
CRED WORKING PAPER No 2019-1

Optimal Income Taxation with Composition Effects
January 9, 2019

LAURENCE JACQUET∗AND ETIENNE LEHMANN†

∗THEMA - University of Cergy-Pontoise. Email : laurence.jacquet@u-cergy.fr. Laurence Jacquet is also associate
researcher at Oslo Fiscal Studies, Economics Department, University of Oslo. Address: THEMA, Université de
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Abstract

x

We study the optimal nonlinear income tax problem with multidimensional individual character-
istics on which taxes cannot be conditioned. We obtain an optimal tax formula that generalizes the
standard one by averaging the sufficient statistics of individuals who earn the same income. Depen-
dence on the tax schedule is a well-known limitation of sufficient statistics: they have distinct values
in the actual and optimal economies, which can bias the recommended tax schedule. This bias is gen-
erally considered to be negligible, but, as a first main contribution, we show that multidimensional
unobserved individual heterogeneity actually makes it quite substantial. Multidimensional hetero-
geneity brings a new source of endogeneity to the sufficient statistics (due to changes in average
behavioral responses) that we call composition effects. Using U.S. data, we highlight that composi-
tion effects substantially affect optimal marginal tax rates. Our results put the stress on the need
for more empirical studies on the distribution of sufficient statistics and not only on their means
conditional on income. As a second main contribution, we show the equivalence between the tax
perturbation and mechanism design approaches which bridges the gap between both methods that
have, so far, been used separately in the literature.
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I Introduction

The recent years have seen an increase in empirical analyses that provide so-called “suffi-

cient statistics”(e.g., reduced-form elasticities) to give policy prescriptions that are easily im-

plementable and relatively easy to explain to the general public. As a compromise between

reduced-form and structural analyses, the approach based on sufficient statistics has applica-

tions in macroeconomics, labor economics, development economics, industrial organization,

political economy and in international trade (e.g., Chetty (2009), Hornstein et al. (2011), Arko-

lakis et al. (2012), Bierbrauer and Boyer (2018)). It is however in the optimal tax literature that

researchers have come to rely extensively on empirically meaningful sufficient statistics to ex-

press tax formulas (e.g., Saez (2001, 2002), Saez and Stantcheva (2018) and references in Chetty

(2009) and in Kleven (2018)). For this reason, in the present paper, we select optimal tax policy

as the field of choice to illustrate a more general point regarding the limitations of sufficient

statistics in the presence of multidimensional heterogeneity.

In the optimal tax literature, the key sufficient statistics are total1 behavioral responses to

tax reforms, the income distribution and the social welfare weights which summarize the social

preferences for redistribution (see e.g., Diamond (1998) and Saez (2001)). One important and

well-known limitation of sufficient statistics is their dependence on the tax schedule. Their

values are distinct in the actual and optimal economies, which can bias the recommended tax

schedule. This bias is generally considered to be negligible, but we show in the present paper

that multidimensional unobserved individual heterogeneity actually makes it quite substantial.

Going beyond one dimension of unobserved heterogeneity is a requisite in order to obtain more

empirically-meaningful tax formulas. In the case of the income tax, for instance, individuals

who differ in many dimensions (such as health, gender, marital status and ethnicity) are more

likely to respond differently to any tax reform, even if they initially earn the same income.

The main contribution of this paper is thus to show how allowing for multidimensional

heterogeneity in a model à la Mirrlees (1971) exacerbates the aforementioned bias in the tax

schedule. In the presence of multidimensional individual heterogeneity, we identify a new

source of endogeneity in the sufficient statistics that we call composition effects. Composition

effects are changes in the composition of the population that may occur, at each income level,

between the actual and optimal economies, when individuals who earn the same income have

distinct multidimensional characteristics and therefore distinct behavioral responses.

More precisely, as conjectured by Saez (2001), optimal marginal tax rates depend on the av-

erages of sufficient statistics taken among taxpayers who earn the same income. Composition

effects arise because, at a given income level, the share of taxpayers for whom the sufficient

statistics are relatively large may vary between the actual economy and the optimum. For in-

stance, composition effects in the elasticities of earnings with respect to the marginal retention

1Total sufficient statistics encapsulate the circularity process of optimal tax systems, i.e. they are evaluated along
the nonlinear income tax schedule (as in Jacquet et al. (2013) and Scheuer and Werning (2016)) and not along a
linearized one.
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rate (i.e. one minus the marginal tax rate) arise as follows. The optimal marginal tax formula

states that, ceteris paribus, the optimal marginal tax rate at a given income level decreases with

the average of elasticities at this income level. Assume now that marginal tax rates are larger

in the optimal economy than in the actual one. When going from the actual to the optimal

economy, behavioral responses (due to larger marginal tax rates) tend to decrease all taxpay-

ers’ incomes. Behavioral responses are however larger for taxpayers with higher elasticities.

Therefore, their income distribution is much more shifted to the left than the one of taxpayers

with lower elasticities. The average elasticity tends to decrease at high income levels while it

tends to increase at low income levels. In turn, this tends to increase optimal marginal tax rates

that apply on high incomes and to reduce them on low incomes. We provide several numerical

examples of drastic changes optimal marginal tax schedules undergo when one incorporates

composition effects. Using U.S. data, we isolate pure composition effects by comparing elas-

ticities with and without composition effects. We find that the elasticities which incorporate

composition effects are higher for lower income levels and lower for higher income levels. The

discrepancy can reach up to 25 percentage points. This implies that, when taking composition

effects into account, optimal marginal tax rates increase by up to 20 percentage points on high

incomes and decrease by more than 6 percentage points on low incomes.

These findings have a crucial implication for the empirical literature that provides sufficient

statistics. One cannot simply rely on estimates of the conditional means of sufficient statistics

estimated in the actual economy. One needs to know the distribution of sufficient statistics

conditional on income to implement optimal tax schedules. Consequently, multidimensional

heterogeneity and the implied composition effects in behavioral responses appear as an impor-

tant issue for policy design.

Another important contribution of our paper consists in bridging the gap between the

mechanism design method, which is widely used in various fields in economics, and the tax

perturbation method, which is more specific to the optimal taxation literature (although it may

find applications in industrial organization as well, e.g. in nonlinear monopoly pricing prob-

lems). On the one hand, since Mirrlees (1971), the mechanism design method allows one to

derive optimal tax profiles by finding the incentive-compatible allocation that maximizes the

social objective subject to a resources constraint. The optimal allocation is obtained by verify-

ing (usually using a Hamiltonian or a Lagrangian) that no incentive-compatible perturbation

leads to any first-order improvement. On the other hand, the tax perturbation approach seeks

the tax reform that decentralizes such a perturbation. The optimal tax literature uses either

method to determine optimal tax policies, but the link between both methods is missing when

heterogeneity is multidimensional. In the present paper, we formally show the equivalence

between these methods, which had not been done until now.

To do so, we first provide conditions under which the tax perturbation method of Piketty

(1997) and Saez (2001) is valid with multidimensional heterogeneity. In a nutshell, these con-

ditions imply that the marginal tax rate does not decrease too fast with income which ensures
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that individual behaviors respond smoothly to a tax reform. We then proceed to show that,

under multidimensional heterogeneity, the assumptions required by the tax perturbation and

first-order mechanism design2 approaches are equivalent. Therefore, these two approaches are

two faces of the same coin.

The paper is organized as follows. After a survey of the related literature in Section II, we

introduce the framework in Section III. We begin our analysis in Section IV with the simple lin-

ear tax model to explain what composition effects are and to illustrate the empirical bias they

impose. In Section V, we provide the conditions for using the tax perturbation method when

individual heterogeneity is multidimensional and give the relevant sufficient statistics. In Sec-

tion VI, we then derive the optimal nonlinear tax formula in terms of these sufficient statistics

and we shed the light on composition effects. Section VII numerically investigates the sensitiv-

ity of the optimal tax function to composition effects and the magnitude of these effects. Section

VIII shows the equivalence between the mechanism design and tax perturbation approaches.

Section IX concludes.

II Related literature

The use of tax perturbation arguments in order to derive optimal nonlinear tax formulas

goes back to Christiansen (1984), Piketty (1997), Roberts (2000) and Saez (2001).3 Saez (2001) rig-

orously shows the consistency of these tax formulas with the ones obtained thanks to the first-

order mechanism design approach of Mirrlees (1971), when heterogeneity is one-dimensional.

Saez (2001) conjectures that his tax formula expressed in terms of sufficient statistics would also

be valid with multidimensional heterogeneity. In this paper, we confirm that it is indeed the

case by providing properly-constructed average measures of the usual sufficient statistics. We

do so by adapting the general tax perturbation approach used by Golosov et al. (2014), Sachs et

al. (2016), Gerritsen (2016) and Spiritus (2017) to our framework. Indeed Golosov et al. (2014)

have a model where the number of individual characteristics is lower than the number of ac-

tions (e.g. the choice of labor and capital income levels) while in our framework the number

of characteristics is larger. Scheuer and Werning (2016), who show that the optimal linear com-

modity tax model of Diamond and Mirrlees (1971) encapsulates the model of Mirrlees (1971),

point out that including multidimensional heterogeneity in the Mirrlees (1971) model leads to

an optimal tax formula with simple averages of the sufficient statistics. Werning (2007) de-

rives a condition for Pareto efficient tax schedules when heterogeneity is one-dimensional and

also writes that his condition can simply be extended to multidimensional heterogeneity by

averaging the sufficient statistics by group of individuals. Hendren (2017) develops inequality

2With multidimensional heterogeneity, we say that the mechanism design approach is first-order when income
admits a strictly positive derivative with respect to skill, in each group of workers. This assumption implies (and
plays a role similar to) the satisfaction of the second-order incentive compatibility condition when heterogeneity is
one-dimensional.

3Kleven and Kreiner (2006) also use a tax perturbation to derive the marginal cost of public funds.

3



deflators which assess Pareto improvements when making second-best transfers through the

income tax schedule. The method he uses to derive these inequality deflators is close to the tax

perturbation approach and also allows for multidimensional heterogeneity. Beyond deriving

the optimal tax formula under multidimensional heterogeneity, we contribute to this literature

by studying the role of composition effects in the determination of optimal tax schedules and

by connecting the first-order mechanism design and tax perturbation approaches.

Cuff (2000), Boadway et al. (2002), Brett and Weymark (2003), Choné and Laroque (2010),

Lockwood and Weinzierl (2015) introduce in the Mirrlees (1971) model an additional source

of heterogeneity, typically preferences for leisure or work opportunity cost, that matters only

for the computation of social welfare weights. The heterogeneity of preferences raises ethical

questions which challenge the design of redistributive schemes. Individuals that have the same

skill but distinct preferences for leisure, will earn, at the laissez-faire, different levels of income,

with individuals having higher preferences for leisure earning less. The fraction of individu-

als with a high preference for leisure can be relatively higher among low income earners than

among high income earners. The government may then be reluctant to redistribute towards the

former, since some of them are also enjoying a higher quantity of leisure. In this context, the

mean social welfare weight (the mean computed across the social welfare weights of individu-

als who earn the same level of income) may become less decreasing than in the tax model with

a single dimension of heterogeneity (Lockwood and Weinzierl, 2015) and may even become

non monotonic with income, which opens the possibility for optimal marginal tax rates to be

negative (e.g., Choné and Laroque (2010)). In these papers, although agents differ in produc-

tivity and preference for leisure, their behavior is assumed to depend only on a unidimensional

combination of the two underlying parameters. This aggregation implies that all individuals

with a given income are constrained to respond identically to any tax reform despite the het-

erogeneity in social welfare weights. Therefore, contrary to our paper, this literature assumes

away composition effects on behavioral responses.

Random participation models make up another strand of the literature where multidimen-

sional heterogeneity is taken into account, although in a very specific way. In these models,

individuals differ in skill and in a cost of participation (Rochet and Stole, 2002, Kleven et al.,

2009, Jacquet et al., 2013) or of migration (Lehmann et al., 2014, Blumkin et al., 2015) and this

latter dimension of heterogeneity matters only for the participation/migration margin. Scheuer

(2013, 2014), Rothschild and Scheuer (2013), Gomes et al. (2017) consider optimal income tax

models with different sectors4 where agents can migrate from one sector to the other.5 This is

also a form of random participation across sectors. Again, once individuals choose in which

4Differing from our paper and from Scheuer (2013) and Rothschild and Scheuer (2013), nonlinear income taxation
is sector-specific in Gomes et al. (2017) and in an extension of Scheuer (2014).

5In Gomes et al. (2017), types that derive the same utility across different sectors while supplying different labor
are pooled together, whereas, in this paper, we will pool together individuals that generate the same income. In
Rothschild and Scheuer (2014), at each income level the composition of individuals across sectors changes. This
modifies terms related to general equilibrium effects (resulting from effort choice among different intensive mar-
gins) in the optimal tax formula but, again, average behavioral responses are identical in the actual and optimal
economies.
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sectors to work (or which combination in Rothschild and Scheuer (2016)), income depends only

on a single variable. While departing from this restriction, our model can readily be extended

to include a participation margin simply following Jacquet et al. (2013). The tax formulas then

simply incorporate new terms with the behavioral elasticities implied by the participation mar-

gin (see Jacquet et al. (2013)).

III Model

Every worker derives utility from consumption c ∈ R+ and disutility from effort. Effort

captures the quantity as well as the intensity of labor supply. More effort implies higher pre-

tax income y ∈ R+ (for short, income hereafter). Following Mirrlees (1971), the government

levies a non-linear tax T(.) which depends on income y only. Consumption c is related to

income y through the tax function T(y) according to c = y − T(y). Individuals differ along

their skill level w ∈ R∗+ and along a vector of characteristics denoted θ ∈ Θ. We call a group a

subset of individuals with the same θ.6 We assume that the set of groups Θ is measurable with

a cumulative distribution function (CDF) denoted µ(·). The set Θ can be finite or infinite and

may be of any dimension. The distribution µ(.) of the population across the different groups

may be continuous, but it may also exhibit mass points. Among individuals of the same group

θ, skills are distributed according to the conditional skill density f (·|θ) which is positive and

differentiable over the support R∗+. The conditional CDF is denoted F(w|θ) def≡
∫ w

0 f (x|θ)dx.

We do not make any restriction on the correlation between w or θ. We normalize to unity the

total size of the population.

III.1 Individual choice

Individuals of type (w, θ) have a twice continuously differentiable utility function with re-

spect to c and y which is specified as U (c, y; w, θ) with Uc > 0 > Uy. We also assume that for

each type (w, θ), indifference curves associated to U (·, ·; w, θ) are strictly convex in the income-

consumption space. Earning a given income requires less effort to a more productive worker,

so Uw > 0. A worker of type (w, θ), facing y 7→ T(y), solves:

U(w, θ)
def≡ max

y
U (y− T(y), y; w, θ) (1)

We call Y(w, θ) the solution to program (1),7 C(w, θ) = Y(w, θ)− T(Y(w, θ)) the consumption

of a worker of type (w, θ) and U(w, θ) her utility. When the tax function is differentiable, the

first-order condition associated to (1) implies that:

1− T′ (Y (w, θ)) = M (C (w, θ) , Y (w, θ) ; w, θ) (2)

6Our definition of ”group” is identical to the one in Werning (2007, p.15).
7If the maximization program (1) admits multiple solutions, we make the tie-breaking assumption that individ-

uals choose among their best options the income level preferred by the government, i.e. the one with the largest tax
liability.
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where:

M (c, y; w, θ)
def≡ −

Uy(c, y; w, θ)

Uc(c, y; w, θ)
(3)

denotes the marginal rate of substitution between (pre-tax) income and consumption (after-tax

income). For a worker of a given type, the left-hand side of Equation (2) corresponds to the

marginal gain of income after taxation while the right-hand side corresponds to the marginal

cost of income in monetary terms.

We impose the single-crossing (Spence-Mirrlees) condition that, within each group of work-

ers endowed with the same θ, the marginal rate of substitution is a decreasing function of the

skill level, i.e. that more skilled workers find it less costly to increase their income y:

Assumption 1 (Within-group single-crossing condition). For each θ ∈ Θ, and each (c, y) ∈ R+ ×
R+, function w 7→M (c, y; w, θ) is differentiable with ∀w ∈ R∗+, Mw < 0.

Assumption 1 is for instance verified in the case where U (c, y; w, θ) is specified as:

U (c, y; w, θ) = u(c)− θ

1 + θ

( y
w

)1+ 1
θ

with θ > 0 and u′(·) > 0 ≥ u′′(·). (4)

We henceforth refer to this specification of preferences as the isoelastic ones. There θ stands

for the Frisch labor supply elasticity. The marginal rate of substitution equals M (c, y; w, θ) =

y
1
θ /[u′(c) w1+ 1

θ ] and is decreasing in w from infinity to zero.

III.2 Government

The government’s budget constraint takes the form:∫∫
θ∈Θ,w∈R∗+

T (Y(w, θ)) f (w|θ)dw dµ(θ) = E (5)

where E ≥ 0 is an exogenous amount of public expenditures. The objective of the planner is to

maximize a general social welfare function that sums over all types of individuals an increasing

and weakly concave transformation Φ(U; w, θ) of individuals’ utility levels U:∫∫
θ∈Θ,w∈R∗+

Φ (U(w, θ); w, θ) f (w|θ)dw dµ(θ) (6)

This welfarist specification allows Φ to vary with type (w, θ) which makes it very general.

Weighted utilitarian preferences are obtained with Φ(U; w, θ) ≡ ϕ(w, θ) ·U with weights ϕ(w, θ)

depending on individual characteristics. The objective is utilitarist if ϕ(w, θ) is constant and

Φ(U; w, θ) ≡ U and it turns out to be maximin (or Rawlsian) if ϕ(w, θ) = 0 ∀w > 0. When

Φ(U; w, θ) does not vary with its two last arguments and ΦUU ≤ 0, we obtain a Bergson-

Samuelson criterion which is a concave transformation of utility and does not depend on indi-

vidual characteristics.

The government’s problem consists in finding the tax schedule T(·) that maximizes the

social welfare function subject to the budget constraint, i.e. that maximizes (6) subject to (5).
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Let λ > 0 be the Lagrange multiplier associated with the budget constraint (5). The Lagrangian

(expressed in monetary terms) is:

L
def≡

∫∫
θ∈Θ,w∈R∗+

[
T(Y(w, θ)) +

Φ (U(w, θ); w, θ)

λ

]
f (w|θ)dw dµ(θ) (7)

We define the social marginal welfare weights associated with workers of type (w, θ) expressed

in terms of public funds by:

g (w, θ)
def≡ ΦU (U (w, θ) ; w, θ)U ′

c (C(w, θ), Y(w, θ); w, θ)

λ
(8)

The government values giving one extra dollar to a worker (w, θ) as a gain of g(w, θ) dollar(s)

of public funds.8

IV Optimal linear tax and composition effects

In this section, we illustrate, using the very simple case of linear taxation, how composition

effects bias the empirical implementation of the optimal tax rate. We thus constrain the tax

schedule to be linear with a tax rate denoted τ and a demogrant D so that the tax schedule is:

T (y) = τ y−D. We also assume income effects away with quasilinear preferences of the form:

U (c, y; w, θ) = c− θ

1 + θ
y1+ 1

θ w−
1
θ w ∈ R∗+, θ ∈ Θ (9)

Under this utility and tax functions, the solution to program (1) for individuals of type (w, θ)

is an income of

Y(w, θ) = (1− τ)θ w. (10)

The average income in group θ is thus given by:

y (θ, τ)
def≡ (1− τ)θ

∫
w∈R∗+

w f (w| θ) dw. (11)

Note that due to the iso-elasticity of preferences in (9), parameter θ is equal to the elasticity of

average income y (θ, τ) in group θ with respect to the net-of-tax rate 1− τ. Aggregate earnings

(or the average income across all individuals) are equal to the sum of all individual incomes

and are denoted by:

Y(τ)
def≡
∫

θ∈Θ
y(θ, τ) dµ(θ) =

∫
θ∈Θ

(1− τ)θ
∫

w∈R+

w f (w|θ)dw dµ(θ). (12)

The elasticity of aggregate earnings with respect to the net-of-tax rate (1− τ) is equal to the

income-weighted average elasticity and is given by:

e
def≡ 1− τ

Y(τ)
∂Y

∂(1− τ)
=
∫

θ∈Θ
θ

y(θ, τ)

Y(τ)
dµ(θ). (13)

8We can easily extend our analysis to non-welfarist social criteria following the method of generalized marginal
social welfare weights developed in Saez and Stantcheva (2016) to reflect non-welfarist views of justice which can be
particularly relevant with heterogeneous preferences. Complementary to their approach, Fleurbaey and Maniquet
(2011, 2017) connect the axioms of fair income tax theory and optimal income taxation and emphasize that it is not
always straightforward to derive generalized marginal social welfare weights by income level.
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The government is maximin which is equivalent to maximizing tax revenue τ · Y − E or to

maximizing D (Boadway and Jacquet, 2008). Following Piketty and Saez (2013), the tax rate τL

that maximizes tax revenue is such that Y · (1− τ)− τ · dY/d(1− τ) = 0, i.e.:

τL =
1

1 + e
.

The higher the elasticity e of aggregate earnings, the more distortive is taxation and so the lower

the revenue maximizing linear tax rate τL.

From (10), we directly see that individuals do not earn the same income under the actual tax

rate and the optimal (revenue maximizing) one as soon as these two rates are distinct. The av-

erage income within each group θ, y(θ, τ), is then also distinct under the actual and optimal tax

rates. In the calculation of the elasticity of aggregate earnings e, this average income for each

group multiplies the elasticity θ (see (13)). Therefore the elasticity e is distinct under the actual

and the optimal tax rates. To put it differently, because the composition of the population be-

hind a given income (and a given average income) differs under the actual and the optimal tax

rates, the elasticity of aggregate earnings takes distinct values under each tax schedule. Imple-

menting the optimal linear tax formula with the elasticity of aggregate earnings as a function

of the actual tax rate instead of the optimal one, i.e. neglecting composition effects, may strongly

bias the outcome.

We now give a mathematical rationale for this. To implement the tax rate that maximizes the

tax revenue, one can combine Equations (10)-(13) and rewrite elasticity e in terms of statistics

observable in the current economy, making the optimal (revenue maximizing) linear tax rate τL

and the actual linear tax rate τ0 appear. 9 This yields:

τL =
1

1 +
∫

θ∈Θ
θ

y(θ, τL)

Y(τL)
dµ(θ)

=
1

1 +
∫

θ∈Θ
θ

(
1− τL

1− τ0

)θ

y(θ, τ0)∫
t∈Θ

(
1− τL

1− τ0

)t

y(t, τ0) dµ(t)
dµ(θ)

. (14)

In the denominator, the elasticity of aggregate earnings e is written as the sum of all elasticities

θ, each of them being weighted (from (11) and (12)) by

y(θ, τL)/YL(τL) =

(
1− τL

1− τ0

)θ

y(θ, τ0)/
∫

t∈Θ

(
1− τL

1− τ0

)t

y(t, τ0) dµ(t),

i.e. by the ratio of average income within group θ to the sum of all individual incomes. In

this expression, the terms
(

1−τL
1−τ0

)θ
and

(
1−τL
1−τ0

)t
show up due to composition effects. Indeed

actual and optimal linear tax rates are typically different so that these terms are not equal to 1.

Therefore, the composition of the population at each income level is different which makes the

elasticity of aggregate earnings distinct under the actual and the optimal linear tax rates.

9Indeed, yL(θ, τ) =
(

1−τL
1−τ0

)θ
y0(θ, τ) from (11).
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Assume τL > τ0. We have
(

1−τL
1−τ0

)θ
< 1 and YL(w, θ) < Y0(w, θ) since, from (10), YL(w, θ) =(

1−τL
1−τ0

)θ
Y0(w, θ) where Yi(w, θ)

def≡ (1− τi)w with i = L, 0. From (11), the average income in

group θ is then lower under τL than under τ0, y(θ, τL) < y(θ, τ0) and the same then applies for

aggregate earnings, (τL) < (τ0). We also know that, due to behavioral responses, the reduction

of average income y(θ, τ) in groups with a larger θ is stronger than in groups with a lower θ.

Therefore, we have y(θ, τL)/y(θ, τ0) < Y (τL) /Y (τ0), i.e. y(θ, τL)/Y(τL) < y (θ, τ0) /Y (τ0),

for groups with relatively large θ. Conversely, we have y(θ, τL)/y(θ, τ0) > Y (τL) /Y (τ0), i.e.

y(θ, τL)/Y(τL) > y (θ, τ0) /Y (τ0), for groups with relatively low θ. Since these ratios intervene

as weights in the calculation of the aggregate earnings elasticity e, the θ-groups with relatively

large elasticities θ matter less in this calculation than those with relatively low elasticities θ. This

change in the composition of the population when moving from τ0 to τL indubitably reduces

the elasticity e, hence pushing further up the optimal linear tax rate τL. In other words, ignoring

the endogeneity of the elasticity of aggregate earnings due to composition effects leads one to

understimate the revenue maximizing linear tax rate.10

As a back-of-the-envelope numerical illustration, consider the case where the economy is

made of two groups, a high elasticity one with θH = 0.8 and a low elasticity one with θL =

0.1. Assume both groups are of equal size µ(θL) = µ(θH) = 0.5 and are characterized by the

same average income in the actual economy where the tax rate is τ0 = 0.3. Then, ignoring the

heterogeneity in the elasticity of labor supply, one obtains a revenue maximizing linear tax rate

equal to 1/(1+ 0.45) ' 69.0%. By contrast, taking into account composition effects (using (14))

leads to a revenue maximizing linear tax rate which rockets to 75.3%.

V Tax perturbation and sufficient statistics with multidimensional
heterogeneity

In this section, we provide all the required elements to use a tax perturbation approach

when individual heterogeneity is multidimensional and we derive the sufficient statistics that

will show up in the optimal tax formula. The tax perturbation approach is valid only under

some circumstances that Saez (2001) did not clarify. This is the reason why Saez (2001) needed

to show that his tax formula was consistent with the one of Mirrlees (1971). However, he

did so only when individual heterogeneity is one-dimensional. In this section, we first state

sufficient conditions for using a tax perturbation method when individual characteristics are

multidimensional. We then give the relevant, empirically measurable sufficient statistics in

terms of which we will express the optimal tax formulas. We will derive the optimal nonlinear

tax schedule under multidimensional heterogeneity in the next section. In that section, we will

also enlighten the reader about composition effects. The mechanism design approach, which

10A symetric argument prevails when assuming τL < τ0. In this case (1 − τL)/(1 − τ0) > 1 so that
(

1−τL
1−τ0

)θ

increases with θ. Following the same reasoning as in the case of τL > τ0, composition effects increase the endoge-
nous elasticity of aggregate earnings hence further reduce τL. In other words, ignoring composition effects leads to
overestimating the optimal linear tax rate.

9



is the alternative method to obtain the optimal tax system, will be presented in Section VIII. In

the latter section, we will bridge the gap between both approaches.

V.1 Sufficient conditions for a tax perturbation

Define a reform of a tax schedule y 7→ T(y) with its direction, which is a differentiable

function R(y) defined on R+, and with its algebraic magnitude m ∈ R. After a reform, the tax

schedule becomes y 7→ T(y)−mR(y) and the utility of an individuals of type (w, θ) is:

UR(m; w, θ)
def≡ max

y
U (y− T(y) + m R(y), y; w, θ) (15)

We denote YR(m; w, θ) the income of workers of types (w, θ) after the reform and her consump-

tion becomes CR(m; w, θ) = YR(m; w, θ) − T(YR(m; w, θ)) + m R(YR(m; w, θ)). When m = 0,

we have YR(0; w, θ) = Y(w, θ) and CR(0; w, θ) = C(w, θ). Applying the envelope theorem to

(15), we get:
∂UR

∂m
(m; w, θ) = Uc

(
CR(m; w, θ), YR(m; w, θ); w, θ

)
R(y) (16)

Using (3), the first-order condition associated to (15) equalizes to zero the following expression:

Y R(y, m; w, θ)
def≡ 1− T′(y) + m R′(y)−M (y− T(y) + m R(y), y; w, θ) . (17)

For simplicity, we drop the superscript R and write Yy(Y(w, θ); w, θ) for Y R
y (Y(w, θ), 0; w, θ)

since at m = 0, Y R
y does no longer depend on the direction R of the tax reform. To use the tax

perturbation method, one needs the following assumptions:

Assumption 2. Sufficient conditions for a tax perturbation.

i) The tax function T(·) is twice differentiable.

ii) For all (w, θ) ∈ R∗+ ×Θ, the second-order condition holds strictly: Yy (Y(w, θ); w, θ) < 0.

iii) For all (w, θ) ∈ R∗+ ×Θ, the function y 7→ U (y− T(y), y; w, θ) admits a unique global maxi-

mum over R+.

Part i) of Assumption 2 ensures that first-order condition (17) is differentiable. Part ii) guar-

antees it is invertible in income y. Under i) and ii), one can apply the implicit function the-

orem to (17) to describe how a local maximum of the individual maximization program (15)

changes after a tax reform. Part iii) ensures that after an incremental tax reform or change in

skill, the maximum remains global. Indeed since the tax function is nonlinear, the function

y 7→ U (y− T(y) + mR(y), y; w, θ) may in general admit several global maxima among which

individuals of type (w, θ) are indifferent. Any small tax reform may then lead to a jump in indi-

vidual’s choice from one maximum to another one (which is associated to a jump in the supply

of effort). Part iii) prevents this situation and ensures the allocation changes in a differentiable

way with the magnitude m of a tax reform.

10



Let us emphasize circumstances under which the tax perturbation approach can be used

because Assumption 2 is automatically satisfied. This is the case when the tax function T(y) is

restricted to be linear as the indifference curves associated to U (., .; w, θ) are assumed strictly

convex. Similarly, Assumption 2 is also satisfied when the tax function T(y) is convex (y 7→
y− T(y) being concave, Parts ii) and iii) are then verified). By continuity, Assumption 2 is also

verified when y 7→ T(y) is “not too concave”, more precisely when y 7→ y− T(y) is less convex

than the indifference curve with which it has a tangency point in the (y, x)-plane (so that Part

ii) of Assumption 2 is satisfied) and when this indifference curve is strictly above y 7→ y− T(y)

for all other y (so that Part iii) of Assumption 2 is satisfied). In a nutshell, Assumption 2 is

satisfied whenever the marginal tax rate does not decrease too rapidly with income.

Assumptions 2 implies the property that income is differentiable with respect to m after

a tax reform in the direction R(·). This property plays a role similar to the assumption of

(local) Lipschitz continuity of the income function in Golosov et al. (2014) or the assumption

of Hendren (2017) that aggregate tax revenue,
∫∫

θ∈Θ,w∈R+
T(Y(w, θ)) f (w|θ)dw dµ(θ) varies

smoothly in response to changes in the tax schedule. Hendren (2017)’s assumption allows for

discrete changes in individual behavior in response to small tax changes, which is more gen-

eral than our property of differentiable income or than the Lipschitz continuity assumption of

Golosov et al. (2014). However, the assumptions of Golosov et al. (2014) and of Hendren (2017)

are about the way economic outcomes respond to tax reforms, which is rather ad-hoc since

these responses are endogenous. Conversely, we obtain the property that each income decision

varies smoothly after a tax reform by considering only tax functions that verify Assumption

2. A strength of our approach is then to give micro-foundations to the property of smooth

responses to tax reforms. We can also note that Assumption 2 bears on tax functions that are

endogenous objects. Considering only tax functions that verify this assumption is a restriction

similar to that which consists in considering only smooth allocation with no bunching, as done

in the first-order mechanism design approach. We will demonstrate this in Proposition 2.

V.2 Perturbations and elasticities

In this subsection, we derive the behavioral responses to small perturbations of the tax

function. We use them to formulate the way income reacts to any tax reform. The elasticities

we obtain are also helpful to define the sufficient statistics relevant to the optimal tax formula

with multidimensional heterogeneity (see Subsection V.4 and onwards).

Applying the implicit function theorem to Y R(y, m; w, θ) = 0 at
(
y = YR(m; w, θ), m = 0; w, θ

)
,

we obtain:
∂YR

∂m
= −Y R

m
Y R

y

11



with:

Y R
y (y, m; w, θ) = −T′′(y)−My(y− T(y) + m R(y), y; w, θ) (18a)

− M (y− T(y) + m R(y), y; w, θ) Mc(y− T(y) + m R(y), y; w, θ)

Y R
m (y, m; w, θ) = R′(y)− R(y) Mc(y− T(y) + m R(y), y; w, θ). (18b)

We consider two types of tax perturbations to derive the behavioral elasticities. First, we ana-

lyze the effects of small changes in the marginal tax rates to capture substitution effects. Second,

the income effects are isolated thanks to a uniform transfer to all workers.

Consider first a change in the marginal tax rate by a constant amount m around income

Y(w, θ) and leave unchanged the level of tax at this income level. This reform is therefore given

the label compensated. Formally, the direction of this compensated reform is R(y) = y−Y(w, θ);

it does not modify the tax level in y = Y(w, θ) (i.e. R(Y(w, θ)) = 0) and it uniformly modifies

the marginal tax rate as can be seen from R′(Y(w, θ)) = 1. Using (2) and (3), we define the

compensated elasticity of earnings with respect to the marginal retention rate 1− T′(.) as:

ε(w; θ)
def≡ 1− T′ (Y(w, θ))

Y(w, θ)

∂Y
∂m

c
=

M (C(w, θ), Y(w, θ); w, θ)

−Y(w, θ) Yy(Y(w, θ); w, θ)
> 0 (19a)

where the superscript ”c” emphasizes that the change of Y(w, θ) is due to the compensated tax

reform. The compensated elasticity is positive from Assumption 2.

To capture income effects, we consider a uniform transfer of money to all workers and call

this reform a lump-sum one. This reform is obtained thanks to R(y) ≡ 1. Define the income effect

as:

η(w; θ)
def≡ ∂Y

∂m

I
=

Mc(C(w, θ), Y(w, θ); w, θ)

Yy(Y(w, θ); w, θ)
(19b)

where the superscript ”I” stresses that the change of Y(w, θ) is due to the lump-sum reform. If

leisure is a normal good, one has Mc > 0, in which case η(w, θ) < 0.

Combining (19a) and (19b) with (18b), the way income of individuals (w, θ) reacts to any

tax reform R(·) is given by:

∂Y
∂m

R
(0; w, θ) = ε(w, θ)

Y(w, θ)

1− T′(Y(w, θ))
R′(Y(w, θ)) + η(w, θ) R(Y(w, θ)) (19c)

where the compensated elasticity and income effect show up.

Another relevant elasticity, the elasticity of earnings with respect to skill w, can be built up

under Assumption 2. Apply the implicit function theorem to (17) with respect to skill w. Note

that this ensures that income Y(·, θ) is a continuously differentiable function in skill. Using

Y R
w = −Mw, the elasticity of earnings with respect to skill w is defined as:

α(w; θ)
def≡ w

Y(w, θ)
Ẏ(w, θ) =

w Mw(C(w, θ), Y(w, θ); w, θ)

Y(w, θ) Yy(Y(w, θ); w, θ)
> 0 (19d)

which is positive from Assumption 1. Note that Assumptions 1 and 2 rule out bunching.11

11In our context of multidimensional characteristics, bunching refers to the specific situation where individuals
who earn the same income belong to the same group θ but have distinct skills. In contrast, pooling refers to a situ-
ation where individuals who earn the same income belong to distinct groups. Since we address multidimensional
problems, we can study pooling and neglect bunching without any loss in generality.
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This is because, under Assumption 1, bunching can only be decentralized by a kink in the tax

function with increasing marginal tax rates (Saez, 2010). However, a tax function with such a

kink violates Part i) of Assumption 2.

V.3 Total vs direct elasticities and income responses

Jacquet et al. (2013) propose to use total elasticities and income responses in order to include

the circular process induced by the endogeneity of marginal tax rates. This helps streamline tax

formulas. As Scheuer and Werning (2017), we follow this strategy here. Our definitions of elas-

ticities and income response (19a)-(19d) then account for the nonlinearity of the income tax

schedule. In the denominators of these definitions, the term T′′ (Y(w, θ)), which is incorpo-

rated in YY (see Equation (18a)), emphasizes the role played by the local curvature of the tax

schedule. By contrast, the empirical literature estimates responses that do not take into account

the local curvature of the tax function. We refer to these responses as direct responses.12 Let

ε?(w; θ), η?(w; θ) and α?(w; θ) denote these direct responses, i.e. the compensated elasticity

of earnings with respect to the marginal retention rate, the income effect and the elasticity of

earnings with respect to skill, when T′′ = 0 in (18a) and thereby in (19a)-(19d). These would be

the relevant concepts if the tax function were linear.

To better grasp the distinction between direct and total responses, consider an exogenous

change in w, or a tax reform inducing a direct change in earnings ∆1y proportional to the di-

rect response ε?(w; θ), η?(w; θ) and α?(w; θ). When the tax schedule is nonlinear, this direct

response in earnings Y modifies the marginal tax rate by ∆1T′ = T′′ (Y(w, θ))×∆1y, thereby in-

ducing a further change in earnings ∆2y = −Y(w, θ) T′′(Y(w,θ))
1−T′(Y(w,θ)) ε?(w, θ)∆1y. This second change

in earnings, in turn, induces a further modification in the marginal tax rate T′′ (Y(w, θ))× ∆2y

which induces an additional change in earnings. Therefore, a circular process takes place (Saez,

2001). The income level determines the marginal tax rate through the tax function, and the

marginal tax rate affects the income level through the substitution effects. Using the identity

1 + x + x2 + x3 + ... = 1
1−x , the total effect is given by:

∆y =
∞

∑
i=1

∆iy = ∆1y
∞

∑
i=1

(
−Y(w, θ)

T′′(Y(w, θ))

1− T′(Y(w, θ))
ε?(w, θ)

)i−1

= ∆1y
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)

12To estimate the behavioral responses to tax reforms, there are two main methodologies. The first one uses
actual tax reforms as a quasi-experimental design. What allows empirical researchers to identify the causal effect
of tax on individual behavior is the exogenous shock induced by a tax reform. This shock makes some taxpayers
face a change in their marginal tax rate while others do not (Feldstein, 1995, Auten and Carroll, 1999, Gruber and
Saez, 2002), see Saez et al. (2012). By using two-stages least squares estimators, this approach implicitly assumes
that marginal tax rates do locally not depend on taxable income. It thus identifies direct behavioral responses. The
second method identifies behavioral responses from discontinuities in the distribution of taxable income around
kinks (Saez, 2010) or notches (Kleven and Waseem, 2013) observed in tax schedules. In particular, around a convex
kink where T′′(·) = +∞, the total skill elasticity α(w, θ) is nil from (20c) which triggers bunching around the kink.
One then uses the relation between the magnitude of this bunching and the direct compensated elasticity to identify
the latter.
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where the ratio in the latter equality is positive whenever −Y(w, θ) T′′(Y(w,θ))
1−T′(Y(w,θ)) ε?(w, θ) is lower

than 1, i.e. whenever the second-order condition holds strictly. This ratio is the corrective term

by which direct responses must be timed to obtain total responses as made explicit by the

following equations:

ε(w, θ) =
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)
ε?(w, θ) (20a)

η(w, θ) =
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)
η?(w, θ) (20b)

α(w, θ) =
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)
α?(w, θ) (20c)

Equalities (20a)-(20c) are obtained from the definitions of elasticities, income responses and

from (2).13 In the real world, most of income tax schedules are piecewise linear. In this case,

direct and total responses differ at the kinks of tax schedules which makes the distinction be-

tween both particularly relevant.14

V.4 Sufficient statistics

To derive the relevant sufficient statistics, we need to define the conditional income den-

sity. Denote h(y|θ) the conditional income density within group θ at income y and H(y|θ) def≡∫ y
z=0 h(z|θ)dz the corresponding conditional income CDF. To obtain the tax formula, we need

the link between the conditional income density and the conditional skill density. According to

(19d) and Assumption 1, income Y(·, θ) is strictly increasing in skill within each group. We then

have H (Y(w, θ)|θ) ≡ F(w|θ) for each skill level w. Differentiating both sides of this equality

with respect to w and using (19d) leads to:

h (Y(w, θ)|θ) = f (w|θ)
Ẏ(w, θ)

⇔ Y(w, θ) h (Y(w, θ)|θ) = w f (w|θ)
α(w, θ)

(21)

Let W(·, θ) now denote the reciprocal of Y(·, θ) so that, within each group θ, individuals

of type (w = W(y, θ), θ) earn income y. According to Assumption 1, W(y, θ) is the unique

skill level w such that the individual first-order condition 1− T′(y) = M (y− T(y), y; w, θ) is

verified at income y. The unconditional income density is given by:

ĥ(y)
def≡
∫

θ∈Θ
h(y|θ) dµ(θ) (22a)

13From (18a) and (19a) we can write:

ε(y, θ)

ε?(y, θ)
=

My +MMc

T′′ +My +MMc

Substituting (3) into (2) and using the definition of ε?(y, θ) yields (20a). The same goes for Equations (20b) and (20c).
14Within tax brackets, the linearity of the tax implies T′′(y) = 0 so that total and direct responses are identical. At

kinks, two possibilities can occur. First, the marginal tax rate can increase, i.e. T′′(y) = +∞, which implies that total
responses are nil and bunching prevails (since α(w, θ) = 0 from (20c)). Second, the marginal tax rate can decrease
at kinks, i.e. T′′(y) = −∞, so that the second-order condition which is necessary for using tax perturbations (see
Assumption 2) is no longer satisfied. Intuitively, one has α(w, θ) = ∞ and income jumps.
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The mean total compensated elasticity at income level y is:

ε̂(y) =
∫

θ∈Θ
ε (W(y, θ), θ)

h(y|θ)
ĥ(y)

dµ(θ) (22b)

where each within-group total elasticity is timed by the relative proportion h(y|θ)/ĥ(y) of in-

dividuals in the corresponding group among individuals who earn y. The mean total income

effect at income level y is:

η̂(y) =
∫

θ∈Θ
η (W(y, θ), θ)

h(y|θ)
ĥ(y)

dµ(θ) (22c)

Finally, the mean marginal social welfare weight at income level y is:

ĝ(y) =
∫

θ∈Θ
g (W(y, θ), θ)

h(y|θ)
ĥ(y)

dµ(θ) (22d)

VI Optimal tax schedule and composition effects

In this section, after stating the desirable tax reforms, we derive the optimal nonlinear tax

schedule under multidimensional heterogeneity using the tax perturbation approach detailed

in Section V. We express the optimal tax formulas in terms of the empirically measurable suf-

ficient statistics that we also defined in Section V. The formulas we obtain let us shed the light

on the crucial role played by composition effects, the importance of which cannot be overstated.

Indeed, we intuitively explain why neglecting composition effects may lead to severe biases

in the derivation of the optimal tax schedule. We give numerical illustrations of this bias in

Section VII.

VI.1 Desirable tax reforms

Having defined the general tax reforms and described their impact on individual income

in Section V, we now study when a given tax reform is desirable. To do so, we locally perturb

the tax system in a direction R(y) with magnitude m. The initial tax system can be optimal or

suboptimal. If the initial tax schedule T(·) is optimal, such a perturbation should not yield any

first-order effect on the Lagrangian (7).

Lemma 1. Under Assumptions 1 and 2, reforming the tax schedule in the direction R(·) triggers first-

order effects on the Lagrangian (7) equal to:

∂L R

∂m
=

∫ ∞

y=0

{[
ĝ(y)− 1 + T′(y) η̂(y)

]
ĥ(y)− d

dy

[
T′(y)

1− T′(y)
ε̂(y) y ĥ(y)

]}
R(y) dy (23)

+ lim
y 7→∞

T′(y)
1− T′(y)

ε̂(y) y ĥ(y) R(y)− lim
y 7→0

T′(y)
1− T′(y)

ε̂(y) y ĥ(y) R(y)

The proof is relegated to Appendix A.1. It is based on studying perturbations of a given

non-linear tax system taking into account the partial (Gateaux) differential of government tax

revenue and social welfare with respect to tax reforms in the direction R(·) which is close to
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what is proposed in Golosov et al. (2014). However, what they propose is not applicable in

our framework: with their method, individuals must take at least as many actions as they have

characteristics. With our method, one can solve models with one action and many types.15

An important point to notice is that, in general, implementing a reform with direction R(·)
implies a budget surplus or deficit. A first-order approximation of this budget surplus (or

deficit) can be computed by putting social welfare weights ĝ(·) equal to zero in (23). One can

then define a balanced-budget tax reform with magnitude m and direction R(·) by combining

it with the lump-sum rebate required to bind the budget constraint. Appendix A.1 shows that

the first-order effect of this balanced-budget tax reform on the social objective is positively

proportional to the first-order effect of the tax reform with magnitude m and direction R(·)
on the Lagrangian. Expression (23) is therefore useful to determine which tax reforms are

desirable. If (23) is positive, it is socially desirable to implement a tax reform with direction

R(·) and a positive magnitude m and to combine this reform with a lump-sum rebate to keep

the government’s budget balanced. Symmetrically, if Expression (23) is negative, it is socially

desirable to implement a tax reform with direction −R(·) and positive magnitude m combined

with a lump-sum transfer.

VI.2 Optimal tax schedule and composition effects

We now characterize the optimal tax schedule in the model with multidimensional types.

The proof is in Appendix A.2.

Proposition 1. Under Assumptions 1 and 2, the optimal tax schedule satisfies:

T′ (y)
1− T′ (y)

=
1

ε̂(y)
1− Ĥ(y)

y ĥ(y)

(
1−

∫ ∞
y [ĝ(z) + η̂(z) T′(z)] ĥ(z)dz

1− Ĥ(y)

)
(24a)

1 =
∫ ∞

0

[
ĝ(z) + η̂(z) T′(z)

]
ĥ(z)dz. (24b)

If income effects were assumed away, Equation (24b) would imply that the weighted sum of

social welfare weights is equal to 1. In the presence of income effects, a uniform increase in tax

liability induces a change in tax revenue proportional to the marginal tax rate which explains

the presence of η̂(z) · T′(z).
The optimal tax rate given in Equation (24a) consists in three terms: i) the behavioral re-

sponses to taxes 1
ε̂(y) , which, in the vein of Ramsey (1927), is the inverse of the mean compen-

sated elasticity; ii) the shape of the income distribution measured by the inverse local Pareto

parameter 1−Ĥ(y)
y ĥ(y)

of the income distribution and iii) the social preferences and income effects

1−
∫ ∞

y [ĝ(z)+η̂(z)·T′(z)]ĥ(z)dz

1−Ĥ(y)
. This term indicates the distributional benefits of increasing the tax

15Golosov et al. (2014) assume that the mapping between the vector of types and the vector of income choices is
injective. This assumption is necessary in their proof as they write the government’s Lagrangian using the endoge-
nous density of the vector of incomes. However, their assumption of injectivity is irrelevant in our context with one
income and many types. In contrast, our proof makes explicit the way the unconditional income density depends
on the skill density in each group through Equations (21) and (22a).
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liability by one unit for all workers with incomes above y. Diamond (1998) and Saez (2001)

discuss how the optimal tax rate is affected by each of these three terms in the one-dimensional

case. Shifting from the model with one dimension of heterogeneity to the model with multiple

dimensions leads to replacing the marginal social welfare weight, the compensated elasticity

and the income effect by their means calculated at a given income level. It is the mean of the

total (rather than direct) compensated elasticity and income effect that must be computed.16 It

must be stressed here that the averaging procedure is a far cry from using the same corrective

term in the averaging process. Instead, every optimal sufficient statistic at any income level is a

weighted average that requires as many corrective terms as there are groups in which individ-

uals earn this income level and group-specific densities as weights (as described in Equations

(20a)-(20b) and (22b)-(22d)).

The optimal tax formulas in Equations (24a) and (24b) are functions of sufficient statistics

ĥ(y), ε̂(y), η̂(y) and ĝ(y) which are endogenous to the tax schedule. Therefore, estimating these

sufficient statistics in the actual economy and simply plugging the obtained estimates into the

optimal tax formulas (24a) and (24b) may lead to biased results. This is because these sufficient

statistics typically take different values in the actual economy and in the optimal one. This well-

known limit of sufficient statistics formulas already prevails when unobserved heterogeneity is

one-dimensional. However, when heterogeneity is multidimensional, additional mechanisms

appear which exacerbate the discrepancies between sufficient statistics in both economies. We

now describe these additional mechanisms that we call composition effects. In a nutshell, com-

position effects stem, at every income level, from the prevalence of a distinct composition of

population in the actual and optimal economies.

According to Equation (22a)-(22d), sufficient statistics ε̂(y), η̂(y) and ĝ(y) at a given income

level y are weighted averages of group-specific sufficient statistics ε(y|θ), η(y|θ) and g(y|θ),
where the weights are given by the relative proportion h(y|θ)/ĥ(y) of individuals of group

θ among individuals who earn income y. Composition effects take place since these relative

proportions are also endogenous to the tax schedule. Therefore, among individuals earning

a given income y, there may be relatively fewer (more) individuals with lower compensated

elasticity ε(y|θ), income response η(y|θ) or welfare weight g(y|θ) in the optimal economy than

in the actual one. Therefore, ε̂(y), η̂(y) or ĝ(y) rise (shrink) when moving from the actual to the

optimal economy. Consider for instance that, at each income level, individuals differ neither

in income response (e.g. because individual preferences are quasilinear in consumption so

that η(y|θ) = 0) nor in welfare weight (e.g. because the government’s objective is maximin,

i.e. g(y|θ) = 0) but in compensated elasticity ε(y|θ). Assume also that marginal tax rates are

larger at the optimum than in the actual economy (which is very likely, under maximin, in

the U.S.). In this case, taxpayers respond to the rise of marginal tax rates (from their actual to

their optimal levels) by reducing their incomes. These responses are larger in groups where the

16This is more intuitive than using the direct elasticity and income effect, which implies to encapsulate the circu-
larity (described by (20a)-(20c)) in a so-called “virtual density” as in Saez (2001), Equation (13).
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compensated elasticity ε(y|θ) is larger. Consequently, the income distribution h(·|θ) of high-

elasticity groups is much more shifted to the left than the income distributions of low-elasticity

groups. At low income levels, the relative proportion h(y|θ)/ĥ(y) of low- (high-) elasticity

groups tends to decrease (increase). This tends to increase the mean compensated elasticity

ε̂(y) of low income earners. It then reduces the optimal marginal tax rate T′(y) they face. For

high income earners, composition effects play in the opposite direction. The relative proportion

h(y|θ)/ĥ(y) of low (high) elasticity groups increases (decreases). This pushes down the mean

compensated elasticity ε̂(y) which, in turn, increases the optimal marginal tax rate T′(y). In a

nutshell, when optimal marginal tax rates are larger than the current ones, composition effects

tend to decrease optimal marginal tax rates for low income levels and to increase marginal tax

rates for high income levels. In the next section, we numerically illustrate that the optimal

marginal tax rates may be highly sensitive to composition effects.

VII Numerical illustrations of composition effects

Numerical simulations are key to assess the importance of composition effects. To high-

light their role on compensated elasticities, we need to downplay the impact the composition

of population may have on social welfare weights. To do so, we assume maximin social pref-

erences. In addition, we rule out income effects by assuming quasilinear preferences as given

in Equation (9). This specification entails a constant direct compensated elasticity of earnings

with respect to the marginal retention rate, ε?(w, θ) = θ, and a direct elasticity of earnings with

respect to skill normalized to 1, α?(w, θ) = 1. The first-order condition (10) still applies with

τ = T′(y). At the optimum, a taxpayer of group θ earning income y is endowed with skill:

W(y, θ) = (1− T′(y))−θ y (25)

Under these specifications, Appendix A.3 shows that the optimal nonlinear tax formula

(24a) simplifies to:
T′(y)

1− T′(y)
=

1∫
θ∈Θ

θ p (W(y, θ)|θ) dµ̂(y, θ)
(26)

where p(w|θ) is the local Pareto parameter of the conditional skill distribution within group θ:

p(w|θ) = w f (w|θ)
1− F(w|θ) (27)

and where µ̂(y, θ) is the distribution of groups θ among individuals earning an income larger

than y. According to (25) the mass of individuals who earn an income larger than y in group θ is

1−H(y|θ) = 1− F (W(y, θ)|θ). Using (25), the distribution of groups θ among individuals who

earn an income larger than y at the optimum is thus described by the cumulative distribution

function:

µ̂(y, θ)
def≡

∫
θ′∈Θ,θ′≤θ

(
1− F

(
(1− T′(y))−θ′ y

∣∣∣ θ′
))

dµ(θ′)∫
θ′∈Θ

(1− F ( (1− T′(y))−θ′ y| θ′)) dµ(θ′)
(28)

18



In Equation (26), the optimal marginal tax rate at any income level depends negatively on

a weighted average, across groups, of the products of the direct compensated elasticity θ and

the local Pareto parameter p (W(y, θ)|θ) within each group. It is clear that the marginal tax

rate T′(y) affects these sufficient statistics through the skill level W(y, θ) at which they need

to be evaluated. This makes sufficient statistics distinct in the actual and optimal situations.

As already mentioned, this first mechanism of endogeneity is already well established in the

standard model where individuals differ along a single dimension (their skills), i.e. where there

is a single θ-group. In this model, the optimal marginal tax rate is given by:

T′(y)
1− T′(y)

=
1

θ p (W(y))
(29)

where the sufficient statistic p (W(y)) is endogenous to T′(y) (Chetty, 2009).

In tax formula (26), a second mechanism of endogeneity appears, because the distribution

of groups among individuals who earn an income larger than y, µ̂(y, θ), is endogenous to T′(y)

(see Equation (28)). As we move from the actual to the optimal economy, the composition of

population behind the same income level is different. Indeed T′(y) is distinct in both economies

and individuals who present the same income in the actual economy while coming from dif-

ferent groups have distinct behavioral responses to the change in T′(y).

To know whether one can reasonably neglect composition effects, it is crucial to look at

their importance numerically. To illustrate the quantitative role composition effects have on

optimal marginal tax rates, we compare the relevant sufficient statistics and optimal marginal

tax rates in two economies. In the single-group economy, workers differ only along their skills

so that composition effects are excluded. This corresponds to the standard unidimensional

case with a single source of endogeneity through p(W(y)), as described in Equation (29). In

the multidimensional economy, workers differ in terms of skills w and elasticities θ. Comparing

these two economies allows us to conclude about the relevance of composition effects. We

perform this comparison according to four distinct scenarios.

VII.1 Calibration

It is well established that male and female workers respond differently to changes in the tax

rate (see e.g. Bargain and Peichl (2017)). We therefore perform our calibrations with gender-

specific elasticities. This characterizes our multidimensional economy, in which agents differ

both in skills and in elasticities. Based on the estimates of male and female labor supply elas-

ticities in Blau and Kahn (2007), we take θL = 0.1 for men (with the subscript “L” standing

for low-elasticity) and θH = 0.8 (with ”H” standing for high-elasticity) for women. Gender is

an easily observable characteristic for the tax authority but we assume that taxation cannot be

conditioned on it for legal reasons.17 In the single-group economy, we take a mean elasticity

17Avoiding the use of tagging based on gender seems to us a reasonable assumption even though a few countries
had (or still have) tax systems that treat men and women differently (Stotsky, 1997). For instance, the Netherlands
moved from granting a higher tax-free allowance to a married man than to a married woman, to an equal basic tax
allowance in 1984.
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single-group economy
(one group, θ = 0.45)

multidimensional economy
(two groups, θL = 0.1, θH = 0.8)

Scenario 1 Pareto with p = 1.5 Pareto distributions with pL = pH = 1.5
Scenario 2 Pareto with p = 1.5 Pareto distributions with pL = 1.3, pH = 2
Scenario 3 kernel + Pareto with kernel on pooled income data + Pareto distribution with

p = 1.5 if w ≥ 152, 314 pL = pH = 1.5 if w ≥ 133, 401 for men
and if w ≥ 173, 963 for women

Scenario 4 kernel + Pareto with kernel on men income data + Pareto with pL = 1.3
p = 1.5 if w ≥ 260, 597 if w ≥ 133, 212

kernel on women income data + Pareto with pH = 2
if w ≥ 180, 092

Table 1: Summary of numerical exercises’ calibrations

θ = 0.45 for the single group (pooling both genders).

We now present the four numerical scenarios according to which we contrast the single-

group and the multidimensional economies. These scenarios depend on how the remaining

parameters of the model (i.e. the local Pareto parameter p(·|θ) and the conditional skill distri-

butions) vary. In the first two scenarios, we calibrate skill distributions from income assuming

the latter is Pareto distributed, whereas in the other two scenarios, we infer skill distributions

non-parametrically from income data. The scenarios are summed up in Table 1.

In our first two numerical scenarios, we focus on the top of the income distribution. Our

assumption that income is Pareto distributed is in line with empirical evidence at the top. The

actual tax schedule is a linear one with a constant marginal tax rate of 40% as in Saez (2001,

2002). This entails that the conditional skill distributions for men and women are also Pareto so

that p(·|θ), in Equation (26), is constant. Therefore, composition effects are the only source of

endogeneity. In the first scenario, the single-group economy features a single income distribu-

tion, which is specified as Pareto with parameter p = 1.5.18 In the multidimensional economy

men and women have their own income distributions, which in this scenario are assumed to be

identical (both are specified as Pareto with p = 1.5). One then uses the first-order condition of

the workers’ program (Equation (25)) and these identical income distributions to infer the skill

distributions. Because men and women have distinct elasticities, the skill distributions will be

different.

In the second scenario, the single-group economy is identical to the one in the first scenario.

In the multidimensional economy, men and women’s income distributions have distinct Pareto

coefficients, with pL = 1.3 for men and pH = 2 for women. The group of male workers then

has a fatter upper tail than the group of female workers, which is consistent with the estimates

obtained by Atkinson et al. (2016). Figure 1 shows this second specification is consistent, above

18From estimates in Diamond and Saez (2011, p.170), and Piketty and Saez (2013, p. 424), we know that the top
of the income distribution in the U.S. is extremely well approximated by a Pareto distribution and that the implicit
Pareto parameter is 1.5.

20



the $200,000 threshold and even more so above the $ 400,000 threshold, with the observed

pattern of local Pareto parameters computed by Piketty and Saez (2013).
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Figure 1: y 7→ ym(y)
ym(y)−y (solid lines) where ym(y) is the average income above y and y 7→ y ĥ0(y)

1−Ĥ0(y)
(dotted lines) where the subscript zero stands for actual economy. The gray vertical lines depict
the 99th percentile threshold.

In our third and fourth scenarios, we rely on CPS income data (2016), the observed five dif-

ferent tax brackets19 and the first-order condition of the workers’ program to infer the skill level

from each observation of income, using a Gaussian kernel. We consider only individuals who

are single, so as to highlight composition effects in the simplest setting without the complexity

of interrelated labor supply decisions within families.

In the third scenario, in the single-group economy, we pool together CPS income data for

men and women. Since high-income earners are top-coded in the CPS, we expand (in a contin-

uously differentiable way) our kernel estimation of the pooled skill distribution using a Pareto

with parameter p = 1.5. The extension of the distribution takes place at skill w = $152, 314

which correspond to $133, 819 of annual gross income. In the multidimensional economy,

we infer men and women skill distributions from the same income distribution. We expand

the estimated skill distributions assuming Pareto distributions with the same parameter value

pL = pH = 1.5 for men and women. As in the first scenario, the skill distributions of men

and women are distinct because of the distinct elasticities θ. The extensions take place at skill

w = $133, 401 for men and skill w = $173, 963 for women. These skill levels correspond re-

spectively to $129, 618 and $138, 199 of annual gross earnings.

In the fourth scenario, the single-group economy relies on the same estimated and ex-

panded skill distribution as in the third scenario. In the multidimensional economy, we es-

timate group-specific skill distributions from CPS income data for men and women separately.

We expand the estimated skill distributions using group-specific Pareto distributions with pa-

rameters pL = 1.3 for men and pH = 2 for women (these values are based on the above-

mentioned empirical evidence). These extensions take place at skill w = $133, 212 for men

19Taken from the OECD Taxdatabase.
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and skill w = $180, 092 for women. These skill levels correspond respectively to $129, 435 and

$143, 068 of annual gross earnings.

VII.2 Scenarios 1 and 2: Top tax rates and composition effects
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Figure 2: Income densities in the actual economy (dotted black curve) and in the (optimal)
multidimensional economy for men (red curve) and for women (blue curve) in Scenario 1.

In the first scenario, men and women have identical income distributions but distinct elas-

ticities (lower for men, higher for women) in the multidimensional economy. Whether in the

single-group economy or in the multidimensional one, we observe that the top tax rate in-

creases when going from the actual economy to the optimum. Behavioral responses therefore

shift income densities to the left. In the single-group economy, going from the actual economy

to the optimum makes the optimal tax rate on high incomes rise from 40% to 1/(1 + 1.5× 0.45) '
59.7% (from (29))20. In the multidimensional economy, since the elasticity of women is higher

than the one of men, the income distribution of women shifts more to the left than the one of

men, as can be seen on Figure 2. This reduces the mean compensated elasticity from 0.45 to 0.39.

In the multidimensional economy, the optimal tax rate21 then reaches 1/(1+ 1.5× 0.39) ' 63%.

In this scenario, the difference (more than 3 p.p.) between the single-group and the multidi-

mensional economies can be entirely attributed to composition effects. In other words, taking

into account the composition effects that arise in the multidimensional case leads to a higher tax

rate not only than in the actual economy but also than at the usual unidimensional optimum.

Even with hypothetical identical income distributions for men and women and a simplistic lin-

ear tax scheme in the actual economy, composition effects modify the optimal top tax rate. One

can expect this discrepancy to increase with more complex actual tax schemes and real income

data. This will be confirmed with Scenarios 3 and 4.

With the second scenario, the Pareto parameters of the density of male and female workers’

income distributions are distinct in the multidimensional economy as empirically observed.

When income goes to infinity, the group of male (i.e. low-elasticity) workers whose density has

20Note that the behavioral responses modify neither the elasticity θ nor the local Pareto parameter in (29).
21Since the Pareto coefficient is identical for men and women, from (26), one knows that the optimal nonlinear

tax rate does not depend on income.
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the lowest Pareto coefficient (i.e. whose density has the fattest upper tail) is the only one left.

Therefore, the elasticity and Pareto coefficient of these workers are the only ones that matter

to compute the asymptotic optimal marginal tax rate. At the very top, the tax rate is equal to

1/(1+ 1.3× 0.1) ' 88.5%. For the sake of comparison, the very top tax rate when heterogeneity

is one-dimensional (dashed red curve in Figure 3) is constant at 1/(1+ 1.5× 0.45) ' 59.7% (i.e.,

29 p.p. lower). Then taking or not taking into account composition effects is a key issue in the

design of the marginal tax rates that should be faced by the richest workers.

Interestingly, the impact of composition effects does not only concern the very top. For large

income levels, the share of men (i.e. workers with a low elasticity and a low Pareto parameter)

increases with income. More precisely, in the actual economy, the share of men is calibrated

to be equal to 0.5 among individuals who earn an income higher than the top 1% threshold

of $350, 500 and it increases to 1 when the threshold goes to infinity. Differing from Scenario

1, pL is distinct from pH and µ̂(y, θ) (in (28)) does vary with income in the multidimensional

economy. The optimal nonlinear tax rate does therefore depend on income (see Equation (26)).

Since the share of men (i.e. low-elasticity workers) increases with income, we expect optimal

marginal tax rates to increase with income, in the multidimensional economy. Top optimal

marginal tax rates are displayed, as a function of income levels, on the left panel of Figure 3

and, in terms of percentiles, on the right panel of the same figure. Note that the top 1, 0.5

and 0.1 percentiles correspond to substantially distinct income levels: $350, 050 , $537, 100 and

$1, 528, 500, respectively. The solid (blue) curves highlight that indeed top optimal marginal

tax rate undergo a drastic change, up to 21.3 percentage points, at the top of the income dis-

tribution. It rises from 61.0% for the top 1% of the population to 68.7% for the top 0.5% and

it reaches 82.3% for the top 0.1%. The differences are also outstanding when one compares

these tax rates on the very rich to the 60% obtained in the single-group economy where one ne-

glects composition effects. Indeed, in the multidimensional economy, the income distribution

of women (in blue) shifts substantially to the left while the one of men is barely affected, as

can be seen on Figure 4. These composition effects drive that, going from the actual to the op-

timal economy, marginal tax rates decrease below the 99th percentile (around $350, 050) while

they substantially increase above this threshold. These results again emphasize the crucial role

played by composition effects on rich workers.

To have a clearer picture of the magnitude of the composition effects at play here, we com-

pute the mean (direct) elasticities both in the single-group economy (removing, in doing so, the

endogeneity due to composition effects) and in the multidimensional economy. We provide

these elasticities for top incomes on Figure 5. Comparing both elasticities allows one to isolate

pure composition effects. In the multidimensional economy, the (optimal) mean compensated

elasticity with composition effects (solid blue curve), written as:

[θLh (y |θL ) µ(θL) + θHh (y |θH ) µ(θH)] / [h (y |θL ) µ(θL) + h (y |θH ) µ(θH)] ,

decreases with income due to the left-shift of women density when marginal tax rates increase,
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Figure 3: Optimal marginal tax rates with (solid blue curve) composition effects, i.e. Scenario
2 for the multidimensional economy (Pareto income distributions when pL = 1.3 and pH = 2
and θL = 0.1 and θH = 0.8).The dashed red line is the optimal tax rate without composition
effect, i.e. the single-group economy in Scenarios 1 and 2 (θ = 0.45 and p = 1.5). The gray
vertical line correspond to the 99th percentile.
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as explained in Section VI.2. The mean elasticity with composition effects is larger (lower)

than the elasticity found in the single-group economy (which is equal to 0.45) for income levels

below (above) about $350.000. More precisely, at $150.000, the mean elasticity with composition

effect is about 30% larger than the elasticity without composition effect. At the 99.5th percentile,

the mean elasticity with composition effect is 43% lower than the elasticity without composition

effect. Even worse, the mean elasticity with composition effects that takes place at the 99.9

percentile is 65% times lower than the elasticity which excludes composition effects. There

is no doubt that incorporating composition effects drastically modifies this crucial sufficient

statistic.

Composition effects further affect the study of top tax rates. In the literature, it is generally

thought that, for this purpose, a linear tax above a threshold and a nonlinear tax will give

equivalent results. Piketty and Saez (2013) (Figure 3, p. 91, reported in Panel (b) of Figure 1 in
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Figure 5: Mean (direct) elasticities with and without composition effects, Scenario 2. The solid
blue curve corresponds to the mean elasticities, at the optimum, with composition effects (θL =
0.1, θH = 0.8, pL = 1.3 and pH = 2). The dashed red line is the elasticity at the optimum with
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the present paper) show, under unidimensional individual heterogeneity, that both approaches

converge for the highest percentiles of the income distribution. In Appendix A.4, we show

that it is not always the case when individual heterogeneity is multidimensional. We highlight

that, in this case, major differences may prevail when one calculates the top tax rates with a

linear tax above a threshold (as done in e.g. Saez (2001)) instead of a nonlinear tax as done here

(see Equation (26)). In both cases, the optimal tax rates are weighted averages of the group-

specific products θi pi. However, the weights differ. With a linear tax rate above a threshold

y, the weights are given by the mass of excess incomes above the threshold. By contrast, with

a nonlinear income tax, the weights are given by the mass of incomes above y. Indeed the tax

perturbation one can use to derive the tax formula with a linear tax above a threshold relies on

a constant increase in the tax rate above this threshold. In each group, this change in tax rate

applies to each individual income in excess of the threshold and not to the entire individual

income as it is the case with a nonlinear tax.

VII.3 Scenarios 3 and 4: Composition effects with CPS data

To check the robustness of our numerical results on the crucial role played by composition

effects, we now rely on CPS data and on the actual nonlinear tax schedule. We proceed as

in Scenarios 1 and 2. We first assume hypothetical identical income densities in the actual

economy for male and female workers in Scenario 3 and we relax this assumption in Scenario

4. Assuming identical income densities for men and women is pedagogically helpful to see

how the changes in conditional income densities modify the optimal tax schedule through

composition effects. Directly using the observed distinct densities will not allow us to clearly

emphasize this. Real data also allows us to enlarge the scope of our results to the entire income

distribution. Figure 6 displays the optimal marginal tax rates obtained in the third scenario.

Marginal tax rates with composition effects (in solid, blue line) are below the ones obtained

without composition effects (in red dotted lines) for incomes below about $50, 000. Conversely,
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marginal tax rates with composition effects are above the ones without composition effects, for

incomes above $50, 000. This confirms the results already obtained with Scenario 2. Moreover,

the very top marginal tax rate increases from 1/(1 + 1.5 × 0.45) ' 59.7% (from (29)) in the

single-group economy without composition effects to 67.9% (from (26)) in the economy with

composition effects, a substantial difference of 8.2 percentage points.
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Figure 6: Optimal marginal tax rates with (solid blue line) and without composition effects
(dashed red lines) in Scenario 3 with CPS (2016) income distribution extended by a Pareto
distribution.
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Figure 7: Densities in the actual economy in Scenario 3 with CPS (2016) income distribution
extended by a Pareto distribution and optimal income densities in the multidimensional econ-
omy

The dotted black curve in Figure 7 gives the conditional income densities which are as-

sumed identical for men and women in Scenario 3. Figure 7 also displays how the conditional

income densities of men (red curve) and women (solid blue curve) diverge in the multidimen-

sional economy where the tax policy has switched from the actual tax schedule to the optimal

one. The conditional density of men is almost not modified compared to the actual economy

which is not surprising since their elasticity θL = 0.1 is quite low. In contrast, we see on Figure

7 that more women end up at the bottom of the income distribution in the optimal economy.22

22The conditional income density of women (see Figure 7) and the profile of direct elasticity of women (see
Figure 8 ) exhibit a sort of kink around $70, 000. This income level corresponds to the skill level at which the Pareto
expansion takes place for women. Although this expansion is realized in a continuously differentiable way, the first
derivative of the density varies very rapidly around the expansion. This in turns implies locally a rapid change in
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Figure 8: Mean (direct) elasticities with and without composition effects, Scenario 3

Because of this important change in the income density of women, when incorporating compo-

sition effects, the mean (direct) elasticity increases for incomes below $40, 000 while it decreases

beyond this level, as can be seen in Figure 8. A similar impact was observed in Scenario 2 (see

Figure 5). In Figure 8, we isolate pure composition effects by comparing the mean (direct) com-

pensated elasticities with and without composition effects. The economy with one group has a

direct elasticity of 0.45 as discussed earlier. In the optimal economy with two groups, the mean

compensated elasticity

[θLh (y |θL ) µ(θL) + θHh (y |θH ) µ(θH)] / [h (y |θL ) µ(θL) + h (y |θH ) µ(θH)]

drastically decreases with income. It starts at 0.66 for very low incomes and reaches 0.31 for

high income levels. The difference between mean direct elasticities with and without compo-

sition effects is definitely not negligible. As expected from Equation (26), a reduction (rise) of

the optimal mean elasticity goes hand in hand with a rise (decrease) of the marginal tax rate.

Indeed, when going from the single-group to the multidimensional economy, the marginal tax

rates increase above the $40, 000 threshold, while they substantially decrease below this income

level, as can be seen in Figure 6. This scenario confirms the decisive role played by composition

effects.

In Scenario 4, we relax the assumption of Scenario 3 according to which income densities for

men and women are identical under the actual tax schedule. Instead both conditional income

densities are calibrated using the gender specific income distribution of men and women from

CPS data and the gender specific calibration of Pareto parameters (see Table 1). As can be seen

on Figure 9, we again find that composition effects reduce marginal tax rates (by as much as

6 p.p.) below an income threshold (around $60, 000) and increases them above this threshold.

As in Scenario 3, this goes hand in hand with the fact that the income density of women (with

a relatively high elasticity) is much more concentrated to the left than that of men (whose

the local Pareto parameter for women and in the marginal tax rate. It induces a sudden surge in the corrective term
(see Equation (20c)). Note that this change in the corrective term increases with the difference between men and
women elasticities. From Equation (21), the rapid rise in the corrective term induces a substantial increase of the
women income density around $70, 000.

27



0 50000 100000 150000 200000
Income

60

70

80

90

100
Marginal Tax Rate in%

With Composition Effects

Without Composition Effects

Figure 9: Optimal marginal tax rates with (solid blue line) and without composition effects
(dashed red lines) in Scenario 4 with CPS (2016) income distribution extended by a Pareto
distribution
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Figure 10: Densities in the actual economy in Scenario 4 with CPS (2016) income distribution
extended by a Pareto distribution (dashed red and blue lines) and optimal income densities in
the multidimensional economy (red and blue lines)

elasticity is relatively low), as can be seen on Figure 10.23 Compared to Scenario 3, the fatter

upper tail for men than for women increases the discrepancy between optimal marginal tax

rates at the top with and without composition effects. Marginal tax rates on high incomes are

10 to 20% larger when one takes composition effects into account. On Figure 11, we compare

the mean (direct) compensated elasticities with and without composition effects. The difference

between mean elasticities with and without composition effects are again non-negligible.

These numerical results put the stress on the need for (more) empirical studies on sufficient

statistics conditional on income to derive the shape of optimal marginal income tax.

VIII Tax perturbation method versus mechanism design approach

In this section, we show the equivalence between the tax perturbation approach (which

relies on the sufficient conditions in Assumption 2) and the mechanism design approach, as-

suming individual characteristics are multidimensional. This equivalence is established under

23Note that the sort of kinks that occur around $70, 000 for the conditional income density of women (see Figure
10) and the profile of direct elasticity of women (see Figure 11 ) prevail for the same reason as in Scenario 3. This is
detailed in Footnote 22.
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Figure 11: Mean (direct) elasticities with and without composition effects, Scenario 4

the within-group single-crossing condition (Assumption 1).

The mechanism design approach relies on the Taxation Principle (Hammond, 1979, Gues-

nerie, 1995) according to which it is equivalent for the government to select a nonlinear tax

schedule taking into account the labor supply decisions as the ones described in (1), or to di-

rectly select an allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) that verifies the incentive constraints,

∀w, θ, w′, θ′ ∈ (R∗+ ×Θ)2 U (C(w, θ), Y(w, θ); w, θ) ≥ U
(
C(w′, θ′), Y(w′, θ′); w, θ

)
. (30)

According to (30), individuals of type (w, θ) are better off with the bundle (C(w, θ), Y(w, θ))

designed for them than with bundles (C(w′, θ′), Y(w′, θ′)) designed for individuals of any other

type (w′, θ′).

In the mechanism design approach, it is usual to assume that the government selects among

incentive-compatible allocations that are continuously differentiable (Salanié, 2005). Then, in-

centive constraints (30) imply the first-order incentive constraints, i.e.

∀(w, θ) ∈ R∗+ ×Θ U̇(w, θ) = Uw (C(w, θ), Y(w, θ); w, θ) (31)

These first-order incentive constraints are necessary but not sufficient to verify the incentive

constraints (30). A sufficient condition is that the allocation also verifies a monotonicity con-

straint according to which in each group, Y(·, θ) is nondecreasing in skill. We adopt a slightly

more restrictive assumption.

Assumption 3. The allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) is smooth if and only if it is continuously

differentiable, it verifies (30) and w 7→ Y(w, θ) admits a positive derivative for any group θ ∈ Θ and at

any skill level w ∈ R∗+ .

We get the following connection between Assumption 2 required for the tax perturbation

approach and Assumption 3 in the first-order mechanism design approach. The proof is in

Appendix A.5.

Proposition 2. Under Assumption 1,

i) Any tax schedule y 7→ T(·) verifying Assumption 2 (i.e. the conditions for the tax perturbation)

induces a smooth allocation that verifies Assumption 3.
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ii) Any smooth allocation verifying Assumption 3 can be decentralized by a tax schedule that verifies

Assumption 2.

Intuitively, under Assumption 1 (which states the single-crossing condition within group),

elements of Assumptions 2 and 3 are equivalent. The fact that, for each group θ, the second-

order condition of the individual program (1) holds strictly (Part ii of Assumption 2) is equiv-

alent to Y(·, θ) admitting a strictly positive derivative in skill as required in Assumption 3. In

the mechanism design approach, the latter condition is related to the second order incentive

constraints. Moreover, the uniqueness of the global maximum from the individual maximiza-

tion program (1) (Part iii of Assumption 2) is equivalent to Y(·, θ) being continuous in skill as

stated in Assumption 3.

Thanks to Proposition 2, first-order mechanism design and tax perturbation approaches are

analog. The (first-order) mechanism design approach consists in choosing, among the alloca-

tions that verify Assumption 3, the one that maximizes the social objective (6) subject to the

budget constraint (5). It involves computing the first-order effect, on the Lagrangian (7), of a

small perturbation of the optimal allocation within the set of smooth and incentive compatible

allocations. Since the allocation after perturbation has to verify Assumption 3, it is decentral-

ized by a tax schedule that has to verify Assumption 2. Therefore, as stated in Proposition 2,

the effects of a perturbation of the allocation that preserves Assumption 3 are equivalent to

the responses of the allocation to a perturbation of the tax function that preserves Assump-

tion 2. In other words, the mechanism design approach focuses on the effects of an allocation

perturbation whereas the tax perturbation approach focuses on the effects of the tax reform

that decentralizes this perturbation of the allocation. For this reason, the mechanism design

approach and the tax perturbation approach are the two faces of the same coin.

In the literature where the unobserved heterogeneity is unidimensional, the mechanism

design approach can be developed under less restrictive assumptions than Assumption 3. In

particular, Lollivier and Rochet (1983), Guesnerie and Laffont (1984), Ebert (1992), Boadway

et al. (2000) study the case where individuals endowed with different skill levels choose the

same consumption-income bundle. To decentralize such an allocation where bunching occurs,

one would need a kink in the tax function. This is excluded with the tax perturbation because

of Assumption 2 but has been largely studied with the mechanism design approach. Note

that the alternative “pathology” where individuals may be indifferent between two levels of

income appears much more plausible under twice continuously differentiable tax schedule.

Surprisingly, this problem has attracted much less attention than bunching in the literature

based on the mechanism design approach, a noticeable exception being Hellwig (2010).

IX Concluding Comments

In this paper, we provide formulas to calculate sufficient statistics in the presence of multidi-

mensional individual heterogeneity. Multidimensional heterogeneity generates a new channel

30



through which sufficient statistics differ in the optimal and actual economies. We call this addi-

tional channel “composition effects ”. These effects are due to the modification of the average

behavioral response at each income level. Using optimal tax policy as the field of choice to

illustrate our point, we emphasize the key role of composition effects in the calculation of suf-

ficient statistics. We show that neglecting composition effects entails a potentially large bias on

sufficient statistics hence on optimal tax schedules. We quantify this bias through a few numer-

ical examples. Our results stress the need for empirical studies on labor supply elasticities and

distribution parameters for different demographic groups e.g., according to age, ethnicity and

gender. This paper is clearly a call for more empirical evidence within sub-groups of popula-

tion at distinct levels of income to clarify the importance of composition effects in the design of

optimal tax schedules. This is part of our research agenda.

As a second main contribution, we prove the equivalence, when unobserved heterogeneity

is multidimensional, between the tax perturbation method and (first-order) mechanism design.

Both methods have been used separately to solve optimal income tax problems. While the

latter method is widely used in various fields in economics, the former is more specific to

the optimal taxation literature (although it may find applications in industrial organization as

well). Having ascertained their equivalence (and sufficient conditions of this equivalence) is

therefore an important result.

To illustrate the generality of our results in this concluding section, we now provide exam-

ples of tax problems that one can easily solve in our framework. For each of them, we explain

what y, w, θ represent so that the interpretation of the results is straightforward. In the vein of

this paper, we choose optimal tax problems but our framework even extends beyond optimal

taxation, e.g., to nonlinear pricing problems where consumers differ along several unobserved

dimensions.

Optimal joint taxation of labor and non-labor income

Consider individuals have two sources of taxable income: a non-labor income z and a la-

bor income y − z. Those incomes are jointly taxed and the tax function does not distinguish

between both incomes. This applies, for instance, in countries like France where incomes re-

ceived from renting property are jointly taxed with labor income. As explained in Scheuer

(2014), a single nonlinear tax schedule is the system that is in place for employed workers and

self-employed small business owners in many countries, including the U.S.. In this case, y is

the total taxable income and we interpret θ as the ability to earn non-labor income z and w as

the skill. Individuals of type (w, θ) solve:

max
y,z

U (y− T(y), y− z, z; w, θ)

where two decision variables appear instead of one variable in the core of our paper. This

program can be solved sequentially, the first step being the choice of non-labor income z for

a given taxable income y which leads to U (c, y; w, θ)
def≡ max

z
U (c, y− z, z; w, θ). The second

step is the choice of y as in Equation (1). In the process, one simply needs to ensure the semi-
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indirect utility function U (·, ·; w, θ) verifies Assumption 1 to apply our tax formulas.

Optimal joint income taxation of couples

The joint income taxation of couples is a variant of the previous application, in which y− z

is the labor income of one individual and z is the one of his/her partner. The tax does not

distinguish between y− z and z and only depends on the sum of both incomes, y (as in France,

Germany and the US). We redefine w and θ as the respective skill level of each member of the

couple. The optimal tax schedules derived in this paper are then interpreted as the optimal tax

schedules when the couple is the tax unit and each partner decides along the intensive margin.

Our model opens a new avenue for research on this topic (e.g., Brett (2007), Kleven et al. (2009)

and Cremer et al. (2012)).

Optimal income taxation with tax avoidance

In this application, w is the skill and θ is the ability to avoid taxation. We assume that tax

enforcement (penalty, monitoring, etc.) is given. We denote z the sheltered labor income (i.e.

income that is not taxed at all) and y + z the (total) labor income. The tax only depends on the

taxable income y. Consumption becomes c + z, with c = y− T(y) being the after-tax income.

All results obtained in this paper are valid in this context when one simply makes sure that

Assumption 1 holds.

A Appendix

A.1 Proof of Lemma 1

Let L R be the Lagrangian that results from applying a reform with a direction R and mag-
nitude m on the Lagrangian (7):

L R(m)
def≡

∫∫
θ∈Θ,w∈R+

[
T(YR(m; w, θ))−m R(YR(m; w, θ)) +

Φ
(
UR(m; w, θ); w, θ

)
λ

]
f (w|θ)dw dµ(θ)

Computing the partial (Gateaux) differential of the Lagrangian with respect to m at m = 0
yields:

∂L R

∂m
=

∫∫
θ∈Θ,w∈R+

{
T′(Y(w, θ))

1− T′(Y(w, θ))
Y(w, θ) ε(w, θ) R′(Y(w, θ))

+
[
T′(Y(w, θ)) η(w, θ)− 1 + g(w, θ)

]
R(Y(w, θ))

}
f (w|θ)dw dµ(θ)

=
∫∫

θ∈Θ,y∈R+

{
T′(y)

1− T′(y)
y ε (W(y, θ), θ) R′(y)

+
[
T′(y) η (W(y, θ), θ)− 1 + g (W(y, θ), θ)

]
R(y)

}
h(y|θ)dy dµ(θ)

=
∫

y∈R+

{
T′(y)

1− T′(y)
y ε̂(y) R′(y) +

[
T′(y) η̂(y)− 1 + ĝ(y)

]
R(y)

}
h(y)dy

We use (8), (16) and (19c) to obtain the first equality. We use (21) for the change of variable from
skill w to income y in the second equality. Note the role of the within-group single-crossing
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condition (Assumption 1) behind this change of variable. It implies that in each group, income
is an increasing function of skill with a strictly positive derivative. Therefore, in each group,
the income density is continuous without any mass point nor hole. We use (22a)-(22d) for the
third equality. Integrating by parts the integral of T′(y)

1−T′(y)y ε̂(y) ĥ(y) R′(y) leads to (23).

We now show that the first-order effect on the Lagrangian (7) of a reform with magnitude
m and direction R(·) is positively proportional to the first-order effect on the social objective
(6) of the reform denoted R̃(m). The latter is a tax reform in the direction R(·) with magnitude
m where the induced net budget surplus is rebated in a lump-sum way. Let `(m) denote this
budget surplus. Under the balanced-budget tax reform R̃(m) individuals solves:

UR̃(m; w, θ)
def≡ max

y
U (y− T(y) + m R(y) + `(m), y; w, θ) (32)

Applying the envelope theorem to (32) at m = 0 yields:

∂UR̃

∂m
(0; w, θ) =

(
R(y) + `′(0)

)
Uc (C(w, θ), Y(w, θ); w, θ) (33)

Applying the implicit function theorem on the first-order condition

1− T′ (y) + m R′ (y) = M (y− T (y) + m R (y) + `(m), y; w, θ)

at y = YR̃(m; w, θ) and using (18b), (19b) and (19c) leads to:

∂YR̃

∂m
(0; w, θ) =

∂YR

∂m
(0; w, θ) + η(w, θ) `′(m) (34)

We now denote respectively BR(m), S R(m) and L R(m) the budget surplus, the social
objective and the Lagrangian when the tax function is perturbed in the direction R as a function
of the magnitude m with L R(m) = BR(m) + (1/λ)S R(m) . We symmetrically denote BR̃(m),
SWFR̃(m) and L R̃(m) the budget surplus, the social objective and the Lagrangian when the
tax function is perturbed by the balanced-budget tax reform in the direction R with magnitude
m. We get

0 = BR̃(m) =
∫∫

(w,θ)∈R∗+×Θ

{
T
(

YR̃(m; w, θ)
)
−m R

(
YR̃(m; w, θ)

)}
f (w|θ)dw dµ(θ)− `(m).

We then obtain:

`′(0) =
∫∫

(w,θ)∈R∗+×Θ

{
T′ (Y(w, θ))

∂YR̃

∂m
(0; w, θ)− R (Y(w, θ))

}
f (w|θ)dw dµ(θ)

Using (34), we can then write:

`′(0) =
∂BR

∂m
(0) + `′(0)

∫∫
(w,θ)∈R∗+×Θ

T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

so that:

`′(0) =
1

1−
∫∫

(w,θ)∈R∗+×Θ
T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

∂BR

∂m
(0) (35)
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Finally, using (33), we get:

∂S R̃

∂m
(0) =

∂S R

∂m
(0) + `′(0)

∫∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ); w, θ) Uc(C(w, θ), Y(w, θ); w, θ) f (w|θ)dw dµ(θ)

=
∂S R

∂m
(0) +

∫∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ); w, θ) Uc(C(w, θ), Y(w, θ); w, θ) f (w|θ)dw dµ(θ)

1−
∫∫

(w,θ)∈R∗+×Θ
T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

∂BR

∂m
(0)

= λ
∂L R

∂m
(0) (36)

where the latter equality holds if and only if

λ =

∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ); w, θ) Uc(C(w, θ), Y(w, θ); w, θ) f (w|θ)dw dµ(θ)

1−
∫

(w,θ)∈R∗+×Θ
T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

(37)

A.2 Proof of Proposition 1

An optimal tax system implies that any tax reform R(.) does not yield any first-order effect
on the Lagrangian (7). That is (23) is nil at m = 0 for any direction R(·). This implies that
lim
y 7→0

T′(y)
1−T′(y) ε̂(y) y ĥ(y) = lim

y 7→∞
T′(y)

1−T′(y) ε̂(y) y ĥ(y) = 0 and, for any income y, we have:

d
dy

[
T′(y)

1− T′(y)
ε̂(y) y ĥ(y)

]
=
[
ĝ(y)− 1 + T′(y) η̂(y)

]
ĥ(y)

Integrating the latter equality for all income z above y and using lim
y 7→∞

T′(y)
1−T′(y) ε̂(y) y ĥ(y) = 0

yields (24a). Making y tends to 0 in (24a) and using lim
y 7→0

T′(y)
1−T′(y) ε̂(y) y ĥ(y) = 0 leads to (24b).

A.3 Derivation of Equation (26)

Under maximin (ĝ(y) = g(w, θ) = 0), without income effects (η̂(y) = η(w, θ) = 0) and
using Equations (22a)-(22d), Equation (24a) can be rewritten as:

T′(y)
1− T′(y)

∫
θ∈Θ

ε(W(y, θ), θ)
y h(y|θ)

1− H(y|θ)dµ̂(y, θ) = 1 (38)

where dµ̂(y, θ) = 1−H(y|θ)
1−Ĥ(y)

dµ(θ), the latter being derived from µ̂(y, θ) in Equation (28).

In the optimal economy, from (25), we have H(y|θ) ≡ F
(
(1− T′(y))−θ y

∣∣∣ θ
)

. Differentiat-
ing both sides of this equality with respect to income y leads to:

h(y|θ) =

(
1 +

y T′′(y) θ

1− T′(y)

) (
1− T′(y)

)−θ f
((

1− T′(y)
)−θ y

∣∣∣ θ
)

y h(y|θ) =

(
1− T′(y) + y T′′(y) θ

1− T′(y)

)
W(y, θ) f (W(y, θ)| θ)

ε(y, θ) y h(y|θ) = θ W(y, θ) f (W(y, θ)| θ)

ε(y, θ)
y h(y|θ)

1− H(y|θ) = θ
W(y, θ) f (W(y, θ)|θ)

1− F(W(y, θ)|θ) = θ p (W(y, θ)|θ) (39)

where the third equality uses (20a) and ε?(y, θ) = θ (under quasilinear and isoelastic individual
preferences) and the latter equality uses H(y|θ) = F(W(y, θ)|θ). Plugging (39) into (38) and
using the definition of te Pareto parameter p(w|θ) (Equation (41)) leads to (26).
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A.4 Top tax rate calculated with a linear versus a nonlinear tax schedule

In this appendix, we emphasize that taking composition effects into account leads to major
differences between top tax rates calculated with a linear tax function for all incomes above a
given threshold and top tax rates calculated with a nonlinear tax schedule as done in e.g. Sec-
tion 4 of Saez (2001). This exercise finds its motivation in the fact that the literature highlights
that a linear tax above a threshold and a nonlinear tax will generally give equivalent results
(Piketty and Saez, 2013, Figure 3, p. 91, reported in Panel (b) of Figure 1) which we show is not
the case with multidimensional heterogeneity (with different Pareto parameters and elasticities
across groups).

To make the comparison, we first study the optimal linear tax rate τ for workers with in-
come above threshold y. As in the core of the paper, a variable with the subscript zero is in the
actual economy and a variable with an asterisk is at the optimum. In the actual economy, the
upper part of the income density within each group with elasticity θi is Pareto:

h0(y|θi) = ki pi y−(1+pi) ⇔ 1− H0(y|θi) = ki y−pi with i := L, H (40)

where ki is the scale parameter and pi is here the local Pareto parameter of the conditional
income distribution within group θ:

pi = p(y|θi) =
y h0(y|θi)

1− H0(y|θi)
(41)

Also note that the mean of incomes above income y within the group with elasticity θi is labeled
ym (y| θi) and it simplifies to:24

ym (y| θi) =
pi

pi − 1
y. (42)

The optimal top (linear) tax rate for income levels above the threshold y solves:

τ∗ =
1

1 + µ̃L(y, τ0, τ∗) θL pL + µ̃H(y, τ0, τ∗) θH pH
where (43)

µ̃i(y, τ0, τ∗)
def≡

µ(θi) ki

pi − 1

(
1− τ∗
1− τ0

)θi pi

y−pi

µ(θL) kL

pL − 1

(
1− τ∗
1− τ0

)θL pL

y−pL +
µ(θH) kH

pH − 1

(
1− τ∗
1− τ0

)θH pH

y−pH

with i := L, H.

Proof of Equation (43)
Using Equation (10) that we have obtained with the optimal linear tax rate in Section IV, we
can write the income earned in the actual economy by an individual who earns y in the optimal
economy as:

Ỹ0(y, θi) =

(
1− τ0

1− τ∗

)θ

y. (44)

24Using (40), the mean of incomes above income y within group with elasticity θi is:

ym ( y| θi) =

∫ +∞
y zpiz−1−pi dz∫ +∞
y piz−1−pi dz

=

[
z1−pi
1−pi

]+∞

z[
z−pi
−pi

]+∞

y

=
pi

pi − 1
y.

which is the right-hand side of (42).
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From this equation, we can write

H∗(y|θi) = H0(Ỹ0(y, θi)|θi). (45)

Differentiating both sides of (45) in y and using (40) and (44), we obtain:

h∗(y|θi) = ki pi

(
1− τ∗
1− τ0

)θi pi

y−(1+pi) =

(
1− τ∗
1− τ0

)θi pi

h0(y|θi) with i := L, H.

and

1− H∗(y|θi) = ki

(
1− τ∗
1− τ0

)θ pi

y−pi =

(
1− τ∗
1− τ0

)θ pi

(1− H0(y|i)) . (46)

To obtain the optimal τ, we can determine the usual mechanical and behavioral effects
following a small increase in the tax rate. The total mechanical effect consists in summing,
across groups, the extra taxes that individuals who earn incomes larger than the threshold y
pay when one incrementally modifies the linear tax rate that prevails on all incomes above the
threshold:

M = ∑
i:=L,H

(1− H ( z| θi)) µ(θi)[ym (y| θi)− y] with i := L, H.

All individuals above y mechanically pay extra taxes. For each worker, the change in the
linear tax rate applies to the amount of her income which is above the threshold. The mechani-
cal effect is therefore proportional to the mass 1− H (y| θi) of workers who face the increase in
tax rate (i.e. all workers whose incomes are above the threshold) times the difference between
the mean of incomes above threshold y and this threshold, i.e. y − ym(y|θi) = y

pi−1 , using
Equation (42).

This extra tax payment also creates behavioral responses from everyone above the thresh-
old. This leads to an additional change in collected taxes. In the group of elasticity θi, the mass
of workers above the threshold, 1− H (y| θi), has a behavioral response which is proportional
to − τ

1−τ ym (y| θ) θi (1− H (y| θi)). One can note that this response is proportional to the mean

income above the threshold. Aggregating behavioral responses across all top bracket taxpayers
yields:

B =
τ

1− τ ∑
i:=L,H

θiym (y| θi) (1− H ( z| θi)) µ(θi) with i := L, H.

At the optimum, M + B = 0. Using (40), (42) and the fact that the mass of workers above the

threshold can be rewritten (thanks to (46)) as 1− H (y| θi)) = ki

(
1−τ∗
1−τ0

)θ pi
y−pi gives:

τ∗
1− τ∗

=

1
pL−1 µ(θ1) kL

(
1−τ∗
1−τ0

)θL pL
y−pL + 1

pH−1 µ(θH) kH

(
1−τ∗
1−τ0

)θH pH
y−pH

µ(θL) kL

(
1−τ∗
1−τ0

)θL pL
y−pL θL

pL
1−pL

+ µ(θH) kH

(
1−τ∗
1−τ0

)θH pH
y−pH θH

pH
1−pH

which can be rewritten as (43). �

We can now compare the top tax rate formula when a linear tax prevails above a threshold,
Equation (43), to the tax formula obtained when a nonlinear tax prevails, Equation (26). In
both cases, the optimal tax rates are weighted averages of the group-specific products θi pi.
However, the weights associated with an optimal nonlinear income tax rate are different from
those associated with a linear income tax rate above a threshold. When computing optimal
nonlinear income tax at income y, one can see from Equations (26) and (28) that the weights are
given by the share of individuals in group θi above income y, i.e. the mass of incomes above
y. This stands in stark contrast with the optimal tax rate that is linear above a threshold, for
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which the weights are given, as we have just stated, by the mass of excess incomes above the
threshold. Intuitively, this is because the tax perturbation one can use to derive this tax formula
relies on a constant increase in the tax rate above threshold y. In each group θi, this change in
tax rate applies to each individual income in excess of the threshold, ym (y| θi)− y.
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Figure 12: Nonlinear vs linear above a threshold tax schedules.

We now numerically illustrate the important difference in optimal tax rates when one uses
the linear-above-a-threshold rather than the nonlinear tax schedule to calculate top tax rates.
Figure 12 depicts the optimal nonlinear tax schedule (blue curve) and the optimal linear-above-
a-threshold tax schedule (hyphenated red curve). To obtain the latter, we use the income level
at which the tax rate is calculated as the threshold beyond which a linear tax rate prevails. The
linear tax rate increases with the threshold. More precisely, it rises from 84% with a thresh-
old set at $375, 0000 (which corresponds to the 99th percentile) to 87% with a threshold set at
$1, 000, 0000. The optimal linear-above-a-threshold tax rate is then quite sensitive to the choice
of threshold beyond which one calculates the linear tax rate. Moreover, when one compares the
optimal nonlinear and linear-above-a-threshold tax rates at the top of the income distribution,
one sees drastic differences. At the 99th percentile, the linear-above-a-threshold tax rate is 25
percentage points higher than the nonlinear tax rate. One needs to calculate tax rates beyond
$1, 400, 000 to see this difference eventually reduced to 6 percentage points, which is still a sig-
nificant difference. When one determines the optimal top tax rates, assuming a linear tax at the
top (i.e., above a threshold) yields a substantially different tax rate than the one obtained with
a nonlinear tax schedule.

A.5 Proof of Proposition 2

Part i) of Proposition 2.

Let T(·) be an income tax schedule satisfying Assumption 2. We already know that under
Assumptions 1 and 2, one can apply the implicit function theorem to the first-order condition
associated to (1). This implies that Y(·, θ), thereby C(·, θ) is continuously differentiable in w
within each group θ. Moreover, Y(·, θ) admits a positive derivative according to (19d). Finally,
from (1) we get that:

∀w, θ, y′ ∈ R∗+ ×Θ×R+ U (C(w, θ), Y(w, θ); w, θ) ≥ U
(
y′ − T(y′), y′; w, θ

)
Taking y′ = Y(w′, θ′) leads to C(w′, θ′) = y′ − T(y′), so that the latter inequality leads to (30).
Therefore the allocation w 7→ (C(·, θ), Y(·, θ)) induced by T(·) verifies (30), thereby Assump-
tion 3.
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Part ii) of Proposition 2

Let (w, θ) 7→ (C(w, θ), Y(w, θ)) be a mapping defined over R∗+ ×Θ which verifies Assump-
tion 3. Let Y denote the set of incomes that are assigned to some individuals along this allo-
cation. To define the tax schedule that decentralizes this allocation, we first show that if two
types (w, θ) and (w′, θ′) of individuals earn the same income y = Y(w, θ) = Y(w′, θ′), then they
have to be assigned the same consumption C(w, θ) = C(w′, θ′). Otherwise, if by contradiction
one has: C(w, θ) < C(w′, θ′), then one would get that individuals of type (w, θ) would be better
off with the bundle (C(w′), Y(w′)) designed for individuals of type (w′, θ′), which would be in
contradiction with (30). A symmetric argument applies if C(w, θ) > C(w′, θ′) by inverting the
role of (w, θ) and of (w′, θ′). We can then unambiguously define the tax schedule denoted T(·)
that decentralizes this allocation by:

∀y ∈ Y T(y)
def≡ Y(w, θ)− C(w, θ) where (w, θ) are such that: y = Y(w, θ) (47)

Given this tax schedule, Program (1) of individuals of type (w, θ) is equivalent to:

max
(w′,θ′)∈R∗+×Θ

U
(
C(w′, θ′), Y(w′, θ′); w, θ

)
,

the solution of the latter is (w, θ) since (w, θ) 7→ (C(w, θ), Y(w, θ)) verifies the incentive con-
straints (30). Therefore, the tax schedule T(·) defined by (47) decentralizes the given alloca-
tion.25

We now need to show a mathematical result. For each group θ ∈ Θ, as Y(·, θ) is continu-
ously differentiable, it admits a reciprocal denoted Y−1(·, θ) which is also continuously differ-
entiable with a strictly positive derivative. Therefore the image of the (open) skill set R∗+ by
Y(·, θ) is an open set denoted Y(θ) ⊂ R+. Equation (47) can be rewritten on Y(θ) by:

T(y) = y− C
(

Y−1(y, θ), θ
)

(48)

Moreover, we get that Y = ∪θ∈ΘY(θ) and is therefore an open set. Hence, for each income
y ∈ Y, there exists a group θ such that T(·) verifies (48) in the neighborhood of y.

To show that T(·) verifies Part i) of Assumption 2, note that from (48), T(·) is continuously
differentiable as Y−1(·, θ) and C(·, θ) are continuously differentiable. Moreover, from (2), we
have:

T′(y) = 1−M (y− T(y), y; Y−1(w, θ), θ)

As T(·) and Y−1(·, θ) are continuously differentiable in y, and M (·, ·; ·, θ) is continuously differ-
entiable in (c, y, w), y 7→M (y− T(y), y; Y−1(w, θ), θ) is continuously differentiable. Therefore,
T′(·) is continuously differentiable and T(·) verifies Part i) of Assumption 2.

To show that T(·) verifies Part ii) of Assumption 2,26 note that the first-order condition (17)
can be rewritten as Y (Y(w, θ); w, θ) ≡ 0 for all skill levels. Differentiating this equality with re-
spect to skill leads to: Yy (Y(w, θ); w, θ) Ẏ(w, θ)+Yw (Y(w, θ); w, θ) = 0. As Yw (Y(w, θ); w, θ) =
−Mw (C(w, θ), Y(w, θ); w, θ) which is positive from Assumption 1 and Ẏ(w, θ) > 0 from As-
sumption 3, then one must have Yy (Y(w, θ); w, θ) < 0, which is Part ii) of Assumption 2.

To show that T(·) verifies Part iii) of Assumption 2, we assume by contradiction that indi-
viduals of type (w∗, θ) are indifferent between earning income Y(w∗, θ) and earning an income
level denoted y′ ∈ Y. We show that in such a case, some individuals with skill w close to
w∗ are better of with the bundle (y′ − T(y′), y′) than with the bundle (C(w, θ), Y(w, θ)) de-
signed for them, a contradiction. For this purpose, we denote C (u, y; w, θ) the consumption

25We have here followed Hammond (1979) very closely.
26We are grateful to Kevin Spiritus for encouraging us to emphasize this result.
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an individual of type (w, θ) should get to enjoy utility u while earning income y. Function
C (·, y; w, θ) is the reciprocal of function U (·, y; w, θ). We get: Cu = 1/Uc, Cy = −Uy/Uc = M
and Cw = −Uw/Uc. Let us denote:

Q(w)
def≡ C

(
U(w, θ), y′; w, θ

)
− y′ + T(y′)

To be indifferent between earning income Y(w, θ) and income y′, individuals of type (w, θ) have
to receive after-tax income C (U(w, θ), y′; w, θ) when they earn income y′. Therefore, Q(w) is
a measure in monetary units of the difference in well-being for individuals of type (w, θ) be-
tween the bundle (C(w, θ), Y(w, θ)) designed for them (from which they obtain utility U(w, θ))
and the utility they would get by earning income y′ and consuming y′ − T(y′). We have by
assumption Q(w∗) = 0. We obtain:

Q′(w) =
V (U(w, θ), Y(w, θ), w, θ)− V (U(w, θ), y′, w, θ)

Uc (C (U(w, θ), Y(w, θ); w, θ), Y(w, θ); w, θ)

where V (u, y; w, θ)
def≡ Uw (C (u, y; w, θ), y; w, θ) describes how Uw varies with income y along

the indifference curve of individuals of type (w, θ) with utility u. We get that Vy = −Uc Mw
which is strictly positive from Assumption 1. Therefore:

• If y′ > Y(w∗, θ), then Q′(w∗) < 0, which implies that for some skills w > w∗ above w∗

and sufficiently close to w∗, Q(w) < 0, i.e. U(w, θ) < U (y′ − T(y′), y′; w, θ). Therefore,
individuals of type (w, θ) strictly prefers the bundle (y′− T(y′), y′) rather than the bundle
(C(w, θ), Y(w, θ) designed for them, a contradiction.

• If y′ < Y(w∗, θ), then Q′(w∗) > 0, which implies that for some skills w < w∗ below w∗

and sufficiently close to w∗, Q(w) < 0, i.e. U(w, θ) < U (y′ − T(y′), y′; w, θ). Therefore,
individuals of type (w, θ) strictly prefers the bundle (y′− T(y′), y′) rather than the bundle
(C(w, θ), Y(w, θ) designed for them, a contradiction.
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