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“From the personalistic point of view, statistics proper can perhaps be defined as the art of 

dealing with vagueness and interpersonal difference in decision situations.” 

Leonard Savage, The Foundations of Statistics, Chapter 8 (1954) 

 

Abstract: We consider product differentiation on competitive news markets, as determined by the characteristics 

of demand confronting basic informational non-convexities in the activities of news reporting. Non-manipulative 

profit-maximizing news media imperfectly report the information they draw from some normally distributed flow 

of source data. A natural measure of information loss due to the media is the Kullback-Leibler divergence between 

the normal distributions of news and raw data. We show that reporting distortions depend on: (i) bias, defined as 

the difference between the means of the probability distributions of news and raw data; and (ii) noise, defined as 

the difference between the standard deviations of these distributions. We show that expected utility maximizing 

consumers with concave Bernoulli utility functions are noise-averse. Distortion-averse consumers are both bias- 

and noise-averse. We show that the news products supplied at equilibrium are identical in terms of accuracy, as 

measured by their Kullback-Leibler divergence to raw data. These products make a one-dimensional locus in the 

mean-standard deviation space. This locus consists of horizontally differentiated products, ranging from 

conventional news products, characterized by large biases and by noise levels reduced to some incompressible 

minimum, to “noisy” news products, which set bias to zero at the expense of some maximum noise level. The 

frontier confronts distortion-averse consumers with a basic non-convexity. Non-convexity results in maximal 

product differentiation, the “conventional” and “noisy” extremes being the only news products actually demanded 

at equilibrium in some natural configurations of the latter. We moreover show that most types of noise-averse 

consumers choose their news providers in the close vicinity of the conventional end of the market. The model thus 

provides a rationale and partial explanation for the common distinction between mainstream and alternative news 

media.  
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1-Introduction 

This paper considers product differentiation on competitive news markets, as determined by the 

characteristics of demand confronting basic informational non-convexities in the activities of 

news reporting. 

 Industrial economics traditionally considers product differentiation under two 

complementary aspects: its driving forces and its types (Tirole (2015), 2.1). The driving force 

of differentiation may be located on the supply side or on the demand side. Supply-driven 

differentiation follows from the incentives of profit-maximizing firms to use product 

differentiation as a means of alleviating the downward pressure that competition exerts on 

profits (Hotelling (1929), Chamberlin (1951)). Demand-driven differentiation follows from the 

heterogeneity in product characteristics and in consumer preferences. More specifically, 

demand expresses consumers’ individual preferences relative to the various characteristics of 

each commodity, such as type, quality, the time and location of delivery, and so on (Lancaster 

(1966)). The products, or some subsets of their characteristics, are vertically differentiated if all 

consumers have the same preference ranking relative to these characteristics; this happens, for 

instance, if, ceteris paribus, all prefer better quality to lesser quality. Otherwise the products 

are horizontally differentiated. 

  The vast literature relative to product differentiation in news media industries covers 

all the dimensions above, captured notably through the analysis of the relationship between 

market competition and the quality of news construed as the quality, in terms of completeness 

and accuracy, of the information conveyed by reported situations or events (Gentzkow and 

Shapiro (2008), Gentzkow, Shapiro and Stone (2015); see also Hu (2021) for recent extensions 

to the social media).  

 The theoretical literature reviewed in Gentzkow et al. (2015) typically assumes: (i) some 

unobserved state of the world attracting public interest; (ii) raw data relative to this state of the 

world, modelled as a random variable; and (iii) news reports of the latter, modelled in the same 

way. The main concern of the theory is the explanation of media bias, conceived, using the 

words of Gentzkow et al., as “systematic differences in the mapping of raw facts to news 

reports”. These systematic differences are explained by strategic manipulations of raw facts by 

profit-maximizing news media operating on imperfectly competitive news markets. The authors 

distinguish two types of biases: outright distortion, involving, using their words again, “some 
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integral measure of the distance between news reports and raw facts” (as random variables); 

and filtering of information, where bias consists of oriented summaries or of selective accounts 

of source data. 

  The present article studies the determination of non-manipulative informational 

distortion at competitive equilibrium in the canonical case of normally distributed source data.2 

We show that consumers’ noise aversion is the main driver of product differentiation in this 

setup.  

Accurate fact reporting is costly. We suppose that the cost-constrained reporting 

activities of each news provider introduce a specific (“idiosyncratic”) distortion in source data, 

which is modelled as a random distortion term, normally distributed and statistically 

independent from the raw distribution. A natural measure of the information loss due to the 

media in this setup is the Kullback-Leibler divergence between the news provided by a media 

firm and the statistical distribution of raw information (Kullback (1959)). In the case of normal 

distributions, the divergence reduces to a simple function of the first and second moments of 

the distributions of news and raw data. This function introduces in turn a natural synthetic 

description of reporting distortion as a two-dimensional object consisting of (i) bias, construed 

as the difference between the means of the distributions of, respectively, news and raw data, 

and (ii) noise, construed as the difference between the variances (or standard deviations) of 

these distributions. We show that expected utility maximizing consumers with concave 

Bernoulli utility functions are noise-averse. They may or may not be bias-averse. A distortion-

averse consumer, who, by definition, is both bias- and noise-averse, typically confronts, at 

equilibrium, a trade-off between the various combinations of bias and noise supplied by the 

market (in many respects analogous to the mean-variance arbitrage in portfolio choices, in the 

capital asset pricing model).  

These notions of bias and noise match those used by Kahneman, Sibony, and Sunstein 

in Noise (2021), their comprehensive study of the informational basis of judgment. Their book 

reviews a considerable number of empirical studies relative to the cases of professional 

judgment involved in such diverse fields as crime punishment, medical diagnosis, and the 

management of human resources (among others). The authors convincingly argue that bias and 

                                                           
2 The case of (manipulative) outright distortion of normally distributed raw data is studied notably by Mullainathan 

and Shleifer (2005). The comprehensive account of filtering bias by Gentzkow et al. (2015) also relies on the 

assumption that raw facts are normally distributed.  
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noise, as we define them in the present paper, should be treated on the same footing, as being, 

the both of them, major sources of flaws in human judgment.3 

In contrast, the notion of bias that we use here sharply differs from the notion of media 

bias of Gentzkow et al. (2015). The latter notably refers to Blackwell’s criterion for the 

comparison of information structures (1951; see also Laffont (1991), chap. 4). According to 

this criterion, an information structure (i.e. a mapping from the space of “signals” to the space 

of probability measures over signals) is better, or more informative, than another structure, if 

all Bayesian expected utility maximizers make better decisions (i.e. increase their expected 

utility) when they substitute the former for the latter in their Bayesian revision of probabilities 

conditional on observed signals. This criterion of first-order stochastic dominance yields a 

partial ranking of information structures, which provides a natural candidate for a notion of 

information accuracy, alternative to the Kullback-Leibler criterion mobilized in the present 

paper, and well suited to Gentzkow and Shapiro’s basic object, namely, their discussion of the 

ability of media markets to “make beliefs converge toward the truth” (2008; my emphasis). We 

do not introduce any notion of Bayesian behavior or beliefs on behalf of consumers or media 

firms in the present paper. Our basic concern is, paraphrasing Gentzkow and Shapiro, the ability 

of media markets to make fact reporting converge toward accurate reporting. Nevertheless, it 

should be noted that the Kullback-Leibler divergence does fit the notion of outright distortion 

as “some integral measure of the distance between news reports and raw facts” of Gentzkow et 

al. (2015).4 

In our setup, each news product is synthetically described as a mean-standard deviation 

pair. We show that, at competitive equilibrium, media firms provide news products that are 

identical in terms of accuracy, that is, in terms of their Kullback-Leibler divergence to raw data. 

These products make a one-dimensional locus in the mean-standard deviation space, hereafter 

called the frontier of equilibrium supply. This frontier provides an array of horizontally 

differentiated products, ranging from, at one end of the spectrum, “conventional” news products 

characterized by large biases and by noise levels reduced to some incompressible minimum, to, 

at the other end of the spectrum, “noisy” news products, setting bias to zero at the expense of 

some maximum noise level. The frontier confronts distortion-averse consumers with a basic 

non-convexity in their choice of a news outlet. Non-convexity results in maximal product 

                                                           
3 They notably build on Gauss’s classical formula equating the mean squared error with the sum of noise and 

squared bias as defined above (2021, chap. 5 ; see section 2 below). 
4 With only one minor qualification: the Kullback-Leibler divergence is not a distance in the strict, mathematical 

sense of the word (it does not verify the triangular inequality) 
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differentiation, the “conventional” and “noisy” extremes being the only news products actually 

demanded at equilibrium, at least in some natural configurations of the latter.  

The type of horizontal differentiation implied by the model evokes some aspects of the 

distinction commonly made between (i) “mainstream” news media, on the one hand, such as, 

for example, in the USA, ABC News, Fox News, the New York Times or the Wall Street Journal, 

or, in France, TF1, Le Figaro, Le Monde or Les Echos, and (ii), on the other hand, “alternative” 

news media such as, for example again, Vox or the HuffPost in the USA, and Mediapart or 

Atlantico in France (e.g., for the French press, see Lyubareva et al. (2020)). In one possible 

reading of the model, the conventional news products would be mainly issued by mainstream 

outlets, and the noisy ones would be notably produced by alternative news media. We show 

that most types of noise-averse consumers choose their news providers in the close vicinity of 

the conventional end of the market. Noise aversion thus provides a rationale and partial 

explanation of why mainstream outlets are conventional, in our setup at least. 

 The paper is organized as follows. Section 2 details the information setup. Section 3 

describes supply and characterizes competitive supply equilibrium. Section 4 describes demand 

and introduces distortion aversion. Section 5 characterizes the frontier of equilibrium supply, 

and describes the associate bias-noise arbitrage. Section 6 characterizes market equilibrium. 

Section 7 interprets product differentiation in terms of journalistic practice. Section 8 concludes. 

 

2-Information setup 

Information is construed as a flow of signals emitted from some underlying phenomenon of 

potential public interest, such as, for example, clusters of emerging viral epidemics, or rumors 

of inappropriate personal behavior of political leaders in conducting public or private affairs. 

The signals convey imperfect, incomplete5 elements of description of the underlying “true” 

phenomenon (e.g. the true state of viral infection of the population, or the true personal behavior 

of political leaders). They are modelled below as a random variable d  (the “raw data” source), 

normally distributed, with mean   and variance 
2 . 

                                                           
5 Information is necessarily incomplete if the purpose of description is defined comprehensively, as aiming to 

provide an exhaustive account of a state of the world (e.g. the circulation of a virus in a population; or the personal 

behavior of a political leader). It can be complete if the purpose of description is defined in a selective, tractable 

way, such as, for example, in terms of confirming or rejecting the hypothesis of the presence of antibodies of a 

definite type in a patient’s blood. Incompleteness is a fundamental form of information imperfection. Information 

can also be imperfect in a second sense, even when it is complete in the sense above. Namely, when it provides an 

erroneous (albeit complete) description of certain facts. For example, a “false negative” test rejecting the presence 

of antibodies of the relevant type in the blood of an infected patient.   
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 There are J  types of for-profit media firms, denoted by index 1,...,j J=  . Each firm 

collects imperfect, possibly incomplete pieces of the raw data flow, and converts them into a 

news flow, sold on the media market. The news produced by a media firm of type j  is a random 

variable 
jn , normally distributed, with mean j   and  variance 2

j . We moreover assume  that   

jn d− , hereafter called “informational distortion” and denoted by j ,  is uncorrelated to the 

data source (i.e. its variance is equal to 
2 2

j −  ; and of course 
j   is normally distributed and 

its mean is j − ). In other words, we suppose that the process of data collection and/or 

conversion into news is perturbed by phenomena that are not fully controlled by the firm and 

that are statistically unrelated to the data source. Media firms are not fully transparent in this 

respect. They are independent sources of imperfection or incompleteness of the information 

conveyed to consumers through the media market. Note that, by Gauss’s classical formula, 

2 2 2( )( )j j jf s ds  
+

−

= − +
2( )j − , that is, the mean squared distortion is equal to the sum of 

“noise” 
2 2

j −   and squared “bias" 
2( )j −  (see Kahneman et al. (2021, chap. 5)).6  

 A natural measure of the mean loss of information incurred by substituting the news 
jn  

for the raw data flow d  is the Kullback-Leibler divergence between the associate densities, that 

is, 0
0

( )
( ) log

( )j

f s
f s ds

f s

+

−

 , where: s  denotes an observation (a “signal” or “information”, which 

may consist of a raw data ed  or a news 
j

en  observed in a state of nature e ); jf  denotes the 

probability density of 
jn  (i.e. 

2

2

( )1 1
: exp

22

j

j

jj

s
f s



 

 −
→ −  

 
); and 

0n d= . Following 

Kullback (1959), we denote the divergence of jf  relative to 0f  by  (0 : )I j . We refer to it as 

the K-L divergence below. 

 (0 : )I j  can also be interpreted as a measure of the data-processing activity of a firm of 

type j , due to the natural connection between the K-L divergence and the maximum likelihood 

criterion (see Appendix I). We interpret (0 : )I j  below as the outcome of some implicit process 

of constrained minimization of the K-L divergence, reflecting the practical characteristics of, 

and practical limitations on, type j ’s operations of collection and processing of the data. The 

                                                           
6 Note also that Gauss’s identity holds true for any statistical distribution of the distortion term, whether normal or 

not. It only depends on the assumption that distortion is uncorrelated to raw data.  
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constraints on K-L divergence minimization notably include the (monetary) cost of these 

operations, which is modelled explicitly in section 3 below.  

As a standard fact of information theory, we have

22

2 2

( )1
(0 : ) log 1

2

j j

j j

I j
  

  

 − 
= + + −    

   

.7 The divergence is null if and only if 0j = .  It is 

positive, and increasing in j − , if 0j  . As measured by divergence (0 : )I j , the distortion 

introduced by a media firm of type j  in reporting the raw data thus involves two dimensions, 

which are respectively associated with the first and second moments of the statistical 

distribution of 
j : (i) distance j − , hereafter called, following Kahneman  et  al.  (2021), 

j ’s  systematic bias, which corresponds to the absolute value of the mean discrepancy between 

type j ’s news and the data ; and (ii) distance 
2 2 2 2

j j   − = − , hereafter called, following 

again Kahneman et al. (2021), j ’s idiosyncratic noise, which corresponds to the variance that 

the news of type j  add to the variance of raw data.8  

Figure 1 maps the graph (Fig. 1a) and a set of contour lines (Fig. 1b) of (0 : )I j  as a 

function of ( , )j j   when 0f  is the centered reduced law (i.e. when ( , ) (1,0)  = ).9  

Propositions 1 and 2 below collect a number of basic properties of (0 : )I j  and of 

function : ++  →  defined by 

2 2

2 2

1 ( )
( , ) log 1

2

x y
x y

x x

 




 − 
= + + −   

   
.10 

 

Proposition 1: For all 0,...,j J= , (0 : ) 0I j  , with equality if and only if 0j = .  

 

Proposition 2: Function   is: (i) C


; (ii) strictly increasing in its second argument; (iii) strictly 

increasing in its first argument over  2 2 2( , ) : ( )x y x y ++  −  − ; (iv) strictly 

                                                           
7 E.g. https://fr.wikipedia.org/wiki/Loi_normale, 5.5.3. 
8 Interestingly, the K-L divergence is increasing (resp. decreasing) in idiosyncratic noise 

2 2

j −  if and only if 

the latter is larger (resp. smaller) than squared systematic bias 
2( )j −  (see Proposition 2 below). 

9 We follow the standard practice established by the capital asset pricing model in finance, which consists of 

treating the variance (or standard deviation) as an abscissa and the expectation as an ordinate.  
10 The non-negativity and other properties below rely to a large extent on the convexity of function .logt t t→ . 

Non-negativity, in particular, is closely related to Jensen’s inequality. These properties should therefore be viewed 

as the expression, in the special case of normal distributions we consider here, of basic axiomatic properties of 

information measures. 
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decreasing in its first argument over  2 2 2( , ) : ( )x y x y ++  −  − . (v) Partial functions 

( , )y x y→  are strictly convex for all x ++ .  

 

All proofs are collected in the appendix (Appendix III).  

 

3-Supply setup 

In order to spell out as neatly as possible the independent role of consumers’ noise aversion in 

the determination of product differentiation on the market for news, we assume away any 

motive for product differentiation that may stem, on the supply side of the market, from 

situations of imperfect competition à la Hotelling or otherwise. This makes another sharp 

difference between the model examined in this paper and the literature reviewed in Gentzkow 

et al. (2015). The latter considers a mix of demand and supply determinants of product 

differentiation, which notably involves firms’ strategic manipulation of both prices and 

information. In contrast, the model considered here presents a pure case of demand-driven 

differentiation à la Lancaster, where differentiation is solely determined by consumers’ 

preferences relative to bias and noise as joint characteristics of news products. Accordingly, we 

suppose that the market for news is perfectly competitive, and we moreover assume, for 

simplicity, that firms’ data-processing and broadcasting technologies are identical. We show 

below that, unsurprisingly, this implies that all firms provide the same quality of information at 

equilibrium. In particular, our setup leaves no room for vertical differentiation on news markets.  

We argued above that divergence (0 : )I j  could be interpreted as a measure of the 

quality, in the sense of the informational accuracy, of type j ’s information services: the smaller 

(0 : )I j  is, the more accurately, on average, the news provided by a firm of type j  match raw 

data, with full accuracy (i.e. exact match) obtained if and only if the divergence is null. In the 

sequel we let 
1

(0 : )
jq

I j
=  measure the quality of the information services provided by the firms 

of type j  to their consumers. The quality index jq  is monotonically decreasing in divergence 

(0 : )I j . It runs over  0,+  as divergence (0 : )I j  runs over  0,+ . Full accuracy is obtained 

if and only if jq = + . 

The representation of media behavior developed here combines two types of activities.  

First, data collection and data processing activities aim at information accuracy. They 

are captured through the quality index jq  of the news provided by the media. The product of 
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these activities can be viewed as information sheets, collecting facts appropriately arranged and 

interpreted. Their average informational content is measured, in units of information accuracy, 

by index jq .  

Second, broadcasting activities convey information sheets to news consumers. We let 

jz  denote the number of information sheets so dispatched by a firm of type j . Note that the 

“sheet” should not be interpreted literally, as a piece of paper. The informational content jq  

can be conveyed in both verbal and written form, and via any technical support such as 

electronic or herzian channels, or traditional newspapers. The quantity 
jz  will be treated as a 

continuous variable below. It captures the mass dimension of the activities of the news industry.  

Summing up, the product of a firm of type j  consists of information sheets of average 

informational content jq  replicated 
jz  times. It is measured therefore by quantity .j jq z  

corresponding to a number of units of (average) information accuracy broadcast to its 

customers. The media charges a price p  for each replica. Here again, we need not be too 

specific about the financing details of these expenses. They are typically covered, in practice, 

by advertisement budgets and customer fees, in various proportions according to the media, but 

always narrowly related (by and large proportional) to its audience. We will suppose here, for 

simplicity, and without substantial loss of generality, that the price is paid by the customer. The 

firm’s sales revenue is equal to . .j jp q z . 

For the reasons developed at the beginning of this section, we make the following 

simple, conservative assumptions concerning the technology of the information industry, 

compatible in particular with a competitive partial equilibrium of the information market. All 

firms are endowed with the same decreasing (marginal) returns technology, described by cost 

function ( , ) ( , )j j j jq z c q z→ , defined over    0, 0,+  + , strictly increasing,  strictly convex, 

2C  in 
2

++ ,  and such that (0,0) 0c =  and ( , ) ( , )j jc z c q+ = + = +  for all ( , )j jq z . 

The specific structure of media products and activities, which combine, in a 

multiplicative way, a qualitative dimension (data-processing, captured through jq ) and a scale 

dimension (mass broadcasting, captured through 
jz ), may potentially be a source of production 

non-convexities, such as scale economies and a non-concave profit function 
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( , ) . . ( , )j j j j j jq z p q z c q z→ − .11 This might occur even if the cost function is convex, as clearly 

shown by the following simple example:  

 

Example 1-Scale economies related to quality investments: We suppose technically 

separable data-processing and broadcasting activities, and constant unit-costs equal to 1 for 

each, that is, ( , )j j j jc q z q z= + . The average cost per dispatched unit 
( , )

1
j j j

j j

c q z q

z z
= +  is then 

decreasing in the scale factor 
jz . That is, the quality of information plays the role of a fixed 

cost, generating scale economies. The corresponding profit function ( , ) . .j j j j j jq z p q z q z→ − −  

is clearly not concave (it is even strictly convex for any positive fixed ratio 
j

j

z
k

q
= , that is, 

along any “ray”  2( , ) : . ; 0j j j jq z z k q k+ =  , if 0p  ).  

 

The profit of a firm of type j  reads . . ( , )j j j jp q z c q z− . Competitive profit maximization 

consists of solving program     max . . ( , ) : ( , ) 0, 0,j j j j j jp q z c q z q z−  +  + , the same for 

all j , for any given price p .12 Proposition 3 below illustrates, in the context of this model, the 

general issue of the compatibility of competitive pricing with profit-maximization in the 

presence of scale economies. Loosely speaking, the curvature of the cost function, as measured 

by  2 2 2( , ) ( , ). ( , )qz j qj jq j zz j jc q z c q c zz q +   , puts an upper bound on the range of compatible 

competitive equilibrium prices. If, in particular, this curvature is null, as in Example 1 above, 

then there exists no competitive equilibrium. In other words, the cost function must be “convex 

enough” for a competitive equilibrium to exist. The examples 2 and 3 of the appendix 

(Appendix II) provide simple computable instances of such cost functions and of the 

corresponding equilibria.   

                                                           
11  See Stromberg (2004) for a closely related representation of the cost function of media firms, and for an 

extensive discussion of the consequences of the particular type of scale economies involved. Reformulated in non-

technical terms, a basic specificity of information industries, relative to other activities of mass-manufacturing, 

seems to lie in the larger importance, in relative terms, of the qualitative, immaterial features of its products. These 

characteristics are not embodied in physical objects as in most large-scale activities of the primary and secondary 

sectors. They are not even embodied in types of standardized services as in most large-scale tertiary activities of 

the financial or commercial branches. They “are” or “make” the product, so to speak. 
12 Note that we implicitly assume here that full accuracy (i.e. jq = + ) is never achieved, due to prohibitive costs. 

This follows from the first-order conditions of Proposition 2-(i), for example, if marginal cost ( , )q j jc q z  grows 

to infinity as jq → + .  
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Proposition 3: Suppose that 0p  , and let 
* * 2( , )q z ++  solve 

    max . . ( , ) : ( , ) 0, 0,j j j j j jp q z c q z q z−  +  + . Then: (i) 

* * * *

* *

( , ) ( , )q z
c q z c q z

p
z q

 
= = ; 

and (ii) 2 * * 2 * * 2 * *( , ) ( , ). ( , )qz qq zzp c q z c q z c q z−    . If, moreover, 

2 * * 2 * * 2 * *( , ) ( , ). ( , )qz qq zzp c q z c q z c q z−    , then * *( , )q z  is the unique solution to 

    max . . ( , ) : ( , ) 0, 0,j j j j j jp q z c q z q z−  +  + . 

 

In the remainder of this paper, we assume that a supply equilibrium * *( , )q z  exists and is unique.  

 

4-Demand setup 

There are N  types of individual consumers of information, denoted by index 1,...,i N= . Each 

of them chooses a single news provider in the set  1,..., Jn n  supplied by the market, and 

purchases the corresponding news at price p . Our basic behavioral assumption, in terms of 

consumption, is expected utility maximization. We also make a quasi-linearity assumption, well 

suited to this study’s spirit of partial equilibrium analysis. That is, a consumer of type i  selects 

the editorial product 
jn  that maximizes his quasi-linear expected utility 

( ) ( )j j j

j e i e ef n u n dn p
+

−
−  in the set of news products  1,..., Jn n  available on the market. Given 

our assumptions on probability densities, the expected utility derived by a consumer of type i  

from editorial product 
jn  is a function of the sole first and second moments of normal 

distribution jf , of the type ( , , ) ( , )i j j i j jU p V p   = − . 

 The Bernoulli utility functions iu  are standardly assumed to be strictly increasing, twice 

continuously differentiable, and strictly concave. We retain the last two assumptions (twice 

continuous differentiability and strict concavity) but depart from the first one for the following 

reasons.  

Recall that we assumed 
j jn d = + , where the term 

j  corresponds to the distortion 

that type j ’s fact reporting operations impose on raw data. It seems reasonable to assume that 

consumers are averse to distortion, at least under some circumstances. A strictly increasing 

Bernoulli utility function is clearly not compatible with distortion aversion, as it implies that 
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the consumer’s utility ( ) ( )j j

i e i e eu n u d = +  is, ceteris paribus, always strictly increasing in the 

distortion term 
j

e . Thus we complement the standard apparatus of expected utility 

maximization with the following specific assumption of distortion aversion. 

 

Distortion aversion : iU   exhibits bias aversion over some subset S  of its domain if it is 

decreasing in j −  over S , that is, if  'j j   −  −  implies 

( , , ) ( , ' , )i j j i j jU p U p     for all pairs (( , , ),( , ' , ))j j j jp p     of elements of S . It exhibits 

noise aversion over some subset S  of its domain if it is decreasing in 
j  over S . It exhibits 

distortion aversion over some subset S  of its domain if it exhibits both bias and noise aversion 

over S .13  

 

As a simple consequence of a standard fact of expected utility theory,14 replicated in 

Proposition 4 below, the normal probability distribution, combined with the strict concavity of 

the Bernoulli utility function, together imply noise aversion.  

 

Proposition 4: Suppose that iu  is 
2C  and strictly concave. Then iU  exhibits noise aversion 

over its whole domain.  

 

Note that a bias-averse expected utility can be decreasing in 
j  (see the proof of 

Proposition 4). We retain bias-aversion as one of our main behavioral assumptions below. In 

other words, we assume that news consumers agree with statisticians that “systematic” (i.e. 

average) misreporting should be reduced, ceteris paribus, whenever possible. Note, 

nevertheless, that expected utility maximization does not imply bias-aversion. Alternative 

behaviors, involving “prone-to-bias” preferences, are compatible with this framework. They 

might follow, for example, in relevant contexts, from the cases of slanting commonly discussed 

                                                           
13 Note that, as a consequence of Proposition 2, the inverse (or the opposite) of the K-L divergence 

22

2 2

( )1
(0 : ) log 1

2

j j

j j

I j
  

  

 − 
= + + −    

   

, viewed as a function of ( , )j j  , displays bias aversion in the sense 

above everywhere over  , +  , but displays noise aversion only over 

  2 2 2( , ) , : ( )j j j j       +  −  − . 

14 See, for example, Laffont (1991), p. 229. 
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in the literature (e.g. Mullainathan and Shleifer (2005)), that is, biases expressing consumers’ 

political preferences.15  

 

5-The frontier of equilibrium supply and the bias-noise arbitrage 

In this section and the next one, we let *p  denote a given, fixed (competitive) equilibrium price 

of the news market, and we assume that the sufficient condition of Proposition 3 for a unique 

equilibrium supply holds true. We let * *( , )q z  denote the corresponding equilibrium quality-

scale mix. We also assume that there exists a level of incompressible noise added by media 

firms to raw data, measured by 0 −  , that is, we suppose that 
j     for all j  and 

all feasible jn . And we define the frontier of equilibrium supply associated with *p  as 

 *

*

1
( ) ( , ) , : ( , )j j j jF p

q
     

 
=  +  = 
 

.16 

     We show below that the equilibrium condition embodied in the definition of the frontier 

maintains possibilities of horizontal product differentiation on the news market, on the basis of 

a trade-off between bias aversion and noise aversion. 

 Let :h ++ →  be defined by 
2 2

*

2
( ) 1 2log

x
h x x

q




  
= + − −  

  
. The frontier above 

may be conveniently characterized as   * ( , ) , :( )  ( )j j j jF p h     =  +  =  . Its 

main characteristics are detailed in Proposition 5 below and illustrated in Figure 3.  

 

Proposition 5: Suppose that 
*

1
.exp

q
 

 
  

 
. (i) There exists a unique 

*

* 1
( .exp)q

q
 





 
 

 

such that 
*)( ( ) 0h q = . (ii) Function  h   is:  (a) C

 and positive over 
*, ( )q    ; (b) 

                                                           
15 Mullainathan and Shleifer (2005) assume a quadratic Bernoulli utility, of the type 

2( ) ( )j j j

i e e eu n n n = − , with 

  and   positive. A simple calculation yields 
2 2( , , ) ( ) ( )i j j j j jU p p      = − − −  for any continuous 

probability density, whether normal or not. iU  is strictly concave, and therefore strictly quasi-concave. It exhibits 

noise aversion over its whole domain. It is decreasing (resp. increasing) in j  if  
2

j





  (resp. 

2
j





 ). 

Therefore it exhibits bias aversion if and only if 
2





= . It is « prone-to-bias » otherwise. 

16 The frontier plays, within the present setup, a role analogous to the role of Minkowski’s efficiency frontier in 

the capital asset pricing model, that is, it characterizes a locus in the mean-standard deviation plane where market 

equilibria must lie.  
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increasing over 
*

1
, .exp

q
 
  
  

  
; (c) decreasing over 

*

*)
1

.exp , (q
q

 
  
  

  
; and (d) such that 

( )( )*

*

1
.exp 0h q h

q
 

  
=  =  

  
  and 

* )(
lim ( )

x q
h x

 −→
 = − . (iii) There exists   ++   

such  that  h    is differentiably strictly concave over *

*

1
.e )xp , (q

q
  

  
− +  

  
. (iv) For all 

*, ( )x q    , 
( )
( )

, ( )
( )

, ( )

x

y

x h x
h x

x h x

 


 

 +
  + = −
 

 +
 and 

( )
( )

, ( )
( )

, ( )

x

y

x h x
h x

x h x

 


 

 −
  − = −
 

 −
. (v) There exists  ++  and a function 

 ,:g   − + →  that is  C
, and such that *( ) ( )g q =  and 

*( ( ), ) ( )g y y F p  for all  

 ,y    − + .  Function   g   is:   (a) increasing over  , −  ; (b) decreasing over 

 ,  + ; (c) differentiably strictly concave over    , ,    − + ; and (d) such that 

2) ) 0( (g g = = . 

 

 As a consequence of Proposition 5, 
*( )F p  is a smooth (C

) one-dimensional manifold 

with boundary, compact, and symmetrical with respect to horizontal line 

 ( , ) :j j jL    =   = . In the half-plane above L , it coincides with the graph of the 

restriction of ( )x h x→ +  to 
*), (q    . In the half-plane below L , it coincides with the 

graph of the restriction of ( )x h x→ −  to 
*), (q    . It has three non-degenerate critical 

points, namely, 
* *

1 1
.exp , .exph

q q
  
     
            

, and ( )*( ),q  , the first two associated 

with a horizontal tangent and the third with a vertical tangent to 
*( )F p . These properties hold 

true if the minimum level of idiosyncratic noise stemming from the media is small enough, that 

is, if 
*

1
.exp

q
 

 
  

 
. 

  In terms of interpretation, the (potential) supply described by the frontier confronts the 

consumer with an arbitrage between noisy and biased information that we describe below. Note 
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that it is more convenient, for graphical interpretation, to describe noise through the standard  

deviation  gap  j − ,  rather than through the variance gap 
2 2

j − . Starting from minimal 

noise  −  and moving to the right along the upper or lower branches of the frontier, bias, as 

measured by j − , and idiosyncratic noise, as measured by j − , together increase up to 

maximum bias level  
*

1
.exph

q

  
  

  
, reached  at  noise  level  

*

1
. exp 1

q

  

−  
  

.17 Still 

moving  to  the  right along the frontier, from critical points 

* *

1 1
.exp , .exph

q q
  
     
            

, bias decreases as noise increases, down to a minimum, 

null bias level, reached at maximum noise level *( )q − .  

 Clearly, a distortion-averse consumer will purchase his news either at boundary points 

( ), ( )h    or to the right of the vertical axis through critical points 

* *

1 1
.exp , .exph

q q
  
     
            

. The first type of choice means that the consumer’s 

aversion to informational noise outweighs his aversion to informational bias. The second type 

of choice means, symmetrically, that his noise aversion is outweighed by his bias aversion. 

Note that the threshold that so divides the market into a conventional segment and a noisy 

segment is the news product that equates noise and squared bias (see footnote 17).  

 

6-Informational non-convexities and demand-driven product differentiation 

In this section, we provide a formal definition of the notion of relative bias or noise aversion 

outlined in the former sentence. We show that the non-convex structure of the set of alternatives 

implied by the convexity properties of the K-L divergence,18  combined with consistent relative 

                                                           
17 As a consequence of  Proposition 5, we get  ( )

2
2 2

j j   − = −  on  the  frontier, that is, noise is equal to 

squared bias at equilibrium supply, if  and  only if 
*

1
.expj

q
 

 
=  

 
. This type of critical position corresponds to 

the singularities  characterized by  
( )
( )

( )
( )

, ( ) , ( )
0

, ( ) , ( )

x x

y y

x h x x h x

x h x x h x

   

   

 +  −
− = − =
 +  −

 (with 

2 2

3

( )
( , ( )) 0x

x h x
x h x

x


 

− −
 + = = ). 

18 More precisely, quasi-concave programming supposes the maximization of quasi-concave objective functions 

subject to non-negativity constraints defined from quasi-concave constraint functions. We show in the proofs of 
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aversion either to bias or to noise, induces the concentration of demand of distortion-averse 

consumers on the left and right ends of the frontier. We moreover establish that “prone-to-bias”, 

noise-averse consumers choose their news outlets in the neighborhood of the left end of the 

market. Among the types of noise-averse consumers reviewed below, only one, namely, the 

relative bias-averse type, may choose its news provider at the “noisy” (i.e. right) end. All others 

choose it in the vicinity of the “conventional” (i.e. left) end.  

Let 
1 h = +  and 

2 h = − . The two functions 
*), (q  →   defined by 

( )*

1, ( ),j i j jU p   →  and ( )*

2, ( ),j i j jU p   →  describe consumer i ’s utility along the 

upper and lower branches of frontier 
*( )F p  respectively. Subject to the assumptions of 

Propositions 4 and 5, they are twice continuously differentiable over 
*), (q    , and their first 

derivatives read  ( ) ( )* *, ( ), , ( ), . ( )j i j k j i j k j k jU p U p         → +   ,  1,2k .  

We know from the implicit function theorem that 
( )
( )

, ( )
( )

, ( )

x j k j

k j

y j k j

   
 

   


 = −


. 

Supposing ( )*, ( ), 0i j k jU p     , we see therefore that the sign of 

( ) ( )* *, ( ), , ( ), . ( )i j k j i j k j k jU p U p         +    is equal to the sign of difference 

                                                           

Theorems 1 and 2 below that an interior maximum of a quasi-concave 
iU  in 

*( )F p  must be either a local 

maximum of 
iU   subject to 

*

1
( , ) 0j j

q
   −   or a local maximum of 

iU   subject to 
*

1
( , ) 0j j

q
  − +  . The 

non-linear functions 
*

1

q
 −  and 

*

1

q
− +  cannot be simultaneously quasi-concave. Moreover, function 

*

1

q
 −  is 

clearly not quasi-concave. And it is not clear whether 
*

1

q
− +  is quasi-concave or not in general (see part (iii) of 

the proof of Proposition 5). Hence the non-convexity referred to in main text above. Note nevertheless that, 

according to this criterion, prone-to-bias consumers may confront a convex optimization problem if 
*

1

q
− +  is 

quasi-concave  (their  interior  maximum,  if any,  turns  out to be a local maximum of 
iU   subject to 

*

1
( , )j j

q
    ). Note also that relative bias-averse consumers  clearly confront a non-convex problem, their 

interior maximum being a local maximum of 
iU  subject to 

*

1
( , )j j

q
    (see footnotes 21 and 22 in the proofs 

of the theorems). 
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( )
( )

( )
( )

*

*

, ( ) , ( ),

, ( ) , ( ),

x j k j i j k j

y j k j i j k j

U p

U p





      

      

  
 − − −
  
 

 if ( )*, ( ), 0i j k jU p     , and to the sign of 

difference 
( )
( )

( )
( )

*

*

, ( ), , ( )

, ( ), , ( )

i j k j x j k j

i j k j y j k j

U p

U p





      

      

  
 − − −
  
 

 if ( )*, ( ), 0i j k jU p     .  

The ratio 
( )
( )

*

*

, ( ),

, ( ),

i j k j

i j k j

U p

U p





  

  


−


 is the marginal rate of substitution of noise for bias at 

point ( ), ( )j k j    of the frontier. The ratio 
( )
( )

, ( )

, ( )

x j k j

y j k j

   

   


−


 may be viewed, accordingly, 

with some terminological leeway, as the marginal rate of transformation of noise for bias at 

( ), ( )j k j   . Thus the sense of variation of the utility of distortion-averse consumers at any 

point of the frontier of equilibrium supply depends, essentially, on two determinants: the sign 

of ( )k j  − , that is, whether  the news sold by firms of type j  overestimate or underestimate, 

on  average,  raw  expectation  ; and the sign of 

( )
( )

( )
( )

*

*

, ( ), , ( )

, ( ), , ( )

i j k j x j k j

i j k j y j k j

U p

U p





      

      

  
 − − −
  
 

, that is, whether the consumer’s marginal rate 

of substitution of noise for bias is larger or smaller than the corresponding marginal rate of 

transformation.  

Clearly, the utility of a distortion-averse consumer is decreasing along the part of the 

upper and lower branches of the frontier corresponding to low “noise levels”, ranging in 

*

1
, . exp 1

q
  
   

− −   
   

. This is a simple consequence of distortion aversion, combined with 

the fact that noise and bias both increase to the right along this part of the frontier.  

There is no such simple consequence of distortion aversion when noise reaches the 

higher levels ranging in ( )*

*

1
. exp 1 , q

q
  
   

− −   
   

, because noise and bias move in 

opposite directions along this part of the frontier (i.e. bias decreases as noise increases). This 

source of complexity in individual decisions motivates the following (rough) distinction 

between two types of distortion-averse consumers, namely, consumers whose noise aversion 

outweighs their bias aversion, and consumers who have the symmetrical, opposite 

characteristic, when they confront a bias-noise arbitrage on the market. From here on, we 
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distinguish between bias and noise aversion in an absolute sense, as defined in section 4, and 

in a relative sense, as defined below.  

 

Relative noise (resp. bias) aversion: Let iU   be distortion-averse over 
*( )F p . We say that  iU   

exhibits relative noise (resp. relative bias) aversion if 

( )
( )

( )
( )

*

*

, ( ), , ( )

, ( ), , ( )

i j k j x j k j

i j k j y j k j

U p

U p





      

      

 
−  −
 

 (resp. 

( )
( )

( )
( )

*

*

, ( ), , ( )

, ( ), , ( )

i j k j x j k j

i j k j y j k j

U p

U p





      

      

 
−  −
 

) for all ( )*

*

1
.exp ,j q

q
  

  
  

  
 and all 

 1,2k . 

  

 Unsurprisingly, consumers whose preferences exhibit noise aversion in both the 

absolute and the relative sense choose their news providers on the boundary of the frontier, that 

is, inside ( ) ( ) 1 2, ( ) , , ( )      , corresponding to the set of news products that establish the 

level of informational noise to the accessible minimum. Consumers whose preferences exhibit 

relative bias aversion make their choice inside ( ) ( ) *

1 2, ( ) , , ( ) , ( ( ), )q        , which 

notably contains the news outlet that is free of informational bias (and maximizes informational 

noise). These facts are summarized in Theorem 1 below and illustrated in Figure 4. The detailed 

proof is developed in the appendix. 

 

Theorem 1: Suppose that: * 0p   is a competitive equilibrium price of the media market ;  the 

associate equilibrium quality-scale mix * *( , )q z is unique; 
*

1
.exp

q
 

 
  

 
; and for all i , iu  is 

2C  and strictly concave and iU   exhibits absolute bias aversion over 
*( )F p . Then, for all i , (i) 

iU   has at least one maximum in 
*( )F p , and (ii) the set of maxima of iU   in 

*( )F p  is contained 

in ( ) ( )  ( ) 2
* 2 2

1 2, ( ) , , ( ) ( , ) ( ) :j j j jF p             −  − . Moreover, (iii) if iU  is 

quasi-concave and displays relative noise aversion, then the set of maxima of iU  in 
*( )F p  is 

contained in ( ) ( ) 1 2, ( ) , , ( )      , and (iv) if  iU  is quasi-concave and displays relative bias 
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aversion, then the set of maxima of iU  in 
*( )F p  is contained in 

( ) ( ) *

1 2, ( ) , , ( ) , ( ( ), )q        .   

 

  “Prone-to-bias” preferences, finally, are easily accommodated in this setup. Theorem 2 

below shows that prone-to-bias, noise-averse consumers choose their news providers at the 

upward sloping part of the upper half of the frontier (i.e., the half-part located above the 

symmetry axis L ) when they favor overestimating biases, that is, if their utility is increasing in 

j  whenever j  . Likewise, prone-to-bias, noise-averse consumers who favor 

underestimating biases (i.e. whose utility is decreasing in j  whenever j  ) choose their 

news providers at the downward sloping part of the lower half of the frontier. These behaviors 

mitigate the property of maximal horizontal differentiation implied by Theorem 1 without 

altering its main structural features, namely, the propensity of noise-averse consumers to  

choose their news providers in the “conventional” part of the frontier, that is, inside 

( ) 2
* 2 2( , ) ( ) :j j j jF p      −  − .  

 

Theorem 2: Suppose that: * 0p   is a competitive equilibrium price of the media market ;  the 

associate equilibrium quality-scale mix * *( , )q z is unique; 
*

1
.exp

q
 

 
  

 
; and iu  is 

2C  and 

strictly concave. Suppose moreover that iU  is quasi-concave and is prone-to-bias in one of the 

following two senses: it is strictly increasing in its second argument over 

 *( , ) ( ) :j j jF p     ; or it is  strictly decreasing in its second  argument over 

 *( , ) ( ) :j j jF p     . Then: (i) iU   has at least one maximum in 
*( )F p ; and (ii) the set 

of maxima of iU  in 
*( )F p  is contained in ( ) 2

* 2 2( , ) ( ) :j j j jF p      −  − .  

 

7-An interpretation in terms of journalistic practice 

Central to the model is the description of journalism as accurate fact reporting. Accordingly, its 

properties may be interpreted as a (stylized) description of the good practices of this 

profession’s elite. Journalism itself is construed here as a risky activity striking some balance 

between two conflicting aims: on the one hand, drawing attention to novel facts of supposedly 
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general interest, preferably “breaking news” and ideally “scoops” (i.e., exclusive breaking 

news), and, on the other hand, guaranteeing the accuracy of the novel facts conveyed to public 

attention by spending sufficient time and other scarce resources checking and assessing them. 

Thus horizontal differentiation opposes two complementary styles of good journalistic practice. 

One style of journalism prioritizes novelty by privileging scoops, thereby increasing the 

chances of revealing “truth”, that is, of performing accurate reporting in a timely manner, at the 

expense of severely deviating from the truth on many specific occasions. The other style of 

journalism shies away from novelty, thereby reducing the risk of missing the point by too large 

a margin on any specific occasion, at the expense of systematically “lagging behind” accurate 

reporting on average in the long run.  

 The model thus interpreted provides a rationale and partial explanation for the 

distinction, briefly referred to in our introduction, between “mainstream” and “alternative” 

news media. The type of product differentiation implied by this distinction is well established 

in political science.19 Lyubareva et al. (2020) provide an empirical account of this fact for the 

French news media, which appears to be very close to the interpretation above. They evaluate 

the “originality” of news products by computing an index of linguistic distance between the 

news published by a media and the formulation of the same facts in the dispatches of the Agence 

France Presse (the basic common information source of the French press). The similarity graph 

they draw from these statistics (their Figure 1, p. 153) exhibits two characteristic features. First, 

the overall (linguistic) distance between the news published by the media of the studied sample 

appears small. And second, the graph concentrates a large fraction of the sample into two 

groups, one of them, by far the largest, concentrated in close proximity to the Agence France 

Presse, and the second, much smaller in size, in close proximity to Mediapart, at some distance 

from the Agence France Presse. The first group includes all the main titles of the French 

“mainstream” news media, whereas the second group is rich in innovative pure players. 

 Lyubareva et al. (2020) interpret originality in terms of information quality, and view it 

as a dimension of vertical differentiation of news outlets (they assume that, ceteris paribus, all 

consumers wish more originality). Our own interpretation emphasizes novelty and identifies 

the quality of information with its accuracy, construed as a bi-dimensional object involving an 

evaluation of both bias and noise. Thus, the type of differentiation at stake is viewed as 

horizontal. Note that the linguistic distance between the factual accounts published by the 

                                                           
19 See for example the recent survey by the Pew Research Center (2021) relative to the news media of the USA: 

https://www.pewresearch.org/fact-tank/2021/05/07/broad-agreement-in-u-s-even-among-partisans-on-

whichnews-outlets-are-part-of-the-mainstream-media/ 
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various news media is commonly found to be small in the literature of political science (as this 

is actually the case in the study of Lyubareva et al.). This latter type of facts leans toward an 

interpretation of the distinction between mainstream and alternative news medias as a form of 

horizontal, rather than vertical, differentiation. That is, such facts support the view that the news 

provided by the major mainstream and alternative media, considered from the standpoint of the 

journalistic standards and skills they implement, actually are very close in quality.  

 

8- Conclusion 

We studied the fact reporting activity of non-manipulative news providers operating on 

competitive markets for news. In this setup, consumers’ noise aversion results in the horizontal 

differentiation of news products. The general view sketched in the theorems suggests that most 

noise-averse consumers will actually choose their news provider in the vicinity of the 

“conventional” end of the market, and also that some, among the consistently “relative” bias-

averse individuals, will choose it at the opposite, noisy end.  

 We noticed in the introduction that the notions of bias and noise mobilized in this paper 

match those of Kahneman et al. (2021). The latter do not include news media in their wide-

ranging review of empirical findings relative to noise and human judgment. We concur with 

these authors in emphasizing the general relevance and importance of noise, both factually and 

normatively, as a basic determinant of the quality of information, and we claim that this general 

statement applies to the sub-field of news media as well.  

 Accurate fact reporting is a basic norm of good journalistic practice. It is debatable 

whether, and to what extent, the actual practices of journalism do conform with this professional 

norm. Nevertheless, it seems to us that intentional distortion, in the literal sense given to 

distortion in the present paper, is neither sustainable nor sustained in ordinary practice. 

Empirical evidence on this specific type of manipulative misreporting (i.e. the deliberate, 

systematic reporting of falsified facts) is mixed, to say the least, and the type of facts briefly 

mentioned in section 7 does not support the view that it is an ordinary or even a widespread 

practice of standard news media, whether mainstream or alternative. This remark does not apply 

to the more complex editorial practices involved in the notion of filtering bias of Gentzkow and 

al. (2015). They include the selection of editorially relevant topics, the interpretation of the 

corresponding facts, the way these facts are presented, commented, and included in an editorial 

narrative or framework. Bias, understood in the latter sense, is compatible with accurate fact 

reporting in the practical sense, that is, with the reporting of facts that are checked according 

to the ongoing journalistic standards for fact checking. It is extensively practiced, normatively 
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sustainable, and sustained as a legitimate expression of the diversity of opinions, whether 

political or otherwise. We also mentioned in section 3 the specific issues relative to the 

assumption of perfect competition in the case of the market for news. We excluded firms’ 

strategic motives for product differentiation from our setup for the sake of analytical clarity. 

Further research on this topic could reintroduce them by combining, for example, consumers’ 

noise aversion with filtering bias and Hotelling price setting on behalf of firms.  

The role that bias and noise play in the model, as determinants of the quality of 

information, and as characteristics (in Lancaster’s sense) of news products, owes much to the 

assumption that raw facts are described through a univariate normal distribution. We conclude 

below with a brief outlook over possible extensions to more general hypotheses for future 

research. 

 A first, and actually straightforward extension to the case of multivariate normal 

distributions would presumably preserve the main properties of the univariate case, with some 

additional complexities due to the fact that the covariance matrix then substitutes for the 

standard deviation in the calculation of the KL-divergence. Other extensions of the same type 

can be considered, to cases of statistical distributions yielding tractable formulas for this 

calculation. Kullback (1978) provides a comprehensive list, which notably includes Poisson 

and multinomial distributions.  

 A second extension would substitute Blackwell’s dominance criterion for KL-

divergence, in the characterization of accurate fact reporting. We mentioned in the introduction 

that this was the main option retained by Gentzkow et al. (2015) in their review of media bias 

theory. We moreover emphasized, in section 4, the close connection between noise aversion 

and the concavity of Bernoulli utility function. A setup which would characterize, jointly,  

accuracy through Blackwell’s criterion, and noise aversion through the concavity of Bernoulli 

utility functions, would have the great advantage of freeing the analysis from the specific 

characteristics of the statistical distributions describing raw data. A criterion of second-order 

stochastic dominance could be introduced, notably, in order to complement Blackwell’s first-

order dominance criterion in a way that would consistently integrate noise aversion in the 

evaluation of the quality of information. We suggest this type of approach as the most promising 

one, although presumably also the most demanding one, for future theoretical research on this 

topic.  
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Appendix I: Kullback-Leibler divergence and the maximum likelihood criterion 

 

We illustrate the well-known connection between K-L divergence minimization and likelihood 

maximization through the following basic textbook argument. Suppose that a media of type j  

collects, from the flow of raw data d , a sample of N  pairwise distinct, identically 

independently distributed observations 1{ ,..., }NS d d= . The empirical law of d  built from 

sample S  is 
1

1
ˆ ( ) ( )

N

ii
p s s d

N


=
= − , where : →  denotes the Dirac measure (i.e. 
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( )is d − is equal to 0 everywhere except at 0 where it is equal to 1). The firm believes that the 

true distribution is parametric, with unknown parameters  . Let p  denote the corresponding 

distribution. The K-L divergence of p  relative to p̂  reads: 
ˆ( )

ˆ ˆ( ) ( ) log
( )s S

p s
D p p p s

p s





= . 

A simple calculation yields: 
1

ˆ ˆ ˆ( ) ( ) log ( ) log ( )
s S s S

D p p p s p s p s
N

  
= −  . Let 

ˆ ˆ ˆ( ) ( ) log ( )
s S

H p p s p s


= −  denote the Shannon entropy of the empirical distribution. The 

first term in the difference above is equal to ˆ( )H p− . The second term in the difference, 

1
log ( )

s S
p s

N
 , is the log-likelihood of the parametric distribution (divided by the number 

of observations). For a firm of type j  that  wants  to estimate the parameters   from sample 

S , it is equivalent, in particular, to  deriving   from the  maximization  of the likelihood of p  

or to computing it from the minimization of ˆ( )D p p .  

 

Appendix II: Examples of calculable supply equilibria  

Example 2-Competitive supply equilibrium with convex costs  

We suppose technically separable data-processing and broadcasting activities as in Example 1, 

and moreover suppose parabolic costs for each of them, that is, 
2 2( , )j j j jc q z q z= + . The 

necessary first-order condition (f.o.c.) for profit maximization of Proposition 2-(i) readily 

implies that 2p = , that is, the competitive equilibrium price is determined by technology in 

this case. The necessary second-order condition (s.o.c.) of Proposition 2-(ii) is then satisfied, as 

2 * * 2 * * 2 * *2 ( , ) ( , ). ( , )qz qq zzp c q z c q z c q z= =  +   . The f.o.c. also implies that: 
*

*
1

z

q
= , that is, any 

profit-maximizing quality-scale mix * *( , )q z  must be located on ray  2( , ) :j j j jq z z q+ =  

(see Figure 2); and also 
* * * * * * * *. . ( , ). ( , ).q zp q z c q z q c q z z=  =  . Moreover, Euler’s identity for 

homogeneous functions implies 2. ( , ) ( , ). ( , ).j j q j j j z j j jc q z c q z q c q z z=  +   for all ( , )j jq z , and 

therefore * * * *. . ( , ) 0p q z c q z− = ; that is, the equilibrium profit is null. One easily verifies that 

22. . ( , ) ( )j j j j j jq z c q z q z− = − −  is null everywhere along ray  2( , ) :j j j jq z z q+ =  and 

negative otherwise. To sum up: the unique competitive equilibrium price of this example is 
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2p = ; any quality-scale mix * *( , )q z  of  2( , ) :j j j jq z z q+ =  maximizes type j ’s profit at 

this price; the equilibrium profit is null.  

 

Example 3-Symmetric log-linear supply function  

We consider here a variant of Example 2, with an additively separable, symmetric, strictly 

convex cost function of the type ( , )j j j jc q z q z = + , 2  . The f.o.c. for profit-maximization 

readily implies 
*

*
1

z

q
=  and 

1

2
* * p

q z




− 
= =  

 
. We obtain 

2 * * 2 * * 2 * *( , ) ( , ). ( , ) ( 1).qz qq zzc q z c q z c q z p p +   = −   for all  0p  , which implies that 

1 1

2 2
* *( , ) ,

p p
q z

 

 

− −
 
    =        
 

 is then  the  unique  profit-maximizing  quality-scale mix. If 

0p = , then the unique profit-maximizing  quality-scale  mix  is  obviously the null supply 

(0,0) , generating  a null profit. That is, the supply function of  each firm of type j  is well-

defined over + . It reads 

1 1

2 2

( ( ), ( )) ,j j

p p
q p z p

 

 

− −
 
    =    
    
 

. Euler’s identity for 

homogeneous functions and the f.o.c. together imply 

* * * * * * * * * *. ( , ) ( , ). ( , ). 2. . .q zc q z c q z q c q z z p q z =  + = , and therefore 

* * * * * * * *. . ( , ) . . ( , ) 0
2

p q z c q z p q z c q z


−  − =  for all 0p  . That is, the maximized profit is 

positive if (and only if) the price is positive.20 

 

  

                                                           

20 Note that 
( , )

( , )

j q j j

j z j j

z c q z

q c q z


=


 at firm’s equilibrium, which means that “proportion” 
j

j

z

q
 is equal to the marginal 

rate of substitution 
( , )

( , )

q j j

z j j

c q z

c q z




 at any profit-maximizing quality-scale  mix ( , )j jq z . It seems reasonable to expect, 

under real conditions, a small marginal cost of broadcasting ( , )z j jc q z , relative to the marginal cost of quality 

( , )q j jc q z , that is, a large marginal rate of substitution at equilibrium. Equilibrium conditions then imply a  large 

ratio 
j

j

z

q
, corresponding to the wide broadcasting of information sheets of equilibrium quality jq . Naturally this 

feature of actual mass-media markets is not captured through the symmetric cost functions of the former two 

examples. 
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Appendix III: Proofs 

 

Proof of Proposition 1: This follows, as a special case, from Kullback (1978), Theorem 3.1 of 

chapter 2. ■ 

 

Proof of Proposition 2: Propositions 2-(i) and 2-(ii) are clear enough. The proof of the 

remainder is a simple consequence of the computation of the following first and second partial 

derivatives of function  . We get 
2 2 2

3

( )
( , )x

x y
x y

x

 


− − −
 = , which readily implies 

Propositions 2-(iii) and 2-(iv). We have 2

2

1
( , ) 0yy x y

x
 =   for all ( , )x y ++  . This 

implies the strict convexity of partial functions ( , )y x y→  for all x ++ .■ 

 

Proof of Proposition 3: Recall that we assume that the cost function is 
2C  in 

2

++  and strictly 

convex.  

The differentiability assumption implies that the first-order necessary conditions and the 

second-order conditions for an interior solution to 

    max . . ( , ) : ( , ) 0, 0,j j j j j jp q z c q z q z−  +  +  hold true at * *( , )q z  (e.g. Mas-Colell 

(1985), D1 and D2).  

The first-order necessary conditions read 
* * * * * *. ( , ) . ( , ) 0q zp z c q z p q c q z− = − = . 

They entail Proposition 3-(i).  

 The Hessian matrix of ( , ) . . ( , )j j j j j jq z p q z c q z→ −  at * *( , )q z  reads 

2 * * 2 * *

* *

2 * * 2 * *

( , ) ( , )
( , )

( , ) ( , )

qq qz

zq zz

c q z p c q z
H q z

p c q z c q z

 − −
=   −  − 

. Its diagonal elements are 0 , by strict 

convexity of the cost function. Its determinant reads 

( )
2

* * 2 * * 2 * * 2 * *( , ) ( , ). ( , ) ( , )qq zz qzH q z c q z c q z p c q z=   − − . Sylvester’s criterion implies therefore 

that the matrix is negative semi-definite (resp. negative definite) if and only if 
* *( , ) 0H q z   

(resp. 
* *( , ) 0H q z  ). 
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 The second-order necessary condition for an interior solution to 

    max . . ( , ) : ( , ) 0, 0,j j j j j jp q z c q z q z−  +  +  (i.e.  a negative semi-definite * *( , )H q z ) 

entails Proposition 3-(ii). 

 Finally, suppose that 2 * * 2 * * 2 * *( , ) ( , ). ( , )qz qq zzp c q z c q z c q z−    .  Then * *( , )H q z  is 

negative definite. Moreover, it remains so in some open neighborhood V  of * *( , )q z  in 2

++
, 

by continuity of function ( , ) ( , )j j j jq z H q z→ . This implies in turn that 

( , ) . . ( , )j j j j j jq z p q z c q z→ −  is strictly concave in V . Let us prove that * *( , )q z  is the unique 

solution to     max . . ( , ) : ( , ) 0, 0,j j j j j jp q z c q z q z−  +  + . Suppose the contrary, that is, 

suppose that there exists 
* *( , ) ( , )j jq z q z  that solves 

    max . . ( , ) : ( , ) 0, 0,j j j j j jp q z c q z q z−  +  + , and let us derive a contradiction. By 

assumption, we have 
* * * *. . ( , ) . . ( , )j j j jp q z c q z p q z c q z− = − . For any real number  0,1 , let 

( , )j jq z 
 denote convex combination 

* *.( , ) (1 ).( , )j jq z q z + − . We have ( , )j jq z V   for any 

0   picked sufficiently close to 0. The strict concavity of ( , ) . . ( , )j j j j j jq z p q z c q z→ −  in V

then implies : 

( ) ( )* * * * * * * *. . ( , ) . . . ( , ) (1 ). . . ( , ) . . ( , )j j j j j j j jp q z c q z p q z c q z p q z c q z p q z c q z     −  − + − − = − , 

the wished contradiction.■ 

Proof of Proposition 4: We have 

2

2

( )1 1
( , ) ( ) exp

22

j

e jj j

i j j i e e

jj

n
V u n dn


 

 

+

−

 −
= −  

 
 . Let 

j

e jj

e

j

n
v





−
=  and 21 1

( ) exp ( )
22

j j

e eg v v


 
= − 

 
, and apply the following change of variable: 

( , ) ( . ). ( )j j j

i j j i e j j e eV u v g v dv   
+

−
= + .  

Differentiating with respect to 
j , we get: 

( , ) ( . ). . ( )
j

j j j j

i j j i e j j e e eV u v v g v dv    
+

−
 =  + . Function g  is positive and symmetrical, that 

is, ( ) 0j

eg v   and ( ) ( )j j

e eg v g v= −  for all j

ev  . Function iu  is decreasing, by strict concavity 

of iu . Therefore, for all 0j

ev  , we have ( ) ( ) 0j j j j

e e e ev g v v g v= −   and 

( ) ( )j j j j

i e e j i e e ju v u v    − +   + . These inequalities together imply 
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( ). . ( ) ( ). . ( )j j j j j j j j

i e e j e e i e e j e eu v v g v u v v g v    − + −   +  for all 0j

ev  . Integrating both sides of 

the latter inequality, we get:  

0 0
( ). . ( ) ( ). . ( )j j j j j j j j j j

i e e j e e e i e e j e e eu v v g v dv u v v g v dv   
+ +

 − + −   +   

The left-hand side of this inequality is equal to 
0

( ). . ( )j j j j j

i e e j e e eu v v g v dv 
−

−  + . Therefore we 

get 0 ( , ) ( , , )
j ji j j i j jV U p      =  . 

Differentiating with respect to 
j , we get: 

( , , ) ( , ) ( . ). ( )
j j

j j j

i j j i j j i e j j e eU p V u v g v dv      
+

−
 =  =  +  

Since the sign of ( . )j

i e j ju v   +  is indeterminate, the sign of ( , , )
j i j jU p    is 

indeterminate as well.■ 

 

Proof of Proposition 5: We suppose that 
*

1
.exp

q
  

 
   

 
.  

(i) We have *

1
( ) 4. log .

x
h x x

q 

  
 = −   

  
. Therefore ( )h x  is >0 over 

*

1
, .exp

q
 
  
  

  
(and 

actually over 
*

1
0, .exp

q


  
  

  
), =0 at *

1
.exp

q


 
 
 

, and <0 over 
*

1
.exp ,

q

  

+  
  

. In particular, 

function h  reaches a maximum at 
*

1
.expx

q


 
=  

 
 over  , + . Moreover, we have 

2

2

* *

1 1
.exp .exp 0h

q q
  
      

= −       
      

 and lim ( )
x

h x
→+

= − . The continuity of h  then 

implies the existence of at least one 
*

1
.exp ,x

q

  

 +  
  

 such that ( ) 0h x = . Since h  is 

(strictly) decreasing over 
*

1
.exp ,

q

  

+  
  

, the latter is unique. It is denoted by *( )q  below.  

(ii) We have ( ) 2

*

2
0h

q
 =   and ( ) 0h x   for all 

*

1
, .expx

q
 
  

  
  

. Therefore, function 

h  is positive over 
*

1
, .exp

q
 
  
  

  
. The proof of part (i) moreover implies that h  is positive 
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also over 
*

*

1
.exp , ( )q

q
 
  
  

  
, and that *( ( )) 0h q = . Therefore h  is well-defined over 

*, ( )q    , positive over 
*, ( )q    , and such that *( ( )) 0h q = . We have 

1 ( )
( ) .

2 ( )

h x
h x

h x


 = , which is therefore finite over 

*, ( )q    , >0 over 
*

1
, .exp

q
 
  
  

  
, =0 at 

*

1
.exp

q


 
 
 

, and <0 over 
*

*

1
.exp , ( )q

q
 
  
  

  
. In particular, h  is increasing over 

*

1
, .exp

q
 
  
  

  
, and decreasing over 

*

*)
1

.exp , (q
q

 
  
  

  
. It is clearly C

 over 
*, ( )q     

and such that 
* )(

lim ( )
x q

h x
 −→

 = − .  

(iii) We have 
2

*

1
( ) 4. 1 log

x
h x

q 

  
 = − − +   

  
. This implies that 

2 ( ) 0h x   for all 

*

1
.exp 1 ,x

q

  

 − +  
  

. Since 
* *

1 1
.exp 1 .exp

q q
 

   
−    

   
, there exists a positive real 

number *

1 1
1 . .exp

e q
 

  
= −   
   

 such that 
2 ( ) 0h x   for all 

*

1
.exp ,x

q
 

  
 − + +  

  
. 

 We have 
( )

2

2 2 ( )1 1
( ) . ( ) .

2 ( )2 ( )

h x
h x h x

h xh x

 
 =  − 

 
 

 wherever it is well-defined. We 

established above that 
2h  is negative over 

*

*

1
.exp , ( )q

q
  

  
− +  

  
, and that h  is  positive 

over 
*, ( )q    . Therefore, there exists a positive real number 

*

1
min , .exp

q
   

  
= −  

  
 

such that 
2 ( ) 0h x   for all 

*

*

1
.exp , ( )x q

q
  

  
 − +  

  
. 

(iv) We have 
2

( , ) 0y

y
x y

x




−
 =   for all 0x   and all y  . Part (iv) therefore is a simple 

consequence of part (i) and of the implicit function theorem applied to  
*

1
( , )x y

q
 =  at any 

*( , ) ( )x y F p  such that 
*( )x q .  
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(v) Recall that  *

*

1
( ) ( , ) , : ( , )j j j jF p

q
     

 
=  +  = 
 

. Function   being C
 and 

such that 
* 2 2

*

* 3

( )
( ( ), ) 0

( )
x

q
q

q

 
  



−
 =  , the implicit function theorem implies the existence 

of  ++  and of a function  ,:g   − + →  that is  C
, and such that *( ) ( )g q = , 

*

1
( ( ), )g y y

q
 = , and 

( ( ), )
( )

( ( ), )

y

x

g y y
g y

g y y






 = −


 for all   ,y    − + . Let 

1 h = +  and 

2 h = − . Function g , restricted to  ,  +  (resp.  , − ), is the local inverse of 1  

(resp. 2 ).  

 ( ),g   +  and  ( ),g  −  are open intervals diffeomorphic to  ,  +  and 

 , −  respectively. Let  f  (resp.  k ) denote the inverse of the restriction of h  (resp. 

h− ) to  ( ),g   +  (resp.  ( ),g  − ).  By construction we have ( ) ( )g y f y = −  for 

all  ,y   +  and ( ) ( )g y k y = −  for all  ,y   − . Moreover, by symmetry, we have 

 ( )  ( ), ,g g    + −=  (this holds true because 

( ) ( ) ((2 ) ) (2 )g y f y k y g y   = − = − − = −  for all  ,y   + , and 2 y −  runs over 

 , −  when y  runs over  ,  + ).  

We know from parts (ii) and (iii) of the proof above that h  is C
, decreasing and 

differentiably strictly concave over  ( )  ( ), ,g g    + −=  if   is picked sufficiently 

close to 0. f  is decreasing, as inverse of decreasing h . Moreover, 

( )

2
2

3

h f
f

h f


 = −


. 

Therefore ( ) ( ) 0g y f y  =  −   and 
2 2( ) ( ) 0g y f y  =  −   for all  ,y   + . That is, g  

is decreasing and differentiably strictly concave over  ,  + . We establish in the same way 

that g  is increasing and differentiably strictly concave over  , −  (since 

( )

( )( )

2

2

3

h k
k

h k

 −
 = −

 −

, ( )2 0h −   and ( )h − >0).  
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We have 
2 2 2

3

( )
( , )x

x y
x y

x

 


− − −
 =  and 

2
( , )y

y
x y

x




−
 = , and therefore 

( )
2 2 2

( )
( )

( ) ( )

g y y
g y

g y y



 

−
 = −

− − −
 for all   ,y    − + . Differentiating the latter identity, 

and observing that ( ) 0g  = , we get 
2 ( ) 0g  = .■ 

 

Proof of Theorem 1: (i) We know from Proposition 5 that 
*( )F p  is nonempty and compact 

under the assumptions of Theorem 1. The continuity of utility functions therefore implies the 

existence of at least one maximum of iU   in 
*( )F p  for all i .   

(ii) We know from Proposition 4 that, under the assumptions of Theorem 1, iU   exhibits 

distortion aversion in 
*( )F p  for all i , that is, utility functions are decreasing both in j −  

and in 
j  over 

*( )F p . Recall that 
1 h = +  and 

2 h = − . Noise aversion implies 

( )*, ( ), 0i j k jU p      for all 
*

1
, .expx

q
 
  

  
  

. Bias aversion implies 

( )*, , 0i j jU p     if j   and ( )*, , 0i j jU p     if j  . The latter and Proposition 

5 then imply ( )*, ( ), . ( ) 0i j k j k jU p        for all 
*

1
, .expx

q
 
  

  
  

, 1, 2k  = . 

Therefore functions ( )*

1, ( ),j i j jU p   →  and ( )*

2, ( ),j i j jU p   →  are decreasing over 

*

1
, .exp

q
 
  
  

  
, that is, ( ) ( )* *, ( ), , ( ), . ( ) 0i j k j i j k j k jU p U p         +     for all 

*

1
, .expx

q
 
  

  
  

, 1, 2k  = . This readily implies that the set of maxima of iU   in 
*( )F p  is 

contained in ( ) ( )  *

1 2 *

1
, ( ) , , ( ) ( , ) ( ) : .expj j jF p

q
         

  
    

  
. Finally, 

*

*

1
( , ) ( ) : .expj j jF p

q
   

  
   

  
= ( ) 2

* 2 2( , ) ( ) :j j j jF p      −  −  as a 

consequence of Proposition 5.  

(iii) In this third part of the proof, we assume that iU  is quasi-concave and displays relative 

noise aversion. 
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 Let * *( , )   denote a maximum of iU   in 
*( )F p .  

 We first establish that * *( , )   must be either a local maximum of iU   in 

*

1
( , ) : ,  ( , )j j j j j

q
      

 
    

 
 or a local maximum of iU   in 

*

1
( , ) : ,  ( , )j j j j j

q
      

 
    

 
. Suppose the contrary. Then there exist 

ˆ ˆ( , )j j     and ( , )j j     such that :  ˆ
j  , 

*

1
ˆ ˆ( , )  j j

q
    and 

* *ˆ ˆ( , ) ( , )i j j iU U     ; and 
j  , 

*

1
( , )  j j

q
    and 

* *( , ) ( , )i j j iU U    . By 

continuity of  , there exists some real number  0,1  such that 

*

1
ˆ ˆ( (1 ) , (1 ) )  j j j j

q
      + − + − = . We have ˆ (1 )j j   + −  . And the quasi-

concavity of iU  implies 
* *ˆ ˆ( (1 ) , (1 ) ) ( , )i j j j j iU U       + − + −  , a contradiction.  

 We suppose from now on that *   and we derive a contradiction.  

Suppose first that  *   and * *( , )   is a local maximum of iU   in 

*

1
( , ) : ( , )j j j j

q
    

 
   

 
. The first-order necessary conditions (f.o.c.) for a local 

maximum of iU   in 
*

1
( , ) : ( , )j j j j

q
    

 
   

 
 read as follows (e.g. Mas-Colell (1985), 

D1): There are ( , )  + +   such that  

(a) ( , ) 0   , 

(b) 
* *

*

1
. ( , ) 0

q
   
 

− = 
 

,, 

(c) and 
* * * * * * * * * *. ( , , ) . ( , ) . ( , , ) . ( , ) 0i x i yU p U p               +  =  +  = . 

 Since * *( , )   is a maximum of iU   in 
*( )F p  such that 

*  , we must have 

*

* 1
.exp

q
 

 
 
 

 by part (ii) of the proof above. Proposition 5 then implies * *( , ) 0x    . 

Moreover, absolute noise aversion implies * * *( , , ) 0iU p    . The f.o.c. (a) and (c) above 

then imply that multipliers   and   are both >0.  
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 The same conclusions apply, with obvious adaptations, if we suppose that *   and 

* *( , )   is a local maximum of iU   in 
*

1
( , ) : ( , )j j j j

q
    

 
   

 
 (simply substitute 

f.o.c. (c’) 
* * * * * * * * * *. ( , , ) . ( , ) . ( , , ) . ( , ) 0i x i yU p U p               −  =  −  =  for f.o.c. 

(c) in the argument above).  

Suppose now that ( )* *

*

1
.exp q

q
  

 
 

 
. We established in Proposition 5 that, then, 

( )
( )

* *

* *

,

,

x

y

  

  


−


 is well-defined and 0 . Since  ,  ,  ( )* *,x    and  ( )* *,y    are all  

0 , ( )* * *, ,iU p    and ( )* * *, ,iU p    must be 0  as well by f.o.c. (c) and also by f.o.c. 

(c’).  F.o.c. (c) and (c’) then both imply in turn that  
( )
( )

( )
( )

* * * * *

* * * * *

, , ,

, , ,

i x

i y

U p

U p





    

    

 
− = −
 

, 

which contradicts relative noise aversion. Therefore ( )** q = .  

 Up to this point, we have established that *   implies ( )** q = . We now prove 

that *( ( ), )q  is a local (strict) minimum of iU   in 
*( )F p .  

 From Proposition 5, there exists  ++  and a C


 function  ,:g   − + →  such 

that *( ) ( )g q =  and 
*( ( ), ) ( )g y y F p  for all   ,y    − + . Consider function 

 : ,iW   − + →  defined by *( ) ( ( ), , )i iW y U g y y p= . It will suffice to prove that 

*( ( ), )q  is a (strict) minimum of the latter function.  

 For all   ,y    − + , we have: 

* *( ) ( ( ), , ). ( ) ( ( ), , )i i iW y U g y y p g y U g y y p  =   +  

 Absolute noise aversion implies *( ( ), , ) 0iU g y y p   for all   ,y    − + . 

Absolute bias aversion implies 
*( ( ), , ) 0iU g y y p   for all   ,y    +  and 

*( ( ), , ) 0iU g y y p   for all   ,y   −  (and therefore 
*( ( ), , ) 0iU g p   =  by continuity 

of the first derivative and of function g ).  

Function g  is the local inverse of function 1 h = +  (resp. 2 h = − ) over  

 ,  +  (resp.  , − ), and we have in particular 
( )

( ) 1

1

( ), 1
( )

( ), ( ( ))

y

x

g y y
g y

g y y g y



  −


 = − =

 
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for all   ,y    +  and   
( )

( ) 1

2

( ), 1
( )

( ), ( ( ))

y

x

g y y
g y

g y y g y



  −


 = − =

 
 for all   ,y    − . We 

deduce from this fact and Proposition 5 that 
( )

( )

( ),
0

( ),

y

x

g y y

g y y






− 


 for all   ,y    +  and 

( )

( )

( ),
0

( ),

y

x

g y y

g y y






− 


 for all   ,y   − .  

Relative noise aversion then implies that ( ) 0iW y   for all   ,y   −  and 

( ) 0iW y   for all  ,y    + . This fact and the continuity of  
iW  imply in turn that 

( ) ( )i iW W y   for all  ,y    − + , with a strict inequality for all y  , the contradiction 

we were looking for. This concludes the proof of part (iii). 

(iv) The reasoning developed in part (iii) identically applies to the proof of part (iv), with 

obvious adjustments implying that *( ( ), )q   is a local maximum of iU   in 
*( )F p  (relative bias 

aversion  implies  that  ( ) 0iW y    for  all    ,y   −   and ( ) 0iW y   for all  

 ,y    + ).21■ 

 

Proof of Theorem 2: Part (i) is established as part (i) of the proof of Theorem 1. Let us prove 

part (ii). We assume that iU  is quasi-concave and prone-to-bias. And we let * *( , )   denote a 

maximum of iU   in 
*( )F p . We have to prove that 

*

*

1
, .exp

q
  

  
  

  
.  

 If * =  there is nothing to prove. We therefore suppose from there on that *  . 

 We first establish that ( )* *q  . This is done by means of a variant of the argument 

developed in the last part of the proof of part (iii) of Theorem 1. Let iW  be defined as in part 

(iii) of Theorem 1, and recall that 
* *( ) ( ( ), , ). ( ) ( ( ), , )i i iW y U g y y p g y U g y y p  =   +  for all  

                                                           
21 Note that, as a by-product of the proof of part (iv) of Theorem 1, if * * *( , ) ( ( ), )q   = is a maximum of  

iU  

in 
*( )F p , then it must be a local maximum of 

iU  subject to  
*

1
( , )j j

q
    , in the case of relative noise-averse 

preferences. Precisely, in such a case we have * *( ( ), , ) 0iU q p    ,  
* 2 2

* *

* 3

( )
( , ) 0

( )
x

q

q

 
  



−
 =   and  

* * *( ( ), , ) 0 ( ( ), )i yU q p q      = =  . The f.o.c. (a) and (c) or (a) and (c’) then imply that the multipliers are 

both positive. The latter fact and inequalities * *( ( ), , ) 0iU q p     and  
* 2 2

* *

* 3

( )
( , ) 0

( )
x

q

q

 
  



−
 =   are then 

inconsistent with f.o.c. (c’).  
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 ,y    − +  for some 0  and some C
 function  ,:g   − + →  such that 

*( ) ( )g q = , ( ) 0g y   for all  ,y    +  and ( ) 0g y   for all  ,y   − . Absolute 

noise aversion implies *( ( ), , ) 0iU g y y p   for all   ,y    − + . Prone to bias 

preferences imply that either 
*( ( ), , ) 0iU g y y p   for all   ,y    +  or  

*( ( ), , ) 0iU g y y p   for all   ,y   − . We have therefore either ( ) 0iW y   for all  

 ,y    +  or  ( ) 0iW y   for all   ,y   − . This fact and the continuity of iW  imply 

in turn that either * * *( ( ), , ) ( ( ), , )i iU g y y p U q p   for all   ,y    +  or  

* * *( ( ), , ) ( ( ), , )i iU g y y p U q p   for all   ,y   − . Therefore ( )* *q  . 

 At the beginning of the proof of part (iii) of Theorem 1, we established that, as a 

consequence of the quasi-concavity of iU , any maximum of  iU  in 
*( )F p  must be either a local 

maximum of iU   in 
*

1
( , ) : ,  ( , )j j j j j

q
      

 
    

 
 or a local maximum of iU   in 

*

1
( , ) : ,  ( , )j j j j j

q
      

 
    

 
. 

Suppose first that * *( , )   is a local maximum of iU   in 

*

1
( , ) : ,  ( , )j j j j j

q
      

 
    

 
. Since we assumed *  , we can suppose, 

equivalently, that * *( , )   is a local maximum of iU   in 
*

1
( , ) : ( , )j j j j

q
    

 
   

 
. 

Therefore * *( , )   verifies the following set of first-order necessary conditions: There are 

( , )  + +   such that  

(a) ( , ) 0   , 

(b) 
* *

*

1
. ( , ) 0

q
   
 

− = 
 

,, 

(c) and 
* * * * * * * * * *. ( , , ) . ( , ) . ( , , ) . ( , ) 0i x i yU p U p               +  =  +  = . 

 Since * *( )q  , we have * *( , ) 0y     and *   by Proposition 5. Moreover: 

absolute noise aversion implies * * *( , , ) 0iU p    ; and prone-to-bias preferences imply 

either * * *( , , ) 0iU p     if *   or * * *( , , ) 0iU p     if *  . The f.o.c. (a) and (c) 
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above then imply that multipliers   and   are both >0. The latter,  * * *( , , ) 0iU p     and 

f.o.c. (c) then imply in turn that * *( , ) 0x    . 

 The same conclusions apply, with obvious adaptations, if we suppose that *   and 

* *( , )   is a local maximum of iU   in 
*

1
( , ) : ( , )j j j j

q
    

 
   

 
 (simply substitute 

f.o.c. (c’) 
* * * * * * * * * *. ( , , ) . ( , ) . ( , , ) . ( , ) 0i x i yU p U p               −  =  −  =  for f.o.c. 

(c) in the argument above). 

 From f.o.c. (c) and (c’) we deduce then that 
( )
( )

( )
( )

* * * * *

* * * * *

, , ,

, , ,

i x

i y

U p

U p





    

    

 
− = −
 

. 

Absolute noise aversion and prone-to-bias preferences then imply that either 
( )
( )

* *

* *

,
0

,

x

y

  

  


− 


 

if  *   or 
( )
( )

* *

* *

,
0

,

x

y

  

  


− 


 if  *  . From this fact and Proposition 5 we deduce that 

*

*

1
, .exp

q
  

  
  

  
, which concludes the proof of Theorem 2.■22 

                                                           
22 Note again that, as a by-product of the proof of Theorem 2, the sign of the multipliers   and    and of partial 

derivatives ( )* * *, ,iU p    and ( )
*

* *

* 2
,

( )
y

 
  



−
 =  are inconsistent with f.o.c. (c), that is, an interior 

maximum of  
iU  in 

*( )F p  must be a local maximum of 
iU  subject to  

*

1
( , )j j

q
    in the case of noise-averse, 

prone-to-bias preferences. 


