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Abstract

It is often argued that inequality may worsen coordination failures as it exacerbates conflicts of
interests, making it difficult to achieve an efficient outcome. This paper shows that this needs
not to be always the case. In a context in which two interacting populations have conflicting
interests, we introduce ex-ante inequality, by making one population stronger than the other. This
reduces the cost of miscoordination for the weakest population, and at the same time it makes some
equilibria more equitable than others, thus more focal and attractive for inequality-averse players.
Hence, both social preferences and strategic risk considerations may ease coordination. We provide
experimental support for this hypothesis, by considering an extended two-population Hawk-Dove
game, where ex- ante inequality, number of pure-strategy equilibria, and cost of coordination vary
across treatments. We find that subjects coordinate more often on the efficient outcomes in the
treatment with ex-ante inequality.
Keywords: Asymmetric payoff matrix; Conditional cooperation; Equilibrium selection; Experi-
ment; Hawk-Dove game; Inequality aversion.
JEL Classification: C72; C91; D63; D74.

1 Introduction

Coordination failures (between countries, social/interest groups, or individuals) occur everywhere,

often leading to conflicts that might be very costly for involved parties.1 The roots of coordination

failures are very diverse and context-specific. This paper studies coordination failures in which a

trade-off emerges between equality and efficiency, as any stable agreement allocates resources unequally

among the conflicting parties. Such a framework characterizes several economically relevant situations

– such as trade wars, military battles, collective bargaining, and legal disputes – of which the Hawk-

Dove game is the prototypical example.

In this paper, a critical emphasis is placed on whether, before any actions, the two parties have

the same means – potentially leading to symmetric agreements – or if there is an initial imbalance.

In the latter case, when the strongest party prevails, the settlement heavily favors the winner while

disadvantaging the loser significantly. On the contrary, when the initially weaker party prevails, the

final agreement tends to be more equitable. A typical example of such an unbalanced conflict is the

*This paper benefited from comments received at the 2015 SONIC meeting at the University of Bologna, and at the
2017 SAET conference in Faro. Financial support from Torsten Söderberg Foundation (Grant E37/13) and from the
Italian Ministry of Research (SIR grant no. RBSI14I7C8) is gratefully acknowledged.

1Coordination failures may also have positive externalities, for example the difficulty to collude has a positive impact
on the competitive level of the market.
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salary negotiation between workers and employers; another is the negotiation of peace treaties between

victors and vanquished at war’s end. Similar situations arise in the field of industrial organization,

such as competition with product differentiation between an incumbent and a new entrant (Cabrales

et al., 2000).

The recent experimental literature on the Hawk-Dove game focused on the evolutionary dynamics

of inter- and intra-group interactions (Oprea et al., 2011; Benndorf et al., 2016, 2021). Typically, this

literature considers the symmetric version of the game, where the two pure-strategy equilibria are

ex-ante equally likely to emerge,2 and on the theoretical and empirical differences in the dynamics of

behavior in one- and two-population models.

Our focus here is instead on the impact that ex-ante inequality has on coordination. Inequality

is a pressing issue in the economic and political sphere. It is often argued that inequality, by being

an accelerator of tensions between groups, may worsen a conflictual situation, leading to coordination

failures.3 To explore whether the presence of inequality fosters or hinders coordination, we compare

a set-up in which the payoff matrix is symmetric (no ex-ante inequality) with one in which the two

conflicting players have different strengths. This links our paper to the recently expanding literature

that explores the impact of inequality on coordination in different game-theoretical setups (Tavoni

et al., 2011; Abbink et al., 2018; Camera et al., 2020; Feldhaus et al., 2020; Isoni et al., 2020). While

the results from previous papers indicate that inequality either hinders coordination on the efficient

equilibrium, or – at best – does not interfere with it, in our set-up inequality actually eases coordination

and promotes efficiency.

We consider an extended version of the HD game to account for the fact that people do not always

fight to death or fully accommodate; rather, they choose their action between these two extreme

options. Subjects can choose from a set of eleven possible values (labeled from 0 to 10). The structure

of the payoff matrix is such that an equitable and efficient allocation exists, but it is not sustainable in

equilibrium, so there is a trade-off between equality and efficiency. Indeed, all equilibria lead to unequal

payoffs between players but the degree of inequality as well as the number of pure-strategy equilibria

differ across treatments. In line with the recent literature, we consider a two-population model, which

is closer to the real-world environments we would like to mimic, and also allows for coordination on

the pure-strategy equilibria to emerge as an evolutionary stable outcome (Oprea et al., 2011).

Our design comprises three treatments. In the Baseline treatment, the game is perfectly symmet-

ric and there are three pure-strategy equilibria where one player receives thrice as much as the other

one, and three equilibria where the situation is reversed. In the Asymmetric treatment, players are

characterized by different “strengths”, and the payoff matrix is modified so that, for each combination

of choices, the strongest player earns more than in the Baseline, while the weakest player earns less.

Thus, the payoff matrix becomes asymmetric. The number of pure-strategy equilibria is still six, but

with a different payoffs distribution. In two of these equilibria, the strong player earns almost seven

times as much as the weak one, while in the other four pure-strategy equilibria, the weak player earns

almost twice as much as the strong one. The Restricted treatment is similar to Baseline but has

only two pure-strategy equilibria, and has a lower cost associated to miscoordination.

The literature on outcome-based inequality aversion (Fehr and Schmidt, 1999; Bolton and Ocken-

2The one exception we are aware of is the recent theoretical paper by Bilancini et al. (2021) which also considers the
case of asymmetric payoff matrices.

3One of the reasons often mentioned is that some individuals have some strong preferences for fairness and may
not accept to coordinate on an outcome considered as “unfair” (Bolton and Ockenfels, 2000; Fehr and Schmidt, 1999;
Charness and Rabin, 2002).
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fels, 2000; Charness and Rabin, 2002) would imply that – in the Asymmetric treatment – subjects

coordinate on the least unequal Nash equilibria. Furthermore, according to the focal point literature,

payoff equality is a crucial factor that drives focality. This suggests that players may be more likely

to coordinate towards a more equitable outcome (Isoni et al., 2014; Luhan et al., 2017). When this

focal outcome aligns with an equilibrium, such as in the Asymmetric treatment, tacit coordination

should be easier to achieve. By contrast, in the Baseline and Restricted treatments, although a

perfectly equitable and fully efficient outcome exists, it cannot be sustained in equilibrium. Hence,

payoff-focality here can impair coordination, rather than easing it. Strategic considerations can also

promote coordination on the most equitable equilibrium in the Asymmetric treatment: by playing

“dove” the strong players ensure a higher payoff than in the other treatments, which may induce them

to prefer this option to a more hawkish but riskier strategy. Both arguments lead us to hypothesize

coordination to be easier to achieve and sustain in the Asymmetric than in the Baseline treatment.

In the Restricted treatment, instead, the coordination issue may seem less severe compared to

the Baseline since we have only two – instead of six – pure-strategy equilibria. On the other hand,

this treatment also reduces the cost of miscoordination, because the Pareto-dominated (but perfectly

equitable) outcome where both players play “hawk” here is more profitable than in the Baseline.

Subjects who are averse to outcome-based inequality, thus, might have a stronger incentive to play

hawkish strategies in this treatment than in the Baseline. Strategic risk considerations also push in

the same direction: by making the hawkish strategies less risky, and on average more profitable, the

Restricted treatment reduces the strategic incentives to coordinate on the efficient, pure-strategy

equilibria.

Thus, with our experiment we explore three questions related to coordination failure and inequality:

(i) whether coordination on the efficient equilibrium is easier to achieve when the payoff matrix is

asymmetric; (ii) whether – in the Asymmetric treatment – players coordinate on the more equitable

equilibrium, and (iii) whether coordination on efficient equilibrium outcomes is easier when the cost

of miscoordination is higher, or when the number of pure-strategy equilibria is lower.

There are two main results. First, making the game asymmetric seems to simplify coordination:

subjects in the Asymmetric treatment are able to coordinate more often on pure-strategy NE, leading

to higher efficiency. In particular, they coordinate on the least inequitable among the equilibria.

To better understand the determinants of this result, we look at the individual behavior, which

differs across treatments. In the Baseline and Restricted treatments, players tend to be imperfect

conditional cooperators (Fischbacher et al., 2001), who play “dove” more often when they expect their

opponents to do the same. In the Asymmetric treatment, instead, the players tend to best respond

(play “dove” against “hawk” and vice versa), with the weak ones being more aggressive than the

strong ones, overall. Thus separation between “hawks” and “doves” emerges prominently only in the

Asymmetric treatment, where we observe specialization, but not in the other treatments. Our second

result is that restricting the number of (pure strategy) equilibria (in absence of ex-ante inequality)

does not seem to facilitate coordination. Comparing Baseline and Restricted treatments, we find

no differences in terms of aggregate efficiency or individual behavior.

Our paper proceeds as follows. Section 2 describes the game and introduces our theoretical hy-

potheses; Section 3 presents the experimental design and methodology; Section 4 illustrates the results

and Section 5 concludes.
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2 Set-up and hypotheses

We consider a generalized version of the Hawk-Dove game, which allows for asymmetric payoffs, and for

an expansion of the action set. In our setup, there are two players characterized by parameters s1 and

s2, where s1 ≥ s2 > 0, which we can interpret as their relative “strength.” Each player simultaneously

and independently chooses his action, ai ∈ [a, ā], i = 1, 2, where a and ā are exogenously determined

and equal for both players. A player i’s payoff is defined as:

πi(a; θ, s) =





ajsi if ai < aj

ai
si

si + sj
θ if ai = aj

ai(θ − sj) otherwise

(1)

where θ ∈ [s1, s1 + s2] parametrizes the size of the pie to be divided between the two players, and is

exogenously determined.4

For the sake of simplicity, in the experiment we use a discrete choice set C with a given and fixed

number n of elements: C = {a, a+ x, a+ 2x, . . . , ā}, where x = ā−a
n−1 . In what follows, we denote the

choice of player i by ci ∈ C.

2.1 Parameters and treatments

Our first treatment variable is the minimum admissible action a. By discretizing the choice set, we

can manipulate the minimum admissible action without changing the number of choices available to

subjects. This element is crucial to maintain the same game structure across treatments. We consider

two alternatives:

(i) a baseline choice set C, and

(ii) a restricted choice set C ′, where a′ > a.

The second treatment variable is the degree of asymmetry between players. We consider two scenarios:

in the symmetric case, players have the same strength s1 = s2 = s; in the asymmetric one s1 > s2.

In total, we consider three treatments:

� Baseline: with baseline set of actions, and symmetric strengths;

� Asymmetric: with baseline set of actions, and asymmetric strengths;

� Restricted: with restricted set of actions, and symmetric strengths.

Parameters. In the experiment, we set ā = 10, θ = 10, and n = 11, that is: in all treatments

players can select their choice from a set C of 11 possible values. In the Baseline and Restricted

treatments, s1 = s2 = 7.6, while in the Asymmetric treatment s1 = 8.7 and s2 = 6.5. In the

Baseline and Asymmetric treatments, a = 1, while in the Restricted treatment a′ = 3. In all

treatments, choices ci ∈ C are labeled from 0 to 10, and payoffs are rounded to integer numbers. The

resulting payoff matrices are reported in Table 1.

4In our experiment, θ does not change across treatments.
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0 (hawk) 1 2 3 4 5 6 7 8 9 10 (dove)
0 (hawk) 5; 5 14; 5 21; 7 28; 9 35; 11 42; 13 49; 15 55; 18 62; 20 69; 22 76; 24

1 5; 14 10; 10 21; 7 28; 9 35; 11 42; 13 49; 15 55; 18 62; 20 69; 22 76; 24
2 7; 21 7; 21 14; 14 28; 9 35; 11 42; 13 49; 15 55; 18 62; 20 69; 22 76; 24
3 9; 28 9; 28 9; 28 19; 19 35; 11 42; 13 49; 15 55; 18 62; 20 69; 22 76; 24
4 11; 35 11; 35 11; 35 11; 35 23; 23 42; 13 49; 15 55; 18 62; 20 69; 22 76; 24
5 13; 42 13; 42 13; 42 13; 42 13; 42 28; 28 49; 15 55; 18 62; 20 69; 22 76; 24
6 15; 49 15; 49 15; 49 15; 49 15; 49 15; 49 32; 32 55; 18 62; 20 69; 22 76; 24
7 18; 55 18; 55 18; 55 18; 55 18; 55 18; 55 18; 55 37; 37 62; 20 69; 22 76; 24
8 20; 62 20; 62 20; 62 20; 62 20; 62 20; 62 20; 62 20; 62 41; 41 69; 22 76; 24
9 22; 69 22; 69 22; 69 22; 69 22; 69 22; 69 22; 69 22; 69 22; 69 46; 46 76; 24

10 (dove) 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 50; 50

(a) Baseline

0 (hawk) 1 2 3 4 5 6 7 8 9 10 (dove)
0 (hawk) 15; 15 28; 9 33; 11 39; 12 44; 14 49; 16 55; 17 60; 19 65; 21 71; 22 76; 24

1 9; 28 19; 19 33; 11 39; 12 44; 14 49; 16 55; 17 60; 19 65; 21 71; 22 76; 24
2 11; 33 11; 33 22; 22 39; 12 44; 14 49; 16 55; 17 60; 19 65; 21 71; 22 76; 24
3 12; 39 12; 39 12; 39 26; 26 44; 14 49; 16 55; 17 60; 19 65; 21 71; 22 76; 24
4 14; 44 14; 44 14; 44 14; 44 29; 29 49; 16 55; 17 60; 19 65; 21 71; 22 76; 24
5 16; 49 16; 49 16; 49 16; 49 16; 49 33; 33 55; 17 60; 19 65; 21 71; 22 76; 24
6 17; 55 17; 55 17; 55 17; 55 17; 55 17; 55 36; 36 60; 19 65; 21 71; 22 76; 24
7 19; 60 19; 60 19; 60 19; 60 19; 60 19; 60 19; 60 40; 40 65; 21 71; 22 76; 24
8 21; 65 21; 65 21; 65 21; 65 21; 65 21; 65 21; 65 21; 65 43; 43 71; 22 76; 24
9 22; 71 22; 71 22; 71 22; 71 22; 71 22; 71 22; 71 22; 71 22; 71 47; 47 76; 24

10 (dove) 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 24; 76 50; 50

(b) Restricted

0 (hawk) 1 2 3 4 5 6 7 8 9 10 (dove)
0 (hawk) 6; 4 17; 2 24; 4 32; 5 40; 6 48; 7 56; 8 64; 9 71; 11 79; 12 87; 13

1 7; 12 11; 8 24; 4 32; 5 40; 6 48; 7 56; 8 64; 9 71; 11 79; 12 87; 13
2 10; 18 10; 18 16; 12 32; 5 40; 6 48; 7 56; 8 64; 9 71; 11 79; 12 87; 13
3 13; 24 13; 24 13; 24 21; 16 40; 6 48; 7 56; 8 64; 9 71; 11 79; 12 87; 13
4 16; 30 16; 30 16; 30 16; 30 26; 20 48; 7 56; 8 64; 9 71; 11 79; 12 87; 13
5 19; 36 19; 36 19; 36 19; 36 19; 36 31; 24 56; 8 64; 9 71; 11 79; 12 87; 13
6 22; 42 22; 42 22; 42 22; 42 22; 42 22; 42 37; 27 64; 9 71; 11 79; 12 87; 13
7 26; 47 26; 47 26; 47 26; 47 26; 47 26; 47 26; 47 42; 31 71; 11 79; 12 87; 13
8 29; 53 29; 53 29; 53 29; 53 29; 53 29; 53 29; 53 29; 53 47; 35 79; 12 87; 13
9 32; 59 32; 59 32; 59 32; 59 32; 59 32; 59 32; 59 32; 59 32; 59 52; 39 87; 13

10 (dove) 35; 65 35; 65 35; 65 35; 65 35; 65 35; 65 35; 65 35; 65 35; 65 35; 65 57; 43

(c) Asymmetric

Table 1: Payoff tables
Notes: The pure-strategy equilibrium outcomes are reported in bold, in the shaded cells. Player 1 is the row player,
and Player 2 is the column player.
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2.2 Testable hypotheses

The game described above has multiplicity of pure-strategy asymmetric equilibria, in which player 1

plays as a “dove” and chooses c1 = 10 and player 2 plays more hawkishly, choosing c2 < c1, or vice-

versa, as illustrated in the shaded cells of Table 1. All these equilibria yield the maximum possible

social surplus (100).

In the Baseline treatment, we have two sets of three pure-strategy equilibria, which all yield 24

points to the “dove” player and 76 to the “hawk”, hence a serious coordination issue emerges. In

the Asymmetric treatment, we also have two sets of equilibria. Here, however, one set includes four

equilibria in which the strong player, characterized by s1 = 8.7, plays as a dove choosing c1 = 10 and

earning 35 while the weak player – with s2 = 6.5 – plays as a hawk and selects a low choice c2 ∈ [0, 3],

thus earning 65 points. The other set contains two equilibria in which the payoff imbalance is reversed:

the strong player chooses c1 ∈ [0, 1] and earns 87, while the weak player chooses c2 = 10 and earns 13

points. The two sets of equilibria are equally efficient, but the distribution of the surplus between the

two players in the first set of equilibria is much less unequal than in the second set.

Based on the literature on outcome-based inequality aversion (Fehr and Schmidt, 1999; Bolton and

Ockenfels, 2000; Charness and Rabin, 2002), and on focal points (Isoni et al., 2014; Luhan et al., 2017),

we expect that subjects in the Asymmetric treatment coordinate on the least unequal outcome. In

other words, we hypothesize that inequality aversion and payoff-focality will work as coordination

devices, preventing miscoordination and thus promoting efficiency at the social level. Coordination on

the least unequal equilibrium, however, might also be driven by strategic considerations: by choosing

10 (i.e. “dove”) the strong players ensure a payoff of at least 35, which may induce them to prefer

this option to a more hawkish but riskier strategy.5

Hypothesis 1 (a) Coordination on efficient equilibrium outcomes is more frequent in the Asymmet-

ric treatment than in the Baseline treatment. (b) In the Asymmetric treatment, subjects coordinate

on the least unequal pure-strategy equilibrium.

In the Restricted treatment, the coordination issue may seem less severe compared to the

Baseline since we have only two – instead of six – pure-strategy equilibria, which however yield

the same outcome as in the Baseline: one player sets ci = 0 and earns 76, and the other chooses

cj = 10 and earns 24. On the other hand, by increasing a from 1 to 3, we also limit the cost of

miscoordination, and we make the Pareto-dominated (but perfectly equitable) outcome where both

players play “hawk” more profitable, as compared to the Baseline (both players earn 15, rather

than 5). Being comparatively more profitable, all other symmetric outcomes also become more focal.

Subjects who are averse to outcome-based inequality, thus, might have a stronger incentive to play

hawkish strategies in this treatment than in the Baseline, because they are sure to earn at least 15,

if they do so.6 Strategic risk considerations also push in the same direction: by making the hawkish

strategies less risky, and on average more profitable, the Restricted treatment reduces the strategic

5This intuition is supported by a more formal analysis, carried out by Blázquez and Koptyug (2022), who analyze this
game through the lenses of the concepts of risk-dominance proposed by Harsanyi and Selten (1992), the robustness to
strategic uncertainty proposed by Andersson et al. (2014), and the quantal response equilibrium proposed by McKelvey
and Palfrey (1995), to investigate whether these approaches provide a solution to the issue of equilibrium selection.
Blázquez and Koptyug (2022)’s results indicate that both the tracing procedure and QRE predict convergence to the
least unequal equilibrium outcome.

6The difference between our Baseline and Restricted treatments resembles in some sense the difference between
the two dynamic games with complete information discussed by Goeree and Holt (2001), who show that a threat is more
likely to be implemented when it is less costly.

6



incentives to coordinate on the efficient, pure-strategy equilibria. Our second hypothesis can thus be

summarized as follows:

Hypothesis 2 Coordination on the pure-strategy equilibria is less frequent in the Restricted than

in the Baseline treatment.

3 Experimental design

Framing. We adopt a neutral framing. Player 1 and player 2 are labeled “Red” and “Blue”, respec-

tively. In the Asymmetric treatment, the Red players are the “strong” ones, while the Blue players

are the “weak” ones. Subjects have to make their choice by selecting one of the rows of the payoff

matrix, which are displayed on their decision screen (Figure 1).

Note: in the bottom-right panel of the figure, the graph displays the choice made by the two players in the previous

periods: it shows that the Blue player started playing “dove” in period 1, while the Red player started with “hawk,” but

then in the following periods the distance between their choices decreased.

Figure 1: Screenshot of the decision screen of a Red player, for the Baseline treatment.

Number of repetitions. Each experimental session includes 5 cycles of 15 periods each. In each

cycle, subjects interact in “economies” comprising 4 Red and 4 Blue players each, with random

matching across periods within an economy. Roles remain fixed within each cycle, but change from

cycle to cycle in a predetermined way, so that some participants are Red in three cycles, and Blue in

two cycles, and other participants are Red in two cycles and Blue in three cycles. At the beginning of

each cycle, new economies are formed, so that no two subjects interact with each other for more than

one cycle, along the lines of what was done by Camera and Casari (2014) and Bigoni et al. (2020).

Feedback at the end of each period. At the end of each period, subjects receive information

on the choices made by both players, and their own profit. We do not inform subjects of the other
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player’s profit, which however can be inferred by the payoff matrix. Results from previous periods of

the current cycle are always displayed on the subjects’ screens by means of two graphs, presenting the

choices and the profits, respectively (Figure 2).

Figure 2: Feedback screen at the end of each period (for a Red player).

Expectations on others’ behavior. At the beginning of each cycle we ask subjects to guess the

average choice of the other participants who had a role different from their own, in the first period

of the cycle which is about to start. The procedure is incentivized by means of a quadratic scoring

rule: subjects earn 250 points (e5) for a correct guess, 240 points if their guess differ from the correct

answer by at most one unit, 210 if the difference is of at most 2 units, and so forth and so on (see

Instructions in Appendix A). To minimize the scope for strategic hedging (Blanco et al., 2010), we ask

subjects to guess the choice of subjects who are not part of their economy. Furthermore, we randomly

select one of the five cycles for the payment of the guess, and another, different cycle for the payment

of the profits realized in the main game.

Procedures. We ran 3 sessions per treatment, with 24 subjects per session, between April 17 and

May 3, 2016. To test the robustness of our results, we replicated the experiment running 9 more

sessions between September 4 and September 13, 2023. Considering all treatments, the experiment

involved 432 subjects randomly recruited via Orsee (Greiner, 2015) from a pool of more than 4000

subjects who normally participate in experiments at the BLESS laboratory in Bologna (where all

sessions took place). The experiment was programmed and conducted in English with an ad-hoc

web-based platform. Instructions (a copy is in Appendix A) were read aloud at the start of the

experiment and left on the subjects’ desks. To verify subjects’ full understanding of the instructions,

we administered two “understanding checks” (one in the middle of the instructions, one at the end),

asking subjects to answer a set of computerized control questions. The experimenter did not proceed

to the next part of the instructions until all subjects had completed their set of questions. Control

questions were incentivized: subjects earned 50 cents for each question they answered correctly. There
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were 10 questions in total, hence subjects could earn up to e5 for this task.7 At the end of the session,

subjects were asked to fill out a questionnaire meant to collect information on their socio-demographic

characteristics, their preferences and their educational background (Appendix B).8 Experimental

points were translated into Euro at a rate of e1 per 50 points. Average earnings were e19,4 per subject

(min = 7.5,max = 28.5), and sessions lasted on average less than two hours, including instructions

and payments.

4 Results

In this section, we first present and discuss aggregate behavior and the main treatment effects. We

then zoom in on individual behavior to get a better understanding of the determinants of the observed

differences across treatments.

4.1 Aggregate behavior

Figure 3: Frequency distribution of choices, by role.

In all treatments, subjects played the most extreme choices – 0 (i.e. “hawk”) and 10 (i.e. “dove”) –

in the majority of interactions. In Baseline and Restricted the distribution of choices was approx-

imately the same for Red and Blue players, and the modal choice was 0 (Figure 3). In Asymmetric,

instead, the modal choice for the Red (i.e. “strong”) players was 10. The modal choice for the Blue

players was 0 as in the other treatments, but here 10 was not chosen more frequently than the other

positive numbers. This suggests that coordination on one of the efficient pure-strategy equilibrium

outcomes was more frequent in this treatment than in the symmetric ones. This is indeed confirmed by

Figure 4, which illustrates the frequency of coordination on pure-strategy Nash-equilibrium outcomes

across treatments, by period, across cycles. This frequency increases across cycles in all treatments, but

7Subjects earned on average e4.42 for this task; 94.0% of them made at most 3 mistakes, 69,9.0% of them made at
most 1. In the post-experimental questionnaire (available in the appendix), when asked whether “the instructions you
have received today’s activities (are) clear,” almost all subjects answered positively: 70% declared that the instructions
were “very clear” and 28% reported that they were “clear enough”.

8Appendix C reports a balance check of the distribution of these characteristics across treatments.
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the increase is more pronounced in Asymmetric, where a positive trend within-cycle also emerges.9

Figure 4: Frequency of coordination on pure-strategy NE outcomes.

To assess the statistical significance of this difference, we run a linear regression where the depen-

dent variable is the frequency ϕtkz of choices that are part of a pure-strategy Nash equilibrium, in

period t of cycle k of session z. Among the regressors, we include two dummies for the Restricted

and Asymmetric treatments, and their interactions with the variables Period and Cycle. Results

are presented in Table 2 (model 1). The regression confirms that – despite being initially lower – the

estimated prevalence of coordination on NE-outcomes in the Asymmetric treatment increases with

experience across periods and cycles, and at the end of cycle 5 it reaches 45.8%, which is almost twice

as large as in the Baseline (24.2%) and Restricted (24.5%).

The increased ability to coordinate on pure-strategy Nash Equilibrium outcomes also has an impact

on the realized efficiency, which we measure as the sum of the two players’ payoffs, normalized by the

difference between the maximum and minimum possible joint payoff.10 Figure 5 shows that efficiency

tends to decrease over periods in Baseline and Restricted while it remains stable in Asymmetric,

where it also increases over the last three cycles. Results from a linear regression (Model 2 in Table 2)

provide additional support to this result, showing that efficiency tends to decrease across periods and

cycles in the Baseline, while the trend is reversed in the Asymmetric treatment. The downward

trend across cycles also disappears in Restricted, where the negative trend across periods still

persists.

Figure 3 suggests that – in the Asymmetric treatment – subjects specialize on different behaviors

depending on their strength: on average, Red (strong) players play “dove” much more often than Blue

players, and also than Red players in the other treatments. To investigate this aspect more closely,

we follow the approach adopted by Oprea et al. (2011) and study the evolution of the average play of

the Red and Blue players across periods and cycles. We identify as “hawks” the group of four (either

red or blue) players that adopt the most aggressive behavior, in each economy. We identify as “doves”

the other four players. Figure 6 displays the average choice made by the hawks and the doves, in each

period. It confirms that in the Asymmetric treatment the separation between hawks and doves is

much stronger than in the other two treatments, and increases with experience. Our data also confirm

9The prevalence of the equitable and efficient 10-10 outcome instead is very low and does not increase with experience.
10Formally, we define efficiency as:

∑
i πi−ΠT
Π̄−ΠT

, where πi denotes the payoff of player i, T identifies the treatment,

Π̄ = 100 is the maximum surplus that can be achieved by a pair of players in a period, and ΠT is the minimum surplus
in a pair, which is equal to 10 in treatments Baseline and Asymmetric, and equal to 30 in Restricted. Coordination
on pure-strategy Nash-equilibria does not map one-to-one to efficiency, as there are efficient outcomes that are not Nash
equilibria, the most prominent being the case where both players play “dove”.
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Model 1 Model 2 Model 3 Model 4
Coordination on NE Efficiency Separation Inequality

Period 0.002 -0.006*** 0.027 0.003***
(0.002) (0.002) (0.023) (0.001)

Cycle 0.017*** -0.012** 0.130** 0.006**
(0.004) (0.004) (0.056) (0.002)

Restricted -0.011 -0.096** 0.416 -0.010
(0.033) (0.035) (0.449) (0.014)

Restricted × Period 0.001 -0.001 -0.039 -0.002**
(0.002) (0.002) (0.027) (0.001)

Restricted × Cycle 0.001 0.022** -0.033 -0.008**
(0.006) (0.009) (0.075) (0.003)

Asymmetric -0.101** -0.136*** 0.285 0.036
(0.040) (0.039) (0.589) (0.022)

Asymmetric × Period 0.009** 0.007** 0.022 -0.003**
(0.004) (0.003) (0.034) (0.001)

Asymmetric × Cycle 0.038*** 0.026*** 0.505*** -0.013**
(0.007) (0.008) (0.097) (0.005)

Constant 0.131*** 0.769*** 0.689 0.318***
(0.030) (0.023) (0.404) (0.012)

N 1350 1350 1350 1350
R-squared 0.237 0.083 0.353 0.207

Predicted values at t=15 and k=5, and Wald tests on their differences.

Baseline 0.242 0.615 1.751 0.392
Restricted 0.245 0.615 1.414 0.314
Asymmetric 0.458 0.723 4.897 0.323
p-value Base. vs. Restr. 0.921 0.995 0.358 0.000
p-value Base. vs. Asym. 0.000 0.013 0.000 0.000

Notes: outcomes averaged at the session/period level. Standard errors clustered at the session level.

Table 2: Linear regressions on treatment effects. Symbols ***, **, and * indicate significance at the
1%, 5% and 10% level, respectively.

Figure 5: Average realized efficiency.
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that in the Asymmetric treatment, the Red (strong) players take the role of doves in 96.7% of the

supergames, while this percentage drops to 47.8% in the Baseline and 42.9% in the Restricted

treatment.11

To dig deeper into this difference across treatments, we ran a linear regression where the dependent

variable is the difference between the average choice taken by the hawks and the doves, in each period,

and regressors include the treatment dummies and their interactions with the variables Cycle and

Period. Results are reported in Model 3 of Table 2, and confirm that a net separation between hawks

and doves emerges only in the Asymmetric treatment, where at the end of cycle 5 the average

difference between the choices of hawks and doves is 4.897, which is significantly higher than in the

Baseline (1.751, p-value <0.001).

Figure 6: Average choice played by the most (“H”) and by the least (“D”) hawkish group of each
economy.

Our results thus confirm Hypothesis 1:

Result 1 (a) Coordination occurs more frequently in the Asymmetric treatment than in the Base-

line treatment. (b) In the Asymmetric treatment, subjects coordinate on the least unequal pure-

strategy equilibrium.

Hypothesis 2 instead does not find support in our data.

Result 2 Coordination occurs as frequently in the Restricted as in the Baseline treatment.

To check whether the separation of hawks from doves we observe in the Asymmetric treatment

results in an increase of the level of realized inequality in payoffs, we measure the Gini coefficient

at the economy-period level. Results are displayed in Figure 7, which shows that, if anything, ex-

post inequality seems to be lower in the Asymmetric than in the Baseline. Results from a linear

regression (Model 4 in Table 2) suggest that the treatment differences in terms of inequality are small: a

significant increasing trend across periods and across cycles emerges in the Baseline treatment, but it

is reversed both inRestricted, where inequality in payoffs is lower by design (the minimum attainable

payoff is substantially higher than in the Baseline), and in Asymmetric. As a consequence, in the

long run the estimated Gini coefficient becomes significantly lower in Asymmetric (32.3%) and in

Restricted (31.4%) than in the Baseline treatment (39.2%).

11Note that there is a “restart effect” in all treatments, where subjects consistently opt for higher numbers at the
beginning of a cycle. The only exception is represented by the “Hawks” in the Asymmetric treatment, who consistently
choose lower numbers at the beginning of a new cycle, when they are grouped with a new set of opponents.
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Figure 7: Average Gini coefficient.

4.2 Initial choices and expectations

The previous section reports evidence that the Asymmetric treatment induced substantial behavioral

differences, as compared to the Baseline. In particular, the asymmetry in the payoff matrix affected

the choices taken by subjects assigned the role of Red players, who progressively adopted a more

dovish attitude, leading to better coordination and more efficient outcomes. Here, we explore whether

this change in behavior is immediately induced by the different setup and appears already in the first

period of play.

If payoff-focality (Luhan et al., 2017) drives subjects’ initial choices, the choice of 10 in the very

first period should be more frequent in Baseline and Restricted than in Asymmetric, where the

highly-focal 10-10 outcome is removed. In line with this intuition, we observe that the percentage of

subjects choosing 10 in the first period of the first cycle is higher in the Baseline and Restricted

treatments than under Asymmetric, but this difference is only driven by the subjects in the role

of Blue players (Table 3). In the Asymmetric treatment, the fraction of players choosing 10 is

29.2% among the Red players, and it drops to 13.9% among the Blue players (p-value: 0.0257, Chi-

squared test, N1=N2=72). The fraction of Blue players choosing 10 is also significantly lower than in

the Baseline (p-value: 0.0675, Chi-squared test, N1=N2=72) and in Restricted (p-value: 0.0921,

Chi-squared test, N1=N2=72).

Table 3 also indicates that, in Baseline and Restricted, subjects choosing 10 are more inclined

to believe that participants in the opposite role would opt for a high number, as compared to subjects

who chose lower numbers as their initial action. This, however, does not hold in the Asymmetric

treatment. More in general, we observe that the correlation between expectations and actions in period

1 is positive and significant in all treatments but Asymmetric. Taken together, these results indicate

that in Baseline and Restricted the 10-10 outcome, which is at the same time maximally efficient

and equitable, initially represents an important attractor: between 1/3 and 1/4 of the subjects chose

10, and most of them believed the opponent would also choose a large number. This is in line with the

theories of team reasoning, usually deployed to explain focal points, which may suggest that players

would try to achieve this solution when first faced with the game (Bardsley et al., 2010). However,

since in these two games the payoff-focal outcome is not an equilibrium, coordination on 10-10 is hard

to achieve and sustain, and subjects progressively become more aggressive (Figure 6) and efficiency

decreases (Figure 5).
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Red Blue
< 10 10 < 10 10

Restricted
expectation 5.1 <∗∗ 6.0 5.4 <∗∗∗ 7.5

(73.6%) (26.4%) (75.0%) (25.0%)
corr. 0.279 ∗∗ 0.560 ∗∗∗

Baseline
expectation 5.8 <∗∗∗ 7.5 5.4 <∗∗ 6.5

(69.4%) (30.6%) (73.6%) (26.4%)
corr. 0.398 ∗∗∗ 0.327 ∗∗∗

Asymmetric
expectation 5.1 ≈ 5.5 6.3 ≈ 5.9

(70.8%) (29.2%) (86.1%) (13.9%)
corr. 0.115 0.070

Notes: The table reports the average expectation of participants in period 1 of cycle 1 and cycle 5, conditional on

their role. It compares the average expectation of the subjects who chose 10 with those who chose a lower number. In

parentheses, it reports the fraction over the total number of subjects by role and treatment. Symbols <∗∗∗ and <∗∗

indicate significance at the 1% and 5%, respectively, according to pairwise Mann-Whitney-Wilcoxon tests with a total of

72 observations, per role, per treatment. In italics, we report the correlation between actions and expectations in period

1, by role. Symbols *** and ** indicate significance at the 1% and 5% level, respectively.

Table 3: Average expectations in period 1.

By contrast, in the Asymmetric treatment payoff-equality can make one of the two sets of pure-

strategy equilibria more focal than the other. Here, we observe that even before having any experience

with the game, this outcome becomes an attractor, at least for the Blue players. Subjects in the role of

Blue adopt a more aggressive behavior, as compared to the other two treatments: while in Baseline

andRestricted players display a conditionally cooperative attitude – that is, they play more dovishly

when they expect the opponent to do the same in an attempt to coordinate on a mutually beneficial and

equitable outcome – in the Asymmetric treatment the weak (Blue) players tend to best respond, and

become more aggressive the less aggressive the Red players are. Coordination on the least inequitable

equilibrium increases with experience (Figure 6), as it takes time for subjects in the role of Red

players to adjust their behavior. To conclude, our results suggest that coordination becomes more

challenging in contexts characterized by high payoff-asymmetries, particularly if a conflict emerges

between payoff-focality and equilibrium considerations. This is, to some extent, in line with previous

findings by Crawford et al. (2008), Isoni et al. (2014), and Rojo Arjona et al. (2022), albeit in a

markedly different set-up.

5 Conclusions

This paper presents an experiment on a two-population Hawk-Dove game, in which we vary the degree

of asymmetry between players, the number of pure-strategy equilibria, and the cost of miscoordination.

Our study contributes to two main strands of literature: first, we relate to the literature on

inequality and coordination in experimental games, which so far has never explored this issue within

the context of the Hawk-Dove game. This is a framework in which agents face a coordination game with

a strong conflict of interest, and captures the strategic incentives characterizing many economically

relevant relations. As such, it is quite different from other frameworks already analyzed within this

line of research, such as the threshold public good game, the minimum effort game and the indefinitely
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repeated helping game, which all allow for efficient and equitable cooperative equilibrium outcomes.

Second, we expand the literature on the Hawk-Dove game, as – to our knowledge – we are the first to

experimentally study the impact on coordination of introducing asymmetry in the payoff matrix. We

also consider an expanded payoff matrix, which clearly complicates the game-theoretical analysis, but

also makes the game more realistic, as in many situations people do not simply face a binary choice

between fighting to death and accommodating completely, but also have more nuanced options. This

expansion also allows us to study whether coordination becomes more difficult to achieve when we

vary the number of pure-strategy equilibria, and the cost of miscoordination.

Our results indicate that making the game asymmetric seems to simplify coordination: populations

characterized by ex-ante unequal strengths coordinate more often on the least inequitable pure-strategy

Nash equilibria, leading to higher efficiency. Instead, with a symmetric payoff matrix, we observe no

differences in terms of efficiency or individual strategies when we vary the number of pure-strategy

equilibria and the cost of miscoordination.

Our main result on inequality and coordination suggests that, if one of the two conflicting popu-

lations is ex-ante disadvantaged to the point that for them the cost of miscoordination is much lower

relative to the other population, members of this population can afford to be more aggressive forc-

ing the others to accommodate. This eventually drives society to coordinate on the least unequal

equilibrium outcome, which increases overall efficiency. While of course our result is limited to the

artificially simple set-up implemented in our experiment, it would be interesting to study whether the

same dynamics would emerge in other, more realistic, frameworks. We leave this for future research.
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Appendix A Experimental Instructions

Note: this section reports the instructions for the Baseline treatment. Instructions for the other

treatments only differ in terms of the payoff matrix and the numbers reported in the examples.

Instructions

Welcome to this study on economic decision-making.

These instructions are a detailed description of the procedures we will follow. In this study, you will

earn an amount of money, which depends on how well you understand these instructions, and on the

choices you and the other participants will take.

During the experiment you are not allowed to communicate with the other participants. We also ask

you to switch off your mobile phone now. If you have a question at any time, please raise your hand

and remain seated: someone will come to your desk to answer it.

As we proceed with the instructions, you will be asked to answer ten questions designed to verify your

understanding of the instructions. You will receive e0.50 for each question you answer correctly. So

you can earn up to e5 if you answer all questions correctly.

Overview of the experiment

The study is divided into 5 cycles. Each cycle will last exactly for 15 periods.

There are 24 participants. At the start of each cycle, a computer program will form groups of 8

participants. In each group, 4 participants will be red, and 4 will be blue. In the first period of cycle

1 you will be randomly assigned a color, either red or blue. Then your color remains the same for

the whole cycle. Afterwards, your color may change from cycle to cycle, but will always remain

the same within a cycle. If in period 1 of Cycle 1 you are blue, then you will be blue in all periods

of Cycle 1. At the beginning of Cycle 2, you will be assigned a new color, which may be either blue

or red; then you will keep the same color in all periods of Cycle 2. And so forth and so on. So, for

example, you could be blue in all periods of Cycle 1, red in all periods of Cycles 2 and 3, and blue

again in all periods of Cycles 4 and 5.
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In each period of the cycle you will be paired with someone in your group to interact with him or

her. We will call this person your “match”. Your match is a random person from your group.

In each pair, one person will be red and the other blue. If you are red, your match will be blue and

vice versa. Your match will always remain anonymous. Hence, you will not know if you repeatedly

interact with the same participant.

Groups change in each cycle so that you cannot interact with anyone for more than one cycle.

Understanding check 1

Before we proceed, please answer the questions that will appear now on your screen. Remember that

you earn e0.50 for each question you answer correctly.

How you earn points in a period

You will earn points that depend on your choices and the choices of your match. Points will be

converted into euros at the end of the session in a manner that we explain later. Both you and your

match will have to choose an integer number between 0 and 10. These choices determine your profit

and the profit of your match, as displayed in the following table.
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In the table, the numbers in red represent the profits of the red person, and the numbers in blue

represent the profits of the blue person. To read the profits corresponding to a specific pair of choices,

you should

� find the row in the table that corresponds to the choice of the red person;

� move to the right until you find the cell where this row crosses the column corresponding to the

choice of the blue person.

Consider the following examples. If you are red and you choose 6, while your blue match chooses 3

� your profit is 15;

� the profit of your blue match is 49.

If instead you are blue and you choose 8, while your red match chooses 4

� the profit of your red match is 62;

� your profit is 20.

Understanding check 2

Before we proceed, please answer the questions that will appear now on your screen. Remember that

you earn e0.50 for each question you answer correctly.

Timeline of a period

Each period has the following timeline:

Step 1: You are randomly paired with another participant in your group.

In each period, half of the members of your group are red and the others blue.

Your match has always a color different than yours. Your match changes from period to period

with a probability equal to 3 out of 4 (75%) because your match can be any of the 4 members

of your group who have a color different than yours. You will never know whom you meet, and

your match will not be able to identify you, either.

Step 2: You and your match choose a number between 0 and 10.

To make a choice, click on the row corresponding to your preferred option. The line of the table

corresponding to your choice will be highlighted in yellow (see the figure below). To submit your

choice, click the “Confirm” button.

You cannot observe the number chosen by your match before making your choice. Similarly,

your match cannot observe the number you chose, before making his choice.

You can review results of past periods of the cycle in the two graphs in the right-hand part

of the screen. The graph at the top displays your profits in the past periods, while the graph

at the bottom represents your choices, and the choices of your match. At the top of the graphs,

you can also read your accumulated profit in the current cycle.
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Step 3: You observe the outcome.

The outcome in your pair for the period will be displayed after you and your match make a

choice. You will see your choice, the choice of your match and your profit in points (see the

figure below).

Results from past periods will again be visible on the right of the screen.

End of the cycle and beginning of a new cycle

Each cycle lasts for 15 periods. Then a new cycle begins, until the end of cycle 5.

At the beginning of each cycle:

� new groups of eight participants are formed, so that you will never interact with the same

participant for more than one cycle;
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� you will see your color;

� you will be asked to guess the average number that the other groups’ members, who have a

color different than yours, will choose in the first period of the cycle which is about to start.

– If you are red, you will have to guess the average number chosen by the participants who

are blue, and who do not belong to your group.

– If you are blue, you will have to guess the average number chosen by the participants who

are red, and who do not belong to your group.

Payments

At the end of today’s study, one of the five cycles will be randomly selected to determine your payment.

The accumulated profit you have earned in that Cycle will be converted into Euros: 1 point is worth

2 cents (e0.02).

A second cycle will be selected, among the remaining four, to reward your guess on the others’

choices. Your earnings (in points) for this Cycle will depend on the guess you made on the other

participants’ choice, at the beginning of that Cycle. The closer is your guess to the actual value of

the average number chosen by the other participants, the higher your earnings, as displayed in the

following table.

Difference between your guess and the actual average Your earnings in points

No difference (exact guess) 250

The difference is larger than 0 and at most 1 240

The difference is larger than 1 and at most 2 210

The difference is larger than 2 and at most 3 160

The difference is larger than 3 and at most 4 90

The difference is larger than 4 0

Final reminders

� The session is divided into 5 cycles; each cycle has 15 periods.

� In each period

– you meet an anonymous match, who changes from period to period with 75% probability;

– you must choose an integer number between 0 and 10;

– you earn points depending on your choice and on the choice of your match, as displayed

in the profit table.

� You cannot interact with anyone for more than one cycle.

� At the beginning of each cycle, you will be asked to guess the average number that the other

groups’ members, who have a color different than yours, will choose in the first period of the

cycle which is about to start.

� At the end of the study,

– one cycle will be randomly selected to determine your payment;

– another cycle will be randomly selected to reward your guess on the others’ choices.

Understanding check 3

Before we start, please answer the questions that will appear now on your screen. Remember that you

earn e0.50 for each question you answer correctly.
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Appendix B Post-experimental questionnaire

We kindly ask you to complete this questionnaire. The answers you give will not affect in any way

your earnings. Some of these questions refer to personal information, which will help us in this study.

Your identity will not be revealed under any circumstances in the presentation of the results.

Please answer carefully. Once an answer is given, you can no longer change it. Press OK to begin.

Thank you.

1. Were the instructions you have received for today’s activities clear?

(1) No, not at all (2) No, not so much (3) Yes, enough (4) Yes, very much

2. Gender (press the corresponding button)

(1) Male (2) Female

3. Age (please, give your answer using the slider below and press ok to confirm)

4. Education background

(1) Middle high school (2) High school (3) Bachelor degree (4) Master degree (5) Ph.D. or postgraduate

degree (6) Other

5. Occupation

(1) Student (2) Self-employed worker (3) Employee (4) Retired (5) Jobless (6) Others

5.1 Field of studies (this question is accessed only if the subject gives answer (1) to question 5)

(1) Social sciences (2) Mathematical, Physical and Natural sciences (3) Engineering and Architecture

(4) Medicine (5) Literature and Philosophy (6) Others

6. Have you attended courses in Economics?

(1) Yes (2) No

7. Have you attended courses in Statistics?

(1) Yes (2) No

8. Have you attended courses in Game Theory?

(1) Yes (2) No

9. Have you previously participated as a volunteer in other researches?

(choose one or more answers)

(1) Yes, in the field of economics

(2) Yes, in the field of psychology

(3) Yes, in the field of medicine or biology

(4) No

10. Generally speaking, would you say that most people can be trusted or that you can’t be too

careful in dealing with people?

(1) Most people can be trusted (2) Can’t be too careful (3) No idea

11. Are you generally a person who is fully prepared to take risks or do you try to avoid taking risk?

Please tick a box on the scale, where the value 1 means: “unwilling to take risks” and the value 10

means: “fully prepared to take risk”
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12. In general, do you think it is important to help others, and take care of their well being? Please

tick a box on the scale, where the value 1 means: “not important at all” and the value 10 means:

“Maximally important”

13. Which of these diagrams represents the relationship between Orange-Citrus Fruit-Fruit? Please

select an answer and click OK to confirm.

14. Select the element that completes the following series. Please select an answer and click OK to

confirm.

15. A bat and a ball cost $ 1.10 in total. The bat costs $ 1.00 more than the ball. How much does

the ball cost?

16. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make

100 widgets?

17. In a pond, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days

for the patch to cover the entire pond, how long would it take for the patch to cover half of the pond?
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Appendix C Balance check

(1) (2) (3) (1)-(2) (1)-(3) (2)-(3)
Restricted Baseline Asymmetric Pairwise t-test

Variable Mean/(SE) Mean/(SE) Mean/(SE) P-value P-value P-value

Female (d) 0.611 0.535 0.521 0.254 0.169 0.835
(0.046) (0.048) (0.046)

Age 24.243 24.319 24.146 0.872 0.828 0.736
(0.283) (0.382) (0.346)

Education 1.944 2.035 1.944 0.396 1.000 0.398
(0.067) (0.083) (0.067)

Has taken courses in:
economics (d) 0.500 0.514 0.528 0.814 0.639 0.814

(0.042) (0.042) (0.042)
statistics (d) 0.444 0.417 0.444 0.635 1.000 0.635

(0.042) (0.041) (0.042)
game theory (d) 0.299 0.243 0.306 0.290 0.898 0.236

(0.038) (0.036) (0.039)
Importance of helping others 7.306 7.111 7.021 0.315 0.157 0.660

(0.133) (0.140) (0.150)
Attitudes towards risk 4.861 4.903 4.938 0.857 0.745 0.885

(0.160) (0.167) (0.172)
CRT 0.986 1.076 1.007 0.413 0.853 0.562

(0.072) (0.083) (0.086)
IQ 1.951 1.847 1.722 0.579 0.234 0.509

(0.135) (0.130) (0.137)

Table C.1: Balancing of individual characteristics across treatments.
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