of the domain of validity

for S2 and S3 and are defined in the proof.

PROPOSITION 5 Depending on the various possible values of payoffs:

1. Either ∀ε̃h ∈ IS1
εh

:= I13
εh

, ∀ε̃h ∈ ÎS1
εh

:= I11
εh

, or ∀ε̃h ∈ I
S1

εh
:= I12

εh
, S1 ≥ 0.

2. Either ∀ε̃h ∈ IS2
εh

:= [ε?2, 1], ∀ε̃h ∈ ÎS2
εh

:= [ε?2, ε
??] or ∀ε̃h ∈ I

S2

εh
:= [ε??, ε?1] , S2 ≥ 0.

3. Either ∀ε̃h ∈ IS3
εh

:= [0, ε?1] ,∀ε̃h ∈ ÎS3
εh

:= [ε?2, ε
?] or ε̃h ∈ I

S3

εh
:= [0, ε?] , S3 ≥ 0.

4. Either ∀ε̃h ∈ IS4
εh

:= I41
εh
,∀ε̃h ∈ ÎS4

εh
:= I42

εh
or ε̃h ∈ I

S4

εh
:= I43

εh
, S4 ≤ 0.
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Proof. Item 1 of Proposition 5: For system S1 to be satisfied, the 2 following conditions

must hold together

∆EPi(ε∅, ε1) ≥ 0 ⇐⇒ ε1 ≥ 0 ≥ ε̂1(ε∅) :=
−gi(ε∅)
si(ε∅)

,(15)

∆EPj(ε̃1, ε̃∅) ≥ 0 ⇐⇒ ε∅ ≥ 0 ≥ ε̂∅(ε1) :=
−gj(ε1)

sj(ε1)
.(16)

Consequently, according to Proposition 4 item 1, ∆EP (εk, εh) ≥ 0 over either I11
εh
, I12
εh

or I13
εh

. Item 2 of Proposition 5: For system S2 to be satisfied, (17) and (18) must hold

together

∆EPi(ε∅, ε1) ≥ 0 ⇐⇒ ε1 ≥ ε̂1(ε∅) :=
γi(ε∅)

si(ε∅)
≥ 0,(17)

∆EPj(ε1, ε∅) ≥ 0 ⇐⇒ ε∅ ≥ ε̂∅(ε1) :=
γj(ε1)

sj(ε1)
≥ 0.(18)

Consequently, the domain of definition of system S2 is a restriction of the interval I2l
εh

defined in Proposition 4 item 2. To characterize it, we need to prove that the set-

valued functions defined by ε1 ≥ ε̂1(ε∅) (17) and ε∅ ≥ ε̂∅(ε1) (18) intersect the inter-

val [0, 1]2 over a non-empty subset. The two thresholds ε̂1(ε∅) and ε̂∅(ε1) represents

the probabilistic frontier under/above which players choose cooperation. Such a fron-

tier is defined as follows. Consider the particular points ε∅ = ε1 = ε for which the

two previous set-valued functions intersect the 45 degree line over [0, 1]2. Over the

45 degree line, (17) and (18) becomes a unique relation ε = γ(ε)/s(ε). Consequently,

∃ε?1 ∈ R,∃ε?2 ∈ R | ∆EPi(ε
?
1, ε

?
2) = 0 and ∆EPj(ε

?
2, ε

?
1) = 0. Replace γ and s by their

respective expressions and obtain the following condition:

(A+B − C −D)ε2 − (A− 2C −D)ε− C ≥ 0.(19)

Let us denote ε?1 and ε?2 the two solutions of (19) as an equality.

ε?1 =
A− 2C −D −

√
(A−D)2 + 4BC

2(A+B − C −D)
, ε?2 =

A− 2C −D +
√

(A−D)2 + 4BC

2(A+B − C −D)
.

System S2 is satisfied out of the set of solutions, i.e., ∀ε̃h ≤ ε?1 and ∀ε̃h ≥ ε?2. Proposition

7 proves that at mean one of these two solutions belongs to [0, 1].

For system S3 to be satisfied, the 2 following conditions must hold together

∆EPi(ε∅, ε1) ≥ 0 ⇐⇒ ε1 ≤ ε̂1(ε∅) :=
gi(ε∅)

σi(ε∅)
,(20)

∆EPj(ε1, ε∅) ≥ 0 ⇐⇒ ε∅ ≤ ε̂∅(ε1) :=
gj(ε1)

σj(ε1)
.(21)
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Note that ε̂1(ε∅) > 0 and ε̂∅(ε1) > 0 and that cooperation emerges below these two

thresholds, contrary to the previous cases. Using the same methodology as for System

S2, system S3 leads to the following condition:

−(A+B − C −D)ε2 + (A− 2C −D)ε+ C ≤ 0.(22)

Note that due to the symmetry of payoffs, inequality 19 is the same as inequality 22.

Recall that S4 is never satisfied.

PROPOSITION 6 ε?1 = ε?2 is impossible.

Proof. If ε?1 = ε?2 then the discriminant is zero, which is impossible by Property 2.

A−D > B − C ⇐⇒ (A−D)2 > (B − C)2

⇐⇒ (A−D)2 + 4BC > (B − C)2 + 4BC

⇐⇒ (A−D)2 + 4BC > (B + C)2 > 0.

From what we learn that there are two distinct solutions. �

PROPOSITION 7 ε?1 < 0 and ε?2 < 0 is impossible. ε?1 > 1 and ε?2 > 1 is impossible. If

ε?1 < 0 then ε?2 ∈ [0, 1]. If ε?1 ∈ [0, 1] then ε?2 ∈ [0, 1] or ε?2 > 1. There is at least one interior

solution.

Proof. There are two main cases:

1 IfA−2C−D < 0 then ε?1 < 0 and ε?2 > 0. Indeed, ε?2 > 0 ⇐⇒
√

(A−D)2 + 4BC >

−(A−2C−D) ⇐⇒ (A−D)2+4BC > (A−D)2−4C(A−D)+4C2 which simplifies

to beA+B−C−D > 0, always true. Moreover, ε?2 < 1 ⇐⇒
√

(A−D)2 + 4BC <

2(A+B −C −D)− (A− 2C −D) which simplifies to become (A−D)2 + 4BC >

(A − D + 2B)2 ⇐⇒ (A − D)2 + 4BC > (A − D)2 − 4B(A − D) + 4B2 ⇐⇒
A+B − C −D > 0. Conclusion if ε?1 < 0 then 0 < ε?2 < 1.

2.a If A− 2C −D > 0 and A− 2C −D <
√

(A−D)2 + 4BC, then ε?1 < 0 and ε?2 > 0.

As above ε?2 < 1.

2.b If A − 2C −D > 0 and A − 2C −D >
√

(A−D)2 + 4BC then ε?1 > 0 and ε?1 < 1

leads to−
√

∆ < A+2B−D which again isA+B−C−D > 0. Since the numerator

and the denominator are positive, ε?2 > 0. The condition for ε?2 < 1 is B > 0. If

B < 0 then ε?2 > 1 and 0 < ε?1 < 1 (see Lemma 2 below).
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Table 18 illustrates those cases. � This ends Proposition 7. �

LEMMA 2 In any PD, the condition for ε?1 > 0 is C < 0, ε?2 < 1 is B > 0.

Proof. ε?1 > 0 if the numerator is positive, since the denominator is always positive.

Compute (A−2C−D)2−((A−D)2 +4BC) and get−4C(A+B−C−D). Consequently,

using Property 2 C < 0 ⇒ ε?1 > 0, ε?2 < 1. Note B = 0 ⇒ ε?2 = 1 and ∂ε?2/∂B|B=0
=

C√
4BC+(A−D)2(A+B−C−D)

− A−2C−D+
√

4BC+(A−D)2

2(A+B−C−D)2
and B = 0, ∂ε?2/∂B|B=0

< 0. �

This ends the proof of Theorem 1. �

�

B Appendix
Proof. Theorem 2 is proved using Lemma 3. We study the properties of ε̂h.

∂ε̂h(εk)

∂εk
=

AD −BC
(C − A+ εk(A+B − C −D))2

,
∂2ε̂h(εk)

∂ε2
k

=
2(A+B − C −D)(BC − AD)

(C − A+ εk(A+B − C −D))3
.

If AD > BC and εk ≥ (A−C)/(A+B−C −D) then ε̂h is increasing in εk and concave.

From what all the other cases are deduced. From Property 2 and Proposition 2 items

1 and 3, depending on the value of the slope of the slope (s or −σ), the first derivative

and second derivative may be positive or negative. All the following various cases are

ranked according to the number of positive payoffs.

LEMMA 3 For systems S1 and S2, sign (∂ε̂h(εk)/∂εk) = −sign (∂2ε̂h(εk)/∂ε
2
k), and for S3

and S4 sign (∂ε̂h(εk)/∂εk) = sign (∂2ε̂h(εk)/∂ε
2
k).

Proof. For systems S1 and S2 rewrite

∂ε̂h(εk)

∂εk
=

(A+B − C −D)(C +D)zε
s(εk)2

,
∂2ε̂h(εk)

∂ε2
k

=
2(A+B − C −D)2(C +D)(−zε)

s(εk)3
.

For systems S3 and S4 rewrite

∂ε̂h(εk)

∂εk
=

(A+B − C −D)(C +D)zε
(−σ(εk))2

,
∂2ε̂h(εk)

∂ε2
k

=
2(A+B − C −D)2(C +D)(−zε)

(−σ(εk))3
.

Either ε̂h is increasing and concave, or decreasing and convex. �

Let us turn to the typology of PD.

1. Suppose A > B > C > D > 0. From Lemma 2, ε?1 < 0 and ε?2 < 1.
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(a) zε > 0, ε? > ε?? ⇐⇒ Nε > 0, Dε > 0 and ∂ε̂/∂ε > 0. From Proposition 2 item

2 Dε > 0 ⇒ C > −D and ε?? > 0. Consequently, if Dε > 0 the slope of the

intercept is necessarily positive. In that case, ε?2 < ε?. Indeed,

A− 2C −D +
√

(A−D)2 + 4BC

2(A+B − C −D)
<

A− C
A+B − C −D

⇐⇒ AD > BC,

which is exactly the assumption Nε > 0. From Lemma 3, the representative

curve of ε̂(ε) is increasing convex over S3 and S4, and increasing concave

over S1. Consider the surface [0, 1]2. The function ε̂(ε) crosses horizontal line

(defined by coordinates (0, 1)(1, 1)) or vertical line (defined by coordinates

(1, 0)(1, 1)) for ε̂(ε) = 1 that is ε1
∅ = A/(A + B). Results are summed up in

Table 10. In all the following Graphics, the red line corresponds to the slope

of the slope and the blue one to the slope of the intercept. The black curve is

the second-order equation.

ε?? ε?2 ε?

s

−σ

g

−γ
0 1• • •

————— insert Table 11 here ————-

Table 10: EPC ≥ EPNC over a high support of the basic probabilities

ε 0 ε?? ε? 1
value of the slope −σ −σ s

value of the intercept −γ g g
system S4 S3 S1

EPC(ε̃)− EPNC(ε̃) ≥ 0 ε?2
∆EPi(ε̃) ≥ 0 ∀ε̃ ∈ Jε := [ε?2, 1]

(b) zε < 0, ε? < ε?? and ∂ε̂(ε)/∂ε < 0. By Proposition 2 item 1: 0 < ε? < 1. Nε < 0

and Dε > 0 ⇒ C > −D and 1 > ε?? > 0. Consequently, if Dε > 0 the slope

of the intercept is necessarily positive. 1 > ε?2 > ε?, which involves D > 0.

From Lemma 3, the representative curve of ε̂(ε) is decreasing concave over
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S4 and decreasing convex over S2, S1. On [0, 1]2, it crosses horizontal line

(defined by coordinates (0, 1)(1, 1)) or vertical line (defined by coordinates

(1, 0)(1, 1)) for ε̂(ε) = 1 that is ε1
∅ = A/(A + B). SeeTable 11 and Table 18 for

an example.

ε? ε?2 ε??

g

−γ

s

−σ
0 1• • •

—————– insert Table 12 here —————

Table 11: EPC ≥ EPNC over a high support of the basic probabilities

ε 0 ε? ε?? 1
value of the slope −σ s s

value of the intercept −γ −γ g
system S4 S2 S1

EPC(ε̃)− EPNC(ε̃) ≥ 0 ε?2
∆EPi(ε̃) ≥ 0 ∀ε̃ ∈ Jε := [ε?2, 1]

2. Case A > B > C > 0 > D. From Lemma 2, ε?1 < 0 and ε?2 < 1.

(a) zε > 0, ε? > ε?? ⇐⇒ Nε < 0, Dε < 0 and ∂ε̂(ε)/∂ε < 0. By Proposition 2 item

1: 0 < ε? < 1. From Proposition 2 item 2, if C > 0 > D and | C |<| D | then

ε?? < 03. From Lemma 3, the representative curve of ε̂(ε) is decreasing con-

cave over S4 and decreasing convex over S2. On [0, 1]2, it crosses horizontal

line (defined by coordinates (0, 1)(1, 1)) or vertical line (defined by coordi-

nates (1, 0)(1, 1)) for ε̂(ε) = 1 that is ε1
∅ = A/(A + B). See Table 12 and Table

18 for an example.

ε?? ε? ε?2

s

−σ
−γ−γ

0 1• • •
3The case where | C |>| D | implies ε?? > 0, but Dε > 0 a contradiction. This case cannot exist.
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—————– insert Table 13 here —————

Table 12: EPC ≥ EPNC with high support of the basic probabilities

ε 0 ε? 1
value of the slope −σ s

value of the intercept −γ −γ
system S4 S2

EPC(ε̃) ≥ EPNC(ε̃) ε?2
∆EPi(ε̃) ≥ 0 ∀ε̃ ∈ Jε := [ε?2, 1]

(b) zε < 0, ε? < ε?? and for | C |>| D | we have ∂ε̂(ε)/∂ε < 0. By Proposition

2 item 1: 0 < ε? < 1. From Lemma 3, the representative curve of ε̂(ε) is de-

creasing concave over S4 and decreasing convex over S2. On [0, 1]2, it crosses

horizontal line (defined by coordinates (0, 1)(1, 1)) or vertical line (defined

by coordinates (1, 0)(1, 1)) for ε̂(ε) = 1 that is ε1
∅ = A/(A + B). Results are

summed up in Table 13 and an example is provided in Table 18.

ε??ε? ε?2

s

−σ
−γ−γ

0 1 •• •

—————– insert Table 14 here —————

Table 13: EPC ≥ EPNC with high support of the basic probabilities

ε 0 ε? 1
value of the slope −σ s

value of the intercept −γ −γ
system S4 S2

EPC(ε̃) ≥ EPNC(ε̃) ε?2
∆EPi(ε̃) ≥ 0 ∀ε̃ ∈ Jε := [ε?2, 1]

3. A > B > 0 > C > D. From Lemma 2, 0 < ε?1 < 1 and 0 < ε?2 < 1.
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(a) zε > 0, ε? > ε?? ⇐⇒ Nε < 0, Dε < 0 and ∂ε̂(ε)/∂ε < 0. By Proposition

2 item 1: 0 < ε? < 1. From Lemma 3, the representative curve of ε̂(ε) is

decreasing concave over S3, S4 and decreasing convex over S2. This case is

more complex than the previous one. Indeed, on [0, 1]2 it crosses horizontal

axis or vertical axis for ε̂(ε) = 0 that is ε0
∅ = ε?? = C/(C + D), or it crosses

horizontal line (defined by coordinates (0, 1)(1, 1)) or vertical line (defined

by coordinates (1, 0)(1, 1)) for ε̂(ε) = 1 that is ε1
∅ = A/(A + B). See Table 14

and Table 18 for an example.

ε??

ε? ε?2

ε?1
s

−σ
−γ

g

0 1• • • •

———— insert Table 15 here ————————

Table 14: EPC ≥ EPNC over a high support of the basic probabilities

ε 0 ε?? ε? 1
value of the slope −σ −σ s

value of the intercept g −γ −γ
system S3 S4 S2

EPC(ε̃) ≥ EPNC(ε̃) ε?1 ε?2
∆EPi(ε̃) ≥ 0 ∀ε̃ ∈ Jε := [0, ε?1] ∪ Jε := [ε?2, 1]

(b) zε < 0 is impossible. Indeed, 0 > C > D ⇒ −BC > 0, AD < 0 and in any

PD, | AD |>| BC |. Consequently, Nε < 0 and Dε = C+D < 0 too:⇒ zε > 0.

4. A > 0 > B > C > D. From Lemma 2, ε?1 > 0 and ε?2 > 1.

(a) zε > 0, ε? > ε?? ⇐⇒ Nε < 0, Dε < 0 and ∂ε̂(ε)/∂ε < 0. By Proposition 2 item

1: 0 < ε? < 1. From Lemma 3, the representative curve of zε(ε) is decreasing

concave over S3, S4 and decreasing convex over S2. It crosses horizontal axis

or vertical axis for ε̂(ε) = 0 that is ε0
∅ = ε?? = C/(C + D). In that game, the

support of the prior probability of cooperation ε for EPC > EPNC is low. See

Table 15 for details and an example is provided in Table 18.
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ε??

ε?

ε?1
s

−σ −γ

g

0 1• • •

—————– insert Table 16 here —————

Table 15: EPC ≥ EPNC over a high support of the basic probabilities

ε 0 ε?? ε? 1
value of the slope −σ −σ s

value of the intercept g −γ −γ
system S3 S4 S2

EPC(ε̃) ≥ EPNC(ε̃) ε?1
∆EPi(ε̃) ≥ 0 ∀ε̃ ∈ Jε := [0, ε?1]

(b) zε < 0 is impossible. Indeed, the numerator is negative sinceAD < 0,−BC <

0 and the denominator is negative too, since C +D < 0.

5. 0 ≥ A > B > C > D. From Lemma 2, ε?1 > 0 and ε?2 > 1.

(a) zε > 0, ε? > ε?? ⇐⇒ Nε < 0, Dε < 0 and ∂ε̂(ε)/∂ε < 0. By Proposition 2 item

1: 0 < ε? < 1. From Lemma 3, the representative curve of zε(ε) is decreasing

concave over S3, S4 and decreasing convex over S2. It crosses horizontal axis

or vertical axis for ε̂(ε) = 0 that is ε0
∅ = ε?? = C/(C + D). See Table 16 for

details and an example is provided in Table 18.

ε??

ε?

ε?1
s

−σ −γ

g

0 1• • •

—————– insert Table 17 here —————
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Table 16: EPC ≥ EPNC over a high support of the basic probabilities

ε 0 ε?? ε? 1
value of the slope −σ −σ s

value of the intercept g −γ −γ
system S3 S4 S2

EPC(ε̃) ≥ EPNC(ε̃) ε?1
∆EPi(ε̃) ≥ 0 ∀ε̃ ∈ Jε := [0, ε?1]

(b) z < 0, ε? < ε?? and ∂ε̂(ε)/∂ε > 0. By Proposition 2 item 1: 0 < ε? < 1.Nε > 0

and Dε < 0 ⇒ 0 < ε?? < 1. Indeed, from Proposition 2 item 2, we have C +

D < 0 and ε?? < 0. This implies ε?? < 1. From Lemma 3, the representative

curve of zε(ε) is increasing convex over S3 and increasing concave over S2. It

crosses horizontal axis or vertical axis for ε̂(ε) = 0 that is ε0
∅ = ε?? = C/(C +

D). See Table 17 for details and an example is provided in Table 18.

ε??

ε?
ε?1

s

−σ −γ

g

0 1• • •

—————– insert Table 18 here —————

Table 17: EPC ≥ EPNC over a high support of the basic probabilities

ε 0 ε? ε?? 1
value of the slope −σ s s

value of the intercept g g −γ
system S3 S1 S2

EPC(ε̃) ≥ EPNC(ε̃) ε?1
∆EPi(ε̃) ≥ 0 ∀ε̃ ∈ Jε := [0, ε?1]

�

——– insert Table 19 here ———-
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C Appendix

Proof. Compute ∆SEPNCj (µ) := SEPNCj(µ)− SEPCj(µ), i = 1, 2, i 6= j, the difference

between non-cooperation and cooperation. Consider the following system of inequali-

ties {
Ψi(M) ≤ 0
Ψj(µ) ≤ 0,

⇐⇒
{

(C −D − A+B)M + A−B − C ≤ 0,
(C −D − A+B)µ+ A−B − C ≤ 0.

From a mathematical point of view, the two inequalities are the same. We only

develop the proof for one inequality which can also be interpreted as player formulate

common subjective probabilities. Denote the slope t if (C −D − A+ B) ≥ 0 and −T if

(C −D−A+B) < 0. Denote the intercept r if A−B−C ≥ 0 and −R if A−B−C < 0.

1. First case: tM + r ≤ 0 ⇐⇒ M ≤ M?
1 := −r

T
< 0. In that case non-cooperation is a

trustable strategy, and always selected.

M?
1

∆SEPNCψ

0 1• Graphic 1

2. Second case: tM − R ≤ 0 ⇐⇒ M ≤ M?
1 := R

T
> 0. Since the slope is positive we

have the two possible sub-cases: 0 ≤ M?
1 ≤ 1 or M?

1 > 1. The non cooperation

is trustable over [M?
1 , 1] on Graphic 2, but is never trustable on Graphic 3, but

always selected.

M?
1

∆SEPNC

ψ

0 1• Graphic 2
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M?
1

∆SEPNC

ψ

0 1 • Graphic 3

3. Third case −TM + r ≤ 0 ⇐⇒ M ≤M?
1 := r

T
> 0. On Graphic 4 non-cooperation

is trustable over [0,M?
1 ] while it is always trustable on Graphic 5, but always se-

lected.

M?
1

∆SEPNC

ψ

0 1• Graphic 4

M?
1

∆SEPNC

ψ

0 1 • Graphic 5

4. Fourth case −TM − R ≤ 0 ⇐⇒ M ≤ M?
1 := −R

T
< 0. Non cooperation is never

trustable, but always selected.

M?
1

∆SEPNC

ψ

0 1• Graphic 6

�
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Table 18: Examples of all possible characterizations of solutions of Γ̂0

# of > 0 A B C D zε = ε? ε?? ε?1 ε?2 sslope◦ε islope◦◦ε
payoffs Nε

Dε

Table 1 7 3 2 1
1

3
> 0 0.71 0.66 -0.41 0.69 7ε− 5 3ε− 2

4

Table 2 5 3 2 1
−1

3
< 0 0.60 0.66 -0.63 0.63 5ε− 3 3ε− 2

Table 3 5 3 2 -3
−21

−1
> 0 0.33 -2 -0.29 0.74 9ε− 3 −ε− 2

3

Table 4 5 3 2 -1
−11

1
< 0 0.42 2 -0.41 0.69 7ε− 3 ε− 2

Table 5 5 3 -2 -3
−9

−5
> 0 0.53 0.40 0.21 0.70 13ε− 7 −5ε+ 2

2
z < 0 is an impossible case

Table 6 0 -1 -3 -4
−3

−7
> 0 0.5 0.42 0.39 1.27 6ε− 3 −7ε+ 3

1
z < 0 is an impossible case

Table 7 -1 -2 -3 -4
−2

−7
> 0 0.5 0.42 0.40 1.84 4ε− 2 −7ε+ 3

0

Table 8 -1 -2 -3 -7
1

−10
< 0 0.28 0.30 0.304 1.41 7ε− 2 −10ε+ 3

◦ Where sslopeε is the slope of the slope,
◦◦ islopeε is the slope of the intercept.
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