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Most organ transplants are from dead donors. National transplant organizations exhibit considerable
differences in terms of their donor population rates. Spain's organization is by far the most efficient in this
respect. We argue that much of the productivity advantage of Spain's transplant organization proceeds from
an efficient organization of the production chain, from organ procurement to transplantation. Transplants
from dead donors are analogous to a common resource for the transplant community. Their circulation
through the national transplant organization creates public good externalities between the care units in
charge of organ retrieval and those in charge of transplantation. A socially efficient production of transplant
care services obtains through an optimal control, by the national transplant agency, of both the circulation
and the production of transplants. In particular, transplant shortage makes the rotten kid theorem fail in this
context. The analysis also produces a natural measure of public good externalities, evaluated from the
standpoint of care units.
Mercier Ythier).
2 Emphasis added

ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The demand for life-saving transplant surgery is growing in most
countries. However, the organ donor rates as well as the total number
of transplants differ tremendously from one country to another.
During the last ten years, Spain appears as the champion of the dead-
donor league. Considering that 90% of organ transplants, in general,
are coming from dead donors,1 it is crucial to understand the reasons
for such a success. In practice, the Spanish transplant system improves
survival, it increases organ demand, and more and more people are
taking advantage of transplantation. For many commentators, these
achievements clearly show that organ donation is the limiting factor
in treating certain pathologies. This is certainly partly true, but still
insufficient to explain the differences, in terms of production
efficiency, of transplant care systems around the world. We argue in
this article that the problem is not only, and perhaps not mainly, with
the lack of donors per se, but, rather, with the organization of the
transplant system, and notably of its production side. A recent report
of the Rand Corporation about organ donation and transplantation in
the European Union thus states that «the Spanish model is an
outstanding example of how organizational changes in the trans-
plantation system can increase the number of organs available from
deceased donors. Based on the premise that the greatest barrier to
organ transplantation was not a lack of suitable donors but the failure to
identify and ‘convert potential into real donors’,2 the Spanish govern-
ment founded the National Transplant Organisation (ONT) in 1989
and began to set up a nationwide system to monitor potential organ
donors.» (Tiessen et al., 2008, p. 38).
.
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Table 1
Organs donor rates per 1 million population in 2006.

2006

Australia 9
Canada 14.8
France 25.3
Greece 5.8
Israel 7.7
Italy 20.9
Spain 36.4
Sweden 14.5
UK 13
United States 26.6
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The differences in donation rates between countries are commonly
explained by the differences between the “opt-in” and the “opt-out”
legal systems for organ donation. In the opt-out donation system,
consent is presumed for deceased donors unless she/he registered on
an appropriate refusal file when alive. In most opt-out systems, the
next of kin's approval is also required. In the opt-in system of
donation, on the contrary, those willing to give their organs upon
death must sign up as donors. Countries with opt-out systems have
higher deceased-donor rates on average. However, the evolution of
most countries in the western world during the recent period is
clearly opt-out oriented. Moreover, one observes considerable
differences in the donation rates of countries that have the same
legal regime (e.g., Spain and France) and similar donation rates in
countries with opposite legal systems (e.g., France and the USA: see
Table 1 of Section 2). The report of the Rand Corporation is categorical
on this subject: “Only around 3% of all people dying in hospitals are
potential donors. The conversion of this potential depends on the
willingness of patients and their families to donate organs and the
participation of hospitals in organ retrieval activities.3 While public
debate often centres on public awareness of organ donation and the
organization of consent systems, recent research and experience from
piloting new approaches point to the organizational aspects of organ
donation as one of the most important factors influencing organ
procurement rates.4” (Tiessen et al., 2008, p. 12).

A surprisingly small number of papers concentrate on organization
aspects in the economic literature on organ transplants. Notable
exceptions are the contributions of Roth et al. (2005a,b, 2006). They
consider the case of live kidney donations, and design theoretical
patterns of gift-exchange for efficient pairwise matching of kidney
donors and recipients from a given set of pairs of incompatible donor
and recipient. They present numerical simulations of the impact of
such discrete optimization procedures on transplant provision, and
consider the practical implementation of these procedures by means
of specialized clearinghouses (Roth et al., 2005a).

The quasi-contractual arrangements between pairs of beneficiaries
and living donors involved in these models of Pareto-efficient gift-
exchange do not apply to cadaveric donation. Economic analysis
misses a model of efficient allocation of cadaveric transplants,
whereas the latter constitute the bulk of actual transplant resources
as recalled above. Such a model should capture, notably, the following
three interrelated features, common to (most) actual transplant
economies: (i) organ retrieval is performed at some cost by care units;
(ii) a non-profit national agency collects transplants, and redistributes
them to care units for transplantation; (iii) transplant markets are
banned, and, in particular, the compensation received by a care unit
procuring an organ to the agency reduces to the payment of the cost of
inputs consumed in organ retrieval. We develop a simple model of
this type below, which, we argue, captures essential features of the
3 Emphasis added.
4 Emphasis added.
Spanish experience and provides theoretical underpinnings for some
of the main policy recommendations that it has inspired (e.g., Tiessen
et al., 2008, notably points 1 and 2 of their list of causes of the Spanish
success on p. 39).

The model of the transplant economy may be described informally
as follows. The ban onmarkets of organsmakes transplants a common
resource, collected mainly by “exhortation,” that is, notably, by public
calls for donation (Thorne, 2000, 2006). The bulk of the “resource” is
constituted by brain-dead patients randomly distributed in hospitals
through the statistical variety of death circumstances, and physically
non-transferable for a variety of reasons that notably include the
stringent legal obligations relative to the body of the deceased. This
initial distribution of the common resource is naturally mismatched,
in general, with the statistical distribution of the needs in grafts for
transplantation in care production units. Operating an appropriate
match of resources and “needs” in transplant inputs is the basic reason
for the existence of institutions in charge of circulating grafts, such as
national transplant agencies, as substitutes for banned transplant
markets. Grafts are produced by hospitals, and circulated by the
transplant agency, to be used by other hospitals as inputs in their final
production of transplant care services. A hospital's intermediary graft
production thus induces public good external effects on others' final
production of care services. The resulting public good issues are
captured through principal–agent interactions, in subgame-perfect
equilibria of two-stage games where hospitals are only concerned
with their own final production of care services while the transplant
agency maximizes a social utility function that aggregates hospitals'
preferences (Bergstrom, 1989; Cornes and Silva, 1999). It is notably
shown that an optimal control of the agency over both the circulation
and the production of graft inputs achieves production optimum an
optimal control by the agency of circulation alone generally implies
suboptimal under-provision of transplant inputs and services. In
particular, transplant shortage makes the rotten kid theorem fail in
this context.

The analysis also yields, as a by-product, a useful theoretical
measure of public good externalities in the transplant system,
computed from the standpoint of each hospital. This measure can be
used, notably, as an indicator of tension on a hospital's graft resources
at the optimum and at the equilibrium of the transplant system.

The paper develops as follows. Section 2 analyzes the Spanish
transplant organization. Section 3 presents the model of the
transplant care system. Section 4 sets and solves the public good
problem of graft production and circulation. Section 5 concludes. An
appendix collects the proofs.

2. Spain's transplant organization

The history of organ transplantation in Spain begins in 1965, with
the first transplants inMadrid and Barcelona. In 1979, a law is adopted
to favour the development of transplantation, but donations remain at
a low level during the eighties. In 1989, the Organizacion Nacional de
Trasplantes (ONT) is created to solve this problem. This institution is
attached to the Ministry of Health and Consumption, and is in charge
of developing the competencies relative to the provision and clinical
utilization of organs and tissues. To carry out these tasks, it functions
as a technical operative unit and fulfils its mission of coordinating the
activities of donation, extraction, preservation, distribution, exchange,
and transplantation of organs and tissues throughout the whole
Spanish Health Care System. At the creation of the ONT, the main idea
was that the problem was not with the number of donors but with
their identification and the organization of the program.

After the creation of the ONT, Spain went from 14 donors per
million population (pmp) in 1989 to 36.4 donors pmp in 2006. This
evolution displayed in the graphic below made Spain evolve from
donation rates ranked in intermediate-low positions in Europe to the
highest rate not just in Europe, but also worldwide.



Table 2
Projections of the 2006 Spanish rate on other countries.

Cadaveric donorsa Kidney transplantsa Patients awaiting for
a transplant in 2007b

Australia 202 330 1388
Australia 565 1334 343
Canada 468 712 4195
Canada 1151 1751 1705
France 1441 2352 6491
France 2073 3383 4511
Greece 74 144 903
Greece 464 903 144
Israel 68 87 540
Israel 321 411 114
Italy 1239 2932 7096
Italy 2157 5106 4074
UK 633 1240 6876
UK 1772 3472 3472
United States 8022 10,659 76,313
United States 10,909 14,496 55,767

Numbers in italic are calculated using the national rates of Table 1.
a Source: IRODaT 2006.
b Source: Council of Europe, Transplant Newsletter, September 2008.
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The origin of this spectacular change is internationally known as
the “Spanish Model,” a series of measures taken in this country to
improve organ donation. Thismodel, widely described in the scientific
literature, has been recommended by the World Health Organization
and is being applied in different regions of the world with outcomes
very similar to those obtained in Spain.

The Spanish transplant law is similar to the corresponding laws in
other Western countries. Although the law on transplant donation
presumes the consent of deceased potential donors, according to a
subsequent decree, relatives of a potential donor must be approached
to determine the deceased's wishes regarding organ donation. In the
absence of this knowledge, close relatives can sign the authorization,
after internal discussion if required. At present, Spain's annual refusal
rate for organ donation is around 15% of all donation interviews.
Death is defined as the total and irreversible cessation of brain or
cardio-respiratory functions. Clinical evaluation and complementary
tests required are detailed within the legal text allowing organ
retrieval either from brain-stem death donors or from non-heart-
beating donors. Like other coordinating systems worldwide, the
Spanish system has tomonitor themanagement of waiting lists, organ
allocation, and statistical analysis. Nevertheless, it was considered
that a continuous monitoring system over the entire organ donation
process was essential. A network of healthcare professionals respon-
sible for the organ donation process as a whole has been set up at all
levels (national, regional and hospital). This implies the need for
training, organization and coordination of activities.

It was considered that these professionals working at the grass-
roots level must feel involved and that they must be accountable for
performance. Most of them are physicians, mainly intensive care unit
(ICU) specialists, and they belong to the staff of the hospital. They
generally continue in their medical role, but, as transplant coordina-
tors, their main objective is to improve the organ donation rate.
Currently, 155 hospitals are officially authorized to take care of organ
donor programs. A quality control system has been developed for the
organ donor process—the ICU mortality registry and the brain death
registry—a common practice in most of them. By law (RD 2070, 30
December 1999), transplant coordinators are the professionals
responsible for the whole donation and retrieval process.

National and regional offices are service agencies supporting the
organ donation and transplantation programs. They deal with organ
sharing and waiting list management. They arrange organ or team
shifts. They are responsible for the official statistics and reports on
organ donation and transplantation. They promote legal statements
and binding consensus guidelines. They also promote public educa-
tion and address any doubt or question about organ donation and
transplantation. A 24-h hot line and E-mail system have been put in
place to keep all interested groups or individuals informed. They are
also concerned with and involved in training and research programs.
Any activity that could improve donation or facilitate the transplant
team activities can be promoted through this network.

Organ transplantation has been considered a hospital medical
activity for which a specific budget and staff are allocated. This kind of
activity does not induce any budgetary overload for hospitals. The
annual general budget for transplantation procedures in Spain is around
180 million Euros. The annual budget for the organ procurement
network is around 15 million Euros (less than 10% of the budget
covering organ procurement activities). The general donation budget
covers all extra-salary and extra-time activities of both coordinators and
surgical retrieval teams, as well as any donor evaluation tests, the ICU
bed daily costs, etc. This budget also covers coordinating offices, training
courses and some of the educational programs. The type of payment for
the extra work of coordination and organ retrieval for professionals in
chargediffers dependingon the region. It canbe afixedamount, or it can
be based on registered activity, or be determined according to a mixed
system (it does not usually exceed 30% of total salary).

Table 1 shows that the Spanish organ donor rate per million
population is the highest around the world. The British rate is only
37.5% of the Spanish rate and the French rate is 69.5% of the Spanish
rate. We could compute in Table 2 a rough estimate of the number of
patients waiting for kidney transplantation that would be obtained in
several countries if they achieved the same donor rate as Spain.



5 Refusal rates in donation interviews, in particular, are treated as exogenous in this
model, the latter's object being the analysis of the efficiency of production
organization, from organ retrieval to transplantation. Diminishing refusal rates and
improving the organization of production are the two main channels for improving the
global efficiency of transplant care systems as measured by their donor population
rates (Tiessen et al., 2008). The first channel supposes appropriate exhortation
policies, which may include an adequate management of donation interviews (see
Thorne, 1996, 2006: 5.1 for an empirical estimation of the productivity of exhortation
spending; see also elements 4 and 5 of the list of causes of the Spanish success in
Tiessen et al., 2008, p. 39). Spain's low refusal rate accounts for a part of its high
relative performance in terms of donor rate, but seemingly not for the main part of it.
Comparing, for example, the refusal and donor rates of France and Spain, one can
produce rough estimates of the relative contributions of exhortation policy (say, the
“exhortation effect”) and production organization (say, the “organization of produc-
tion effect”) to the productivity gap between these two countries quite simply as
follows: Substituting the French refusal rate (27%) for the Spanish one (15%) in
Spanish donation data yields a Spanish donor rate net of the difference in exhortation
policies of 36:4 × 1−0:27

1−0:15 = 31:26 per million; the latter implies relative contributions
of the exhortation effect and the organization of production effect to the productivity
gap that are respectively of 36:4−31:26

36:4−25:3 = 46:3% and 31:26−25:3
36:4−25:3 = 53:7%. Similar

calculations conducted on UK data yield similar conclusions, namely, an exhortation
effect and a production organization effect respectively accounting for 44% and 56% of
the productivity gap between Spain and the UK.

6 Transplantation represents only a marginal part of hospitals' total output.
Variation in the share of transplantation activity in output is unlikely to induce any
significant variation in a hospital's production costs, in realistic circumstances. The
assumption of a fixed budget is a simple way of capturing this fact. It does not entail
any substantial loss of realism for subsequent analysis, and allows us to concentrate on
the main issues of transplant economics, which are basically non-monetary, namely,
transplant under-provision and shortage (the conditions of determination of vector z,
in the model). In terms of hospital's technology, this assumption means that the short-
run cost function is invariant to changes in the feasible efficient combinations of final
output (xi, yi) (that is, all efficient combinations compatible with the hospital's fixed
production capacities have the same “content” in general inputs vi

x+vi
y=B). More

concretely, we suppose that additional transplantations substitute for other types of
surgery having the same average cost.
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To sum up, the Spanish model consists of a program designed to
optimize every stages of the transplantation process from the
identification of a potential donor. Many factors have contributed to
the extraordinary increase of the Spanish dead-donor rate during the
last 20 years. Of course, Spain was a pioneer of the opt-out system, but
its success mainly proceeds from an excellent network of organ-
transplant teams operating in hospitals, which routinely screen
patients' records to identify donors, and which initiate and coordinate
the multiple tasks following donors' identification.

3. A model of production of transplant care services

The simple medical care system that we consider here is made of
care production units, named hospitals, and a transplant agency in
charge of collecting transplants produced from cadavers by hospitals,
and of distributing them to transplant care units. The use of grafts by
hospitals is constrained by the following two complementary rules:
they must transfer to the transplant agency any graft they produce;
and they must use for transplant care services any graft they receive
from the transplant agency. We suppose, for simplicity, undifferen-
tiated resources and needs in transplant inputs (say, a single medical
indication for transplantation, such as kidney pathology, for example),
and hospitals identical in all respects except their potential resources
in graft inputs (their brain-dead patients, principally).

3.1. Agents and commodities

There are n hospitals, n≥2, designated by an index i running in
N={1,…, n}. The transplant agency is denoted by index i=0.

We partition the set of care services provided by hospitals into two
broad classes, namely: Care services requiring transplants of organs or
tissues such as heart, kidney, liver, lung, skin, cornea, bone marrow, etc.;
and all other care services.We assume that the transplant care services of
hospital i, on the one hand, and its other care services, on the other hand,
are measurable by homogeneous continuous variables, respectively
denoted by xi and yi. Moreover, each hospital i produces grafts from
cadavers in homogeneous continuous quantity zi. The final output of the
medical care system in transplant care services (resp. other care services)
is vector x=(x1,…, xn) (resp. y=(y1,…, yn)). Its intermediary production
of transplants is vector z=(z1,…, zn). We denote by zn/i the vector
obtained from zbydeleting its ith-component zi, and by (zn/i, zi′) the vector
obtained from z and z′ by substituting zi′ for zi in z.

Likewise, we bunch the inputs of the production of care services in
two broad types, also viewed as homogeneous continuous quantities,
that is, for any hospital i: Transplants, denoted by real variable ti; and
other inputs, labelled “general” inputs in the following, and denoted
by real variables vi

x if they are used in the production of transplant
care services, viy if they are used in the production of other (final) care
services, and vi

z if they are used in the production of grafts. We let vi=
(vix, viy, viz), vr=(v1r ,…, vnr ) for any r∈ {x, y, z}, and v=(v1,…, vn).

We use the following notations for vectors of Rn, n≥1: en is the
diagonal vector (1,…, 1) ofRn; for any pair (x, x′) of vectors ofRn, x≥x′
if xi≥xi′ for all i, xNx′ if x≥x′ and x≠x′, x≫x′ if xiNxi′ for all i;R+

n is the
non-negative orthant of Rn, that is, set {x∈Rn: x≥0}, and R++

n is its
positive orthant {x∈Rn: x≫0}.

3.2. Feasibility conditions

Hospitals' potential of graft production is mainly determined, in
practice, by the random distribution of brain-dead patients in
hospitals and by refusal rates in donation interviews. This essential
feature of the reality of transplant activities, which may be
appropriately construed as a set of operative rationing constraints
on both graft production and transplant care services, is captured in
the model notably through an exogenous endowment of potential
graft production of the hospital, viewed as a non-negative homoge-
neous continuous quantity, and denoted by ωi for hospital i.5 This
endowment operates as an upper bound on a hospital's graft production,
that is, zi≤ωi. We let ω=(ω1,…, ωn), and suppose that ω≫0.

Hospitals can purchase any quantity of general inputs vix+vi
y+vi

z

on perfectly competitive markets of inputs at fixed market price w.
Graft provision is non-profit: It is billed at production cost to the
transplant agency, which collects transplants and redistributes them
to care units free of charge. Each hospital i finances its general inputs
for care services from a fixed budget B, the same for all i, subject to
budget constraint w(vix+vi

y)≤B. The latter imposes an upper bound
B/w on its aggregate consumption of general inputs for care services
vi
x+vi

y. The market price of general inputs is normalized to 1 in the
following, that is, we let w=1, without loss of generality.

Budget B may be viewed as the (constant) short-run cost function
of the hospital. An appropriate interpretation of this feature of the
model is the following: Hospitals' production capacities are fixed,
and rigidly determine the total amount of variable inputs vi

x+vi
y

(including capital consumption) required for final production.6

Technically efficient production of hospital i is depicted through a
triple of production functions fi=(fix, fiy, fiz) transforming non-negative
combinations of inputs (ti, vi)∈R+

4 into technically efficient output
combinations (xi, yi, zi)=(fix(ti, vi), fiy(ti, vi), fiz(ti, vi)). Assumption 1
below supposes, in addition to the standard working hypotheses of
differentiability and concavity, the following main features of
hospitals' identical production techniques. General inputs are indis-
pensable for production of any type (Assumption 1(ii)), and are
productive in each type of production taken separately (Assumption 1
(iv) and (v)) and also in the three types of production taken jointly
(Assumption 1(vi)). Transplants are indispensable and productive in
transplant care services (Assumption 1(iii)–(iv)), and in them only
(Assumption 1(v)). Technology exhibits a congestion externality
between the three types of activities of each hospital (transplant
care services, other care services, and graft production), specified as
follows: A ceteris paribus increase in the scale of production,
measured by the total amount of variable inputs vi

x+vi
y+vi

z used in
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the hospital, diminishes the productivity of general inputs in all types
of production of this hospital, due to the congestion of a number of
fixed capital inputs implicit in the production function, such as wards,
operating theatres, surgery teams, etc. (Assumption 1(iv) and (v)).
Example 1 of Section 4.2.2 below provides an example of a Cobb–
Douglas technology that verifies Assumption 1.

Assumption 1. (i) For all r∈{x,y, z}, f ir is of the type (ti, vi)→gi
r(ti, vir, vix+

vi
y+vi

z), where gi
r is continuous and concave in R+

3 , C2 and strictly
concave in R++

3 . (ii) gir(ti, vir, vix+vi
y+vi

z)=0 whenever vir=0. (iii) gix(ti,
vi
x, vi

x+vi
y+vi

z)=0 whenever ti=0. (iv) gi
x is N0, increasing in ti,

totally increasing in vi
x, and is decreasing in total general input vix+vi

y+
vi
z in R++

3 (that is, precisely: gixN0, ∂1gixN0, ∂2gix+∂3gixN0 and ∂3gixb0
inR++

3 ,where ∂kgix denotes the partial derivative of gixwith respect to its
k-th argument, k∈{1, 2, 3}). (v) For all r∈{y, z}, gir is everywhere
constant in ti; it is N0, C2, totally increasing in vi

r, and decreasing in vi
x+

vi
y+vi

z in R+×R++
2 (i.e., with the notations above: ∂1gir=0; gi

rN0,
∂2gir+∂3girN0 and ∂3girb0 in R+×R++

2 ). (vi) For all (ti, vi)∈R+
3 and all

neighbourhood V of (ti, vi) inR+
3 , there exists ṽi∈R+

2 such that (ti, ṽi)∈V
and gr(ti, ṽi, ṽix+ṽiy+ṽiz)Ngr(ti, vi, vix+vi

y+vi
z) for all r∈{x, y, z}. (vii)

Hospitals' production constraints are identical, except for the upper
bound on graft production, that is, there exists a triple of functions (gx,
gy, gz) such that, for all i: (gix, giy, giz)=(gx, gy, gz).

Summing up, the physical constraints limiting a hospital's production
are fourfold: fixed graft resources, imposing an upper bound on organ
retrieval (zi≤ωi); fixed capacity, imposing an upper bound on the total
quantity of general inputs for final production (vix+vi

y≤B); the fixed
amount ti of transplants received from the agency; and input
productivity, determinednotablyby the level of congestionof production
capacities. They are summarized in the following set of feasible
alternatives of hospital i: Ai(ti, ωi)={(xi,yi,zi,vi)∈R+

6 : zi≤ωi, vix+vi
y≤B,

and (xi,yi,zi)≤g(ti,vi)},where g is themapping (ti, vi)→(gx(ti, vix, vix+vi
y+

vi
z), gy(ti, viy, vix+vi

y+vi
z), gz(ti, viz, vix+vi

y+vi
z)).

Finally, the transplant agency is endowed with fixed budget B0,
sufficient to cover the cost of graft production for any feasible z, that is,
B0≥∑i∈Nvi

z for all v such that gz(ti, vi)≤ωi for all i. This notably
implies, realistically enough we believe, that the rationing constraints
on organ transplantation are entirely driven by technical and
endowment limitations: They owe nothing in this model, and owe
very little in practice, to the financial constraints of the medical care
systems of developed economies. The set of feasible alternatives of the
agency reads: A0(z)=(t=(t1,…, tn)∈R+

n : Σi∈Nti≤Σi∈Nzi).
7 Dialysis is more costly than kidney transplantation (e.g., Steiner, 2010, p. 258).
8 More formally, it follows from Lemma 1 and the implicit function theorem that

equation F(xi, zi, ti)−F(xi⁎, zi⁎, ti⁎)=0 implicitly defines ti as a C2 increasing function [0,
ωi]→R++ of zi, the graph of which is the “level curve” of (zi, ti)→F(xi⁎, zi, ti)through
(zi⁎, ti⁎) in plane (zi, ti). The implicit function theorem moreover implies that the first
derivative of this implicit function is = −∂2F x i

�;zi ;tið Þ
∂3F x i

�;zi ;tið Þ at any point (zi, ti) of its graph.
9 Calculationsusing theproof of Lemma1yieldan MRC = − 1

∂2gz + ∂3gz
∂3gx
∂1gx + ∂2gx

∂1gx ⋅
∂3gy
∂2gy

� �
,

which is increasing in |∂3gr| for all r∈{x, y, z}.
3.3. Hospital's production possibility frontier

All relevant characteristics of a hospital's constraints can be
conveniently summarized through the production possibility frontier
of the hospital, describing the set of its accessible and technically
efficient output combinations (xi, yi, zi).

The details of its construction and properties are developed in the
appendix (seeAppendixA1). Inparticular, thequantity of general inputs
required to produce zi when the hospital works at full capacity (vix+
vi
y=B) iswell-defined, determined implicitly by zi=gz(ti, viz, B+vi

z). It is
denoted by (gBz)−1(zi). Likewise, the production of general care services
yi accessible at full capacity from any fixed accessible (xi, zi) and any
fixed positive ti is well-defined and positive. It is denoted by F(xi, zi, ti).
The production possibility frontier is then defined as follows:

Definition 1. The production possibility frontier of hospital i is: set {(xi,yi,
zi)∈R+

3 : xi=0, yi=gy(0, B,B+(gBz)−1(zi)) and zi≤ωi} if ti=0; set {(xi,yi,
zi)∈R+

3 : xi≤gx (ti, B,B+(gBz)−1(zi)), yi=F(xi,zi,ti) and zi≤ωi} if tiN0.

Fig. 1A and 1B represents the canonical projection of some
production possibility frontier on plane (xi, yi) for fixed pairs (zi, ti)
such that ti is respectively null (Fig. 1A) and positive (Fig. 1B).
The production and circulation of grafts through the transplant
organization induce in-kind costs and benefits for hospitals, which
notably imply public good externalities of the technological type. They
are captured through hospitals' production possibility frontiers in the
following way.

Any increase in graft production zi ceteris paribus induces a
contraction of the hospital's set of accessible final production (xi, yi),
that is, a downward shift of thegraphof xi→F(xi, zi, ti) inplane(xi,yi) (see
Lemma1andFig. 1C). This is due to the congestion effects of an increased
use of general inputs in graft production, which lowers the productivity
of general inputs in final production when the hospital works at full
capacity. In other words, quite concretely, any additional organ retrieval
delays somemedical care by immobilizing fixed inputs (a surgical team
and operating theatre, principally) for some period of time.

Symmetrically, any increase in transplant transfer ti ceteris paribus
induces an expansion of the hospital's set of accessible final
production (xi, yi), that is, an upward shift of the graph of xi→F(xi,
zi, ti) in plane (xi, yi) (Lemma 1 and Fig. 1D). This follows from the
productivity of inputs (positive marginal productivities) and from the
substitutability of transplant and general inputs in the production of
transplant care services (as implied by the differentiability of gx). It is
interpreted, most appropriately, as follows: sending back home a
newly transplanted patient after recovery saves more general inputs
(housing, catering, working hours of medical staff, dialysis…,7) than
are consumed in transplantation; the quantity of general inputs so
released can then be freely reallocated between xi and yi production
without inducing any additional congestion of production capacities.

These technological consequences of graft production and circu-
lation are conveniently summarized in the marginal rate of compen-
sation of graft contribution by graft transfer, defined as follows:

Definition 2. Let tiN0, and (xi, yi, zi) belong to hospital i's associate
production possibility frontier. The marginal rate of compensation
(MRC) of transplant provision by transplant transfer at (xi, yi, zi) is:
−∂2F xi ;zi ;tið Þ

∂3F xi ;zi ;tið Þ.

TheMRC synthesizes thenon-monetary costs and benefits, for hospitals,
of the production and circulation of grafts. It can be viewed as ameasure of
the (technological) public good externalities between hospitals in the
transplant system, computed from the standpoint of each hospital.

Precisely,−∂2F x i
⁎;z i⁎;t i⁎ð Þ

∂3F x i
⁎;z i⁎;t i⁎ð Þmeasures the marginal variation (increase) in the

transplant transfer t i⁎(N0) received by hospital i that is required for
keeping the hospital's production constant (=F(xi⁎, zi⁎, ti⁎)), following a
marginal increase in its graft production from zi⁎. It corresponds,
geometrically, to the slope of the level curve through (zi⁎, t i⁎) of partial
function (zi, ti)→F(xi⁎, zi, ti) in plane (zi, ti) (see Fig. 1E).8 It is determined
by the ratio of congestion costs to the marginal productivity of inputs,
increasing in the former, as implied by the informal discussion above.9

A second essential characteristic of a hospital's technology that can
be derived, more standardly, from its production possibility frontier is
the marginal rate of substitution of general care services for transplant
care services, defined as the marginal variation (decrease) in the
provision of general care services that is required for maintaining the
hospital's production combination on the production possibility
frontier, following a marginal increase in the provision of transplant
care services. It coincides with partial derivative ∂1F(xi, zi, ti) (see
Lemma 1). It corresponds, geometrically, to the slope of the graph of



Fig. 1.

643B. Deffains, J. Mercier Ythier / Journal of Public Economics 94 (2010) 638–653
partial function xi→F(xi, zi, ti) in plane (xi, yi) (see Fig. 1B). We name it
the marginal rate of transformation in the following, although it does
not exactly coincide with the usual meaning of the latter notion, in
order to distinguish it from the marginal rate of substitution defined
from hospitals' utility function below.
4. Behavioural assumptions: preferences, interactions
and equilibrium

In this section, we first return to one of the basic justifications
for the existence of a transplant agency collecting and dispatching



12 Brain-dead patients cannot be physically transferred from one hospital to another
mainly because of imperative legal constraints. In particular, lump-sum transfers of
hospitals' graft endowments cannot be used as instruments of a public distribution
policy in this context. Grafts are physically transferable between hospitals, subject to
the legal constraints of the national transplant organization, but they must be
retrieved on site, due to the reason above. Distribution ω cannot be an object of
individual or social preference in our context (if preference underlies choice, as is
assumed here, naturally). Graft production z is individually or socially valuable only as
an intermediary for the final production of transplant care services x. Final production
of care services seems, therefore, to be the most appropriate object of preferences,
both at individual and at social level, in this model of the medical care system.
13 The anonymity property states that any permutation in hospitals' names (and
associate production (xi, yi)) leaves the social utility unchanged.
14 This is not true anymore if hospitals are profit maximizers: social preferences,
being strictly convex, cannot reduce to the sum of hospitals profits. Assumption 3
embodies two types of end-objectives of collective action, which, as suggested in the
main text above, may be viewed as implied by some wider social preference relation
aggregating the preferences of all concerned individuals (physicians, patients,
citizens…). These objectives are the utilization of the whole resource in grafts (if the
latter are scarce, which is generally assumed in the following) and approximate
equality in the distribution of transplants between (relevantly equal) patients. We do
not need a full-fledged social preference relation here, due to the narrowly defined
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transplants (Section 4.1). We turn next to the modelling of the public
good issues relative to transplants in the presence of the transplant
agency (Sections 4.2.1 and 4.2.2), and finally design an optimal
transplant care system (Section 4.3).

4.1. Transplant production optimum

Hospitals are viewed as rational agents, maximizing some
objective function that depends on their provision of final care
services. They can be non-profit or (partly) for-profit institutions.

Precisely, we suppose that hospital i maximizes utility function u,
the same for all i, over the set of pairs (xi, yi) of combinations of
transplant and other care services which it performs. We make the
following set of standard assumptions on the utility function:

Assumption 2. Hospitals' utility function is a continuous, non-
decreasing, quasi-concave function over R+

2 , whose restriction to
R++
2 is C2 and strictly increasing. Moreover u(xi, yi)Nu(0) implies (xi,

yi)≫0.

The convexity assumption on hospitals' preferences is compatible,
in particular, with for-profit maximizing behaviour for positive
production of final care services, that is, a hospital's choice of an
optimal (xi, yi)≫0 determined by the relative price of the two types
of care services (corresponding, geometrically, to a flat indifference
curve through optimal (xi, yi)≫0, with slope equal to relative
price).10 The boundary condition of Assumption 2 may be interpreted
as a social priority of the production of final care services, supported
by implicit public policies. In other words, subsequent analysis applies
to the special case of for-profit behaviour of care production units
when equilibrium conditions imply an optimal production plan of
hospitals that is sufficiently far from the axes.

In the absence of a market for transplant inputs, banned by law, and
of any institutional substitute for the former such as a transplant agency,
hospitals would be reduced to a situation of autarky, as far as transplant
inputs are concerned, that is, to produce by themselves, from their own
endowment ωi and budget Bi, the grafts they use in their final
production of transplant care services. Formally, each hospital would
solve program max {u(xi, yi):(xi, yi, zi, vi, ti)≥0, (xi, yi, zi)≤g(ti, vi),
ti≤zi≤ωi, and vi

x+vi
y+vi

z≤B}, where the hospital's budget covers all
expenses in general inputs, including the general inputs vi

z used in
intermediary graft production (the hospital's “autarkic” budget con-
straint). A production equilibrium of this autarkic transplant care
system would then consist of an input–output combination of the care
system (x, y, z, v, t) solving simultaneously the n independent programs
of the hospitals. Common sense suggests that such unregulated
equilibrium can very easily result in the waste of a part of total graft
resources, that is, typically, in this highly aggregated model,11 disposal,
by best endowed hospitals, of the fraction of their endowment that
exceeds the quantity of graft inputs they need for the provision of
transplant care services that maximizes their utility in program above.

The disposal of a part of the resources of the hospitals that are best
endowed in terms of their potential of graft production will very
commonly appear as social waste if there exists a possibility of making
a productive use of disposed resources in other hospitals, in terms of
their final production of care services. Hospitals' endowments in the
10 Letting px (resp. py) denote the price of xi (resp. yi), hospital i's profit from final
production (xi, yi) reads pxxi+pyyi−B. Recall that we assumed a fixed budget B for
simplicity, that is, essentially, a production cost independent of the scale of
transplantation activity in accessible efficient combinations (xi, yi) (see the justifica-
tion of this assumption in footnote 6 above).
11 In a more accurate description of the medical care system, the problem under
consideration here would be, realistically, formulated as mismatched vectors of
potential graft resources (kidneys, corneas,…) and final transplant care services of the
hospital at any moment in time. For an application of matching models and discrete
optimization techniques to the health care system and the economics of transplants,
see Roth et al. (2005a,b, 2006).
sense above (potential of graft production) being physically and
legally non-transferable, the notion of production optimum implicit in
this normative appreciation of “wasteful” disposal actually refers to
implicit social preferences over pairs (x, y) of final production of the
care system.12 We now introduce such preferences, with the
following basic normative priors, summarized in Assumption 3
below: The social preferences which aggregate hospitals' preferences
are increasing in both types of final production of care services,
express (like hospitals') a priority of production, and imply a
preference for an “equal treatment of relevant equals,” that is, a
preference for an equal provision of final care services over hospitals
whenever the latter is accessible.

Assumption 3. The social utility function is a continuous, non-
decreasing, anonymous,13 quasi-concave functionW:R+

n→R+,whose
restriction toR++

n is a C2, strictly increasing and strictly quasi-concave
function R++

n →R++. Moreover (x, y)→W(u(x1, y1),…, u(xn, yn)) is
such thatW(u(x1, y1),…, u(xn, yn))NW(u(0),…, u(0)) implies u(xi, yi)N
u(0) for all i.

The utilitarian sum of hospitals' utility functions ∑i∈Nu:(x,
y)→∑i∈Nu(xi, yi) yields an example of a social utility function that
verifies Assumption 3 if hospitals' utility function is strictly quasi-
concave in R++

2 .14

We can now introduce, as formal Definitions 3 and 4 below, two
derived notions that will prove useful for the normative appreciation
of production equilibrium, namely, the socially efficient production of
final care services of the medical care system (in short, production
optimum), and the social scarcity of graft resources.

Definition 3. A final production combination (x, y) of the medical care
system, or associate input–output combination (x, y, z, v, t), is socially
efficient if it maximizes the social utility functionW in the set of socially
accessible input–output combinations {(x,y,z,v,t)∈R+

7n: Σi∈Nti≤Σi∈Nzi;
z≤ω; Σi∈Nvi

x+vi
y≤nB; and (xi,yi,zi)≤g(ti,vi,) for all i}.15
object of the article, that is, the design of an appropriate organization of the production
of transplant care services. We use, instead, a social preference relation exactly
adjusted to the formulation of the specific organization issue that is addressed here,
namely, coordination problems associated with the presence of public good
externalities in production (Bergstrom, 1989; Cornes and Silva, 1999). These narrowly
defined social preferences are so designed that their maximization entails the
fulfilment of the two basic end-objectives outlined above.
15 Note that the specification of the social opportunity set implied by this definition
of the production optimum supposes, as already stated at the end of Section 3.2 above,
that the constraints binding the final production of transplant care services, if any, are
the rationing constraints on graft production, as opposed to the budget constraints
limiting purchases of general inputs.
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Definition 4. The graft resources of hospital i are socially scarce if a
ceteris paribus increase in this hospital's endowment increases
optimal social utility, that is, if max {W(u(x1, y1),…, u(xn, yn)):(x, y,
z, v, t)≥0; ∑i∈Nti≤∑i∈Nzi; z≤ω′; ∑i∈Nvi

x+vi
y≤nB; and (xi, yi,

zi)≤g(ti, vi) ∀i}Nmax {W(u(x1, y1),…, u(xn, yn)):(x, y, z, v, t)≥0;
∑i∈Nti≤∑i∈Nzi; z≤ω; ∑i∈Nvi

x+vi
y≤nB; and (xi, yi, zi)≤g(ti, vi) ∀i}

whenever ω′iNωi and ω′n/i=ωn/i.

Theorem 1 in Appendix A2 characterizes production optimum and
scarcity. It is conveniently reformulated in Corollary 1 below, using
hospitals' production possibility frontiers. Notably, production opti-
mum is such that: each hospital maximizes its utility subject to
production possibilities (condition (ii) and Fig. 2); the marginal social
utilities of transfers ∂iW·∂2u·∂3F are equal for all hospitals, implying
that social utility is non-increasing relative to marginal variations in
transfers (condition (iii)); retrieving one additional organ in hospital i
and transferring it to any hospital (including i itself) does not increase
social utility unless constraint zi≤ωi is binding (complementary
slackness δi·(ωi−zi⁎)=0 in condition (iii)).16 Multipliers λ and δi are,
respectively, the marginal social utility of transfers (and aggregate
contribution ∑i∈Nzi) and the marginal social utility of hospital i's
contribution (and endowment ωi) at social optimum. In particular,
hospital i's graft resources are socially scarce if and only if MRCib1;
and a lower MRC implies, ceteris paribus, more tension on the
hospital's graft resources (a higher shadow value of the latter, both at
the hospital and at the social level).17

Corollary 1. (x⁎, y⁎, z⁎, t⁎) is socially optimal if and only if: (i)
∑i∈Nti⁎=∑i∈Nzi⁎; (ii) for all i, yi⁎=F(xi⁎, zi⁎, ti⁎) and

∂1u x i
⁎;y i

⁎ð Þ
∂2u x i

⁎;y i
⁎ð Þ =

∂1F xi
⁎; zi⁎; t i⁎

� �
; (iii) z⁎≤ω and there exists (λ,δ)∈R++×R+

n such that,
for all i, ∂iW·∂2u·∂3F=λ, δi = ∂iW⋅∂2u⋅∂3F⋅ 1 + ∂2F

∂3F

� �
bλ, and

δi·(ωi−zi⁎)=0, where the partial derivatives are evaluated at the
16 The marginal variation in social utility from retrieving one additional organ in
hospital i and transferring it to hospital j reads ∂iW·∂2u·∂2F+∂jW·∂2u·∂3F. Since
∂ iW · ∂2u · ∂3F= ∂ jW · ∂2u · ∂3F= λ , this marginal variation is equal to
∂iW⋅∂2u⋅∂3F⋅ 1 + ∂2F

∂3F

� �
= δi . Complementary slackness states that it is non-negative

at production optimum, and positive only if zi⁎=ωi.
17 In a similar fashion, i's marginal utility of its graft resources at the equilibrium of
the transplant game studied in Section 4.2.2 below is ∂2u·∂3F·(∂iφ−MRCi), where
∂iφ denotes i's marginal (graft) return on its graft contribution to the transplant
agency (Lemma 3). In particular, zi≤ωi binds at equilibrium if and only if MRCib∂iφ;
and a lower MRCi implies, ceteris paribus, more tension on ωi. Therefore, the MRC can
be viewed as an indicator of tension on the hospital's graft resources at optimum and
at equilibrium as well.
optimum. Hospital i's graft resources are scarce at production
optimum if and only if this hospital's MRC is b1 at the optimum.

4.2. Regulated equilibrium with public good interactions

We suppose, from there on, that there exists a transplant agency of
the type described at the beginning of this section, and moreover
assume that this agency endorses the social preferences of Assump-
tion 3. As noted above, the existence of a transplant agency induces
public good externalities of the technological type between hospitals,
as long as the latter control their production of grafts, that is: The graft
production decided by any hospital has consequences on the
production sets of all others through transplant redistribution by
the agency (see Section 3.3, notably Fig. 1C to E).

Public good interactions between hospitals and the agency are
modelled below through a device that has become standard in
mechanism design theory, namely, subgame-perfect Nash equilibria
of two-stage games (see notably, in the context of models of private
contributions to a public good, Guttman, 1978, 1987; Bergstrom, 1989
or Cornes and Silva, 1999 and also the detailed references reviewed in
Mercier Ythier, 2006: 6.3 and A.2.1). We successively consider three
possible variants of the two-stage game, where hospitals and the
agency alternate as first and second players in the game. The first
two are defined below as the myopic game (Section 4.2.1) and the
clear-sighted game (Section 4.2.2) respectively. The third notion of the
two-stage game, labelled the monitored game, is defined and studied
in Section 4.3.

4.2.1. Myopic equilibrium
In the first variant of the two-stage game, the transplant agency

moves first, choosing transfers (t1,…, tn). This choice of the transplant
agency is made knowing that, at the second stage of the game, each
hospital i, having observed ti, chooses a production combination (xi, yi,
zi, vi) that maximizes its utility in its opportunity set Ai(ti, ωi). The
agency anticipates, in other words, that hospitals' production plans,
including contributions (z1,…, zn), depend on transfers, and take this
dependence into account when choosing the transfers.

As is usual, subgame-perfect equilibrium is defined recursively,
beginning with the second stage of the game. At second stage, each
hospital i solves max {u(xi, yi):(xi, yi, zi, vi)∈Ai(ti, ωi)} with respect to
(xi, yi, zi, vi) for any given ti. We denote by φi hospital i's reaction
correspondence at this stage, defined by φi(t)=arg max {u(xi, yi):(xi,
yi, zi, vi)∈Ai(ti, ωi)}, and let φ=(φ1,…, φn). At first stage, the
transplant agency solves max {W(u(x1, y1),…, u(xn, yn)):(x, y, z,
v)∈φ(t) and t∈A0(z)} with respect to t. An equilibrium of the game is
a state (x, y, z, v, t) that solves the latter program. We refer to this first
notion of equilibrium as the myopic equilibrium in the following, due
to the short-sighted free-riding behaviour of hospitals which it
implies.

We have the following simple benchmark property for the myopic
equilibrium:

Theorem 2. The provision of transplant care services and grafts is null at
myopic equilibrium.

Proof. Graft production is costly for the hospital, due to its congestion
effects on the hospital's production of final care services (xi, yi), and
does not yield any advantage, ceteris paribus (that is, given agency's
transfers), in terms of the hospital's utility. Therefore z=0, which
implies t=0, which implies in turn x=0.18 □
18 The set of myopic equilibria is {(x,y,z,v,t)∈R+
7n:x=z= t=0, viz=0, vix+vi

y≤B/w
and 0≤yi≤gy(0, viy, vix+vi

y) for all i}, implying an equilibrium utility of hospitals and
the agency everywhere equal to their minimal values in their respective domains, that
is u(0) and W(u(0), …, u(0)) respectively.
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The above result is interesting as a clear-cut, albeit extreme
expression of the coordination problem of transplant activities. It is
individually rational for myopic hospitals to free ride, or shirk, on graft
production, that is, to attempt to shift onto others the congestion costs
induced by graft production.19 Myopia is interpreted as a lack of
understanding, at individual level, of the collective damages that
result from generalized free-riding, namely, the dramatic under-
provision of transplants (no provision at all, in the case under
consideration). The existence of a central agency collecting and
redistributing transplants is not only insufficient, per se, for solving
the public good problem; it also dramatically deteriorates production
equilibrium, relative to the autarkic equilibrium, if public good
interactions are of the myopic type.

4.2.2. Clear-sighted equilibrium
The consequence of Theorem 2 is too extreme to be accepted

literally. Hospitals should be, and actually are, well aware of the
damages of shirking (in the sense of footnote 19) to the medical care
system as a whole, and for themselves as a part of it. Myopia does not
appear a realistic assumption, in other words, both a priori and in
view of its logical implication.

In the variant of the two-stage game that we introduce now,
hospitals move first, each one choosing the production combination
(xi, yi, zi, vi) that maximizes its utility in its opportunity set Ai(ti, ωi). A
hospital's choice is made taking the contributions of others as given
and knowing that at the second stage of the game, the transplant
agency, having observed contributions (z1,…, zn), chooses the
transfers (t1,…, tn) that maximize the social utility function subject
to aggregate resource constraint ∑i∈Nti≤∑i∈Nzi and hospitals'
production possibilities. Hospitals anticipate, in other words, the
dependence of the agency's transfers on their contributions, and take
this dependence into account when making their production
decisions.

Subgame-perfect equilibrium isdefined recursively as follows.At the
second stage of the game, the agency solves max {W(u(x1, y1),…, u(xn,
yn)):(xi,yi, zi, vi)∈Ai(ti,ωi) for all i, and t∈A0(z)}with respect to (x, y, v, t)
for any given z≤ω. We denote by φ0=(φ1

0,…, φn
0) the agency's transfer

correspondence at this stage, where φi
0 yields the agency's optimal

transfers tohospital i for anyfixed z. Hospitals playfirst, eachone solving
max {u(xi, yi): (xi, yi, zi, vi)∈Ai(ti,ωi); ti∈φi

0(z)} with respect to (xi, yi, zi,
vi) for any given vector of graft production of other hospitals zn/i. An
equilibrium of the game is a Nash non-cooperative equilibrium of the
first-stage game, that is, a state (x⁎, y⁎, z⁎, v⁎, t⁎) such that: t⁎∈φ0(z⁎);
and for all i, (xi⁎, yi⁎, zi⁎, vi⁎) solves max {u(xi, yi):(xi, yi, zi, vi)∈Ai(ti, ωi);
ti∈φi

0((zn/i⁎, zi))}. We name it the clear-sighted equilibrium in the
following, because it embodies hospitals' clear awareness of the public
good externality associated with graft production, and individual
damages from free-riding behaviour that it implies for them.

We establish below that clear-sightedness, if it actually improves
the functioning of the transplant care system relative to the myopic
game, by implying a positive production of grafts and transplant
services (Theorem 3(i)), nevertheless does not suffice for solving the
under-provision problem. Precisely, it is shown that a fraction of the
system's resources for graft production remains unexploited, in
19 Note that the formulation of the public good problem as a pure coordination
problem here and below does not suppose imperfect or costly information. The reason
for this is empirical: Accounts of the Spanish and other experiences of national
transplant systems we are aware of put little emphasis, if any emphasis at all, on
information issues in interactions (that is, strategic manipulations of information
asymmetry by care units). The main difficulty, as far as production units are
concerned, seems to be self-centredness, understood as the propensity of each
hospital to concentrate on its own patients, and subsequent reluctance to consider
costly actions that are not directly related to this priority. One of the main lessons of
the Spanish experience, it seems to us, is that most problems are solved by simply
discharging hospitals, in some appropriate way, from the concern of on-site
organization of graft production (including identification of potential donors, and
donation interviews).
general, at clear-sighted equilibrium when graft resources are socially
scarce (Theorem 3(ii)).

We restrict attention, in this section, to the medical care systems
that have clear-sighted equilibria. The existence property of clear-
sighted equilibrium is analyzed in detail in Appendix A5. It is shown
there (Lemma 5) that the critical featurewhich conditions existence is
that hospitals' first-stage reaction correspondences be convex-valued.
A minimal sufficient condition on preferences and technology for the
latter is that the first-stage reduced form of hospitals' utility functions
(xi, zi)→u(xi, F(xi, zi,φi(z)) be quasi-concave (AppendixA5: Lemma4).
Formally:

Definition 5. Themedical care system (W, u, g,ω) is convex if, for all i,
the first-stage reduced form of hospital i's utility function (xi, zi)→u
(xi, F(xi, zi, φi((zn/i⁎, zi))) is quasi-concave over {(xi,zi)∈R+

2 : 0bzi≤ωi}
for all z⁎∈ {z∈R+

n : z≤ω} and quasi-concave over {(xi,zi)∈R+
2 :

0≤zi≤ωi} for all z⁎∈{z∈R+
n : z≤ω; 0bzn/i}.

Theorem 3. Let (W, u, g, ω) be convex. (i) Clear-sighted equilibria exist
and are≫0. (ii) Transplant care services are underprovided, in general, at
clear-sighted equilibrium(that is, equilibriumgraft production isbω)when
hospitals' graft resources are all scarce at production optimum. (iii) Clear-
sighted equilibrium is a production optimumnotably if programsmax {u(xi,
F(xi, zi, zi)):zi≤ωi} yield a same solution (xi, zi) for all hospitals.

The details of the proof are given in Appendix A6. We concentrate
here on the essence of the argument underlying the second and third
parts of the theorem.

The first-order conditions characterizing production optimum
(Corollary 1) and clear-sighted equilibrium (Lemmas 2 and 3) differ
on a single main point, namely, hospitals' marginal utilities of graft
resources, which read ∂2u·∂3F·(1−MRCi) at production optimum
and ∂2u·∂3F·(∂iφi

0−MRCi) at social equilibrium.20 The transfer
policy φ0 of the transplant agency will therefore completely solve
the coordination problem of the care system, that is, make hospitals'
equilibrium and optimum evaluation of graft resources coincide in all
circumstances if, and, in general, only if ∂iφi

0(z)=1 for all i and all z,
that is, if φ0 is the identity function z→z of Rn. The latter consists of
returning to each hospital its contribution in all circumstances (a
“status quo” transfer policy).

Clearly enough, this complete solution to the coordination
problem should, in most circumstances, conflict with the end-
objectives of allocation efficiency and distribution equity implied by
the social preference relation. The only notable exception corresponds
to the case where hospitals spontaneously achieve production
optimum because rationing constraints are either non-binding, as in
Example 2 (Appendix A4), or identical for all of them. In realistic
circumstances, where rationing constraints are binding and there is
some diversity in hospitals' endowments, the status quo transfer
policy is not optimal for the agency, that is, does not yield equal social
marginal utilities of transfers for all hospitals. The agency's transfer
policy then generally induces discrepancies between hospitals'
marginal valuations at production optimum and at equilibrium,
through non-unitary marginal returns on contributions ∂iφi

0.
In Example 1 below, we present a family of calculable care systems

in which the agency's second-stage optimal transfer policy is the
equal sharing of aggregate contribution, that is, φ0

i ðzÞ = 1
n∑i∈Nzi for

all i and z. Hospitals' marginal return on contribution ∂φi
0(z) is
20 The other difference lies in the specification of budget constraints, namely, the
aggregate budget constraint at production optimum versus individual budget
constraints at equilibrium. We assume implicitly here and explicitly in the case of
the monitored equilibrium studied in the next section that production optimum is
always decentralizable, in the sense that if an input–output combination of the care
system can be achieved from its aggregate budget, then it can also be achieved from
the set of hospitals' individual budgets. This assumption is not very demanding in our
setup, since hospitals are assumed identical in all respects except graft endowment,
and production optimum verifies hospitals' rationing constraints by definition.



23 The reader can check this by proceeding to the following change of variable: Let the
utility function in the framework of Cornes et al. beU(xi,G)=log (−xi

2+2xi)+(1/2) log
∑j∈Ngj+−(1/2) log n− log 2, where xi denotes their “private good” (not to be
confused with our “provision of transplant care services”), G=∑j∈Ngj is the public
good, and gj is j's individual contribution to G. Let their agent's endowment (not to be
confused with our “potential of graft production”) be =1. Their reduced utility function,
obtainedby substituting budget constraint xi+gi=1 in the former, isU(1−gi, gi+G− i)=
log (1−gi

2)+(1/2) log (gi+G− i)+−(1/2) log n− log 2,whereG− i=∑j∈N:j≠ igj, which
is identical to the reduced form of the utility function of our calculated example. A simple
calculation shows that function U(1−gi, gi+G− i) verifies the normality condition of
Chamberlin (1974), which implies, in turn, the condition for uniqueness of Cornes and
Hartley (2007).
24 nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n + 1
p is asymptotically equivalent to 1

2

ffiffiffi
n

p
. Its instantaneous growth rate is
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therefore equal to 1/n in the example, hence smaller than 1 if there is
more than one hospital and decreasing to 0 as the number of hospitals
grows to infinity. We show that clear-sighted equilibrium is reduced
then to an example of the general class of symmetric Nash equilibrium
with public goods of Chamberlin (1974)21 when the number of
hospitals is sufficiently large. In particular: hospitals' individual
contribution is positive, decreasing in the number of hospitals, and
tends asymptotically to 0 as the latter grows to infinity; hospitals'
aggregate contribution increases in the hospitals' number, at a lower
speed than the latter. This notably implies that no rationing constraint
is binding in first-stage hospitals' programs, and that clear-sighted
equilibrium is therefore independent of the initial distribution of graft
resources, when the number of hospitals is sufficiently large.
Moreover, we show that graft resources are scarce at production
optimum, whatever the number of hospitals, for suitable equal
distributions of graft resources.

Transfers actually practiced by transplant agencies certainly are
much closer to equal sharing policy z→ 1

n∑i∈Nzi than to the status quo
policy z→z, so that hospitals' marginal returns on contribution ∂φi

0(z)
should be considered much closer to 1/n than to 1 in reality, hence
much closer to 0 than to 1 in view of actual numbers of care
production units in charge of providing the transplant care services
(155 in the case of Spain, for example: see Section 2 above). Inefficient
under-provision, therefore, seems the most plausible outcome of the
clear-sighted game, for realistic assumptions on the agency's policy
and the number of production units.

Theorem 3(iii), finally, is a rotten kid theorem (Becker, 1974,
1981). Precisely, it identifies configurations of principal–agent
interactions where the optimal transfer policy of the (benevolent)
principal drives the (non-cooperative, self-centred) agents to imple-
ment a production optimum which coincides with the principal's
optimum. The most significant of themwas already mentioned above,
as the case of free graft resources (non-binding rationing constraints).
This property of the model, and its relations to the analogous
properties of Becker (1974, 1981), Bergstrom (1989) and Cornes
and Silva (1999) are analyzed in Appendix A6.

Example 1. A calculated example of Olson–Chamberlin under-
provision.

We study the following calculable medical care system (W, u, g, ω):
production functions are the concave Cobb–Douglas g ti; við Þ =
vxi + vyi + vzi
� �−1

2 tivxi
� �1

2; vyi
� �1

2; vzi
� �1

2

� �
; hospitals' utility function is the

log linear u(xi, yi)=log xi+log yi; social utility function is the utilitarian
sum W(u1(x1, y1),…, un(xn, yn))=∑i∈Nu(xi, yi). It verifies Assumptions
1–3.Associate function F reads F xi; zi; tið Þ = 1−z2i −

x2i
ti

� �
1
2. Thefirst-order

conditions of Lemma2 thenyieldφi
0(z)=(1/n)∑i∈Nzi for all i, that is, the

agency's optimal distribution policy is equal sharing of aggregate hospitals'
contribution.22 Substituting optimal transfer φi

0(z) for ti in F yields the
following reduced form for hospital i's first-stage objective function:
u xi; F xi; zi;φ0

i ðzÞ
� �� �

= log xi + 1 = 2ð Þ log 1−z2i −n x2i
∑j∈Nzj

� �
, viewed as

a function of (xi, zi) for fixed zn/i. The path of hospital i's optimal final

production conditional on zi is ti
1−z2i
2

� �
1
2;

1−z2i
2

� �
1
2

� �
: 0≤z≤ωi

n o
. By

further restricting to this path the objective function above, we get

the following final reduced form for hospital i's first-stage program max
{(1/2) log∑j∈Nzj+log(1−zi

2)−(1/2) log n− log 2:0≤zi≤ωi}, where
the objective function is (differentiably) strictly concave. Let us
provisionally ignore the rationing constraint in the latter program.
21 See also the generalizations and extensions of Chamberlin's result by Andreoni
(1988) and Fries et al. (1991), and the related literature reviewed in Mercier Ythier
(2006: 6.2).
22 Notably: f.o.c. ∂1u xi ;F xi ;zi ;tið Þð Þ

∂2u xi ;F xi ;zi ;tið Þð Þ = −∂1F xi; zi; tið Þ yields x2i
ti

= y2i for all i; substituting
into f.o.c. ∂2u(xi, F(xi, zi, ti)).∂3F(xi, zi, ti)=λ and adding up over i then yields both
λ=2n/∑j∈Nzj and ti=(1/n)∑j∈Nzj.
The first-order necessary and sufficient condition for an uncon-
strained maximum reads 5zi2+4(∑j∈N:j≠ izj)zi−1=0. Solving
for zi yields the unique N0 solution zi = − 2= 5ð Þ∑j∈N:j≠izj +
1= 5ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 + 4 ∑j∈N:j≠izj

� �2q
. Letting zi=z⁎ for all i in the solution

and solving for z⁎yields the symmetric individual contributions
z* = 1ffiffiffiffiffiffiffiffiffiffiffiffi

4n + 1
p . In particular, there exists n0 such that z⁎·en≪ω for all

n≥n0, implying that z⁎ is a symmetric equilibrium contribution of
the medical care system, with non-binding rationing constraints,
when the number of hospitals is at least as large as n0. This is then the
unique equilibrium contribution, as a special case of Cornes and
Hartley (2007).23 Equilibrium individual contribution lies in ]0, 1[ for

all n≥n0. It is decreasing, asymptotically equivalent to
1

2
ffiffiffi
n

p ,

converging to 0 as the number of hospitals grows to infinity, while
aggregate equilibrium contribution ∑i∈Nzi = nffiffiffiffiffiffiffiffiffiffiffiffi

4n + 1
p is increasing,

growing to infinity with the number of hospitals but at a lower speed
than the latter.24 One verifies easily from the first-order conditions of
Theorem 1 that these equilibria are socially inefficient. The marginal
social utility of hospitals' aggregate contribution is λ = n

2∑i∈Nzi
, and

the marginal social utility of hospital i's graft resources is
δi = n

2∑i∈Nzi
−2 zi

1−z2i
for all i in the f.o.c. Letting zi = 1ffiffiffiffiffiffiffiffiffiffiffiffi

4n + 1
p for all i

in the latter yields positive values of δi for all n≥2, which are
inconsistent with production optimality for n≥n0 (since 1ffiffiffiffiffiffiffiffiffiffiffiffi

4n + 1
p bωi

for all i then). Suppose, finally, that initial endowments are equally
distributed, that is, ω= ω̃·en for some ω̃∈R++ for all n. The MRC at
(xi, zi, ti)≫0 is 2zi(ti/xi)2. On the path of hospital i's optimal final
production conditional on zi, and for agency's optimal transfer
associated with z, this yields: 4:∑i∈Nzi

n :
1−z2i
zi

. Therefore, hospitals' graft
resources are all scarce at production optimum if and only if
4 1−ω̃2
� �

∈ �0;1½, that is, if and only ifω̃∈ �0; 1ffiffi
5

p ½.

4.3. Monitored graft production

A simple solution to the coordination problem raised in Section 4.2
is the monitoring of graft production by the transplant agency. This
solution actually appears trivial in the setup above, from a logical
point of view. It is interesting to develop because it captures, we
believe, the organizational features of the Spanish transplant system
that are at the origin of the latter's remarkable achievements analyzed
in Section 2 above.

The model is amended as follows. The transplant agency hires
physicians and delegates them in hospitals in order to supervise graft
production in each of them, with an objective of maximization of the
latter subject to the legal, technical and endowment constraints detailed
above. Formally, this new organizational trait amounts to letting the
agency decide (through its delegates in hospitals) on hospitals' levels of
graft production z=(z1,…, zn). That is, the agency's monitoring
1
n− 1

2n + 1
2
, which is positive and b1 for all n≥1, decreasing with n, asymptotically

equivalent to
1
2n

, and, in particular, tending to 0 as n grows to infinity. The asymptotic

behaviour of hospitals' contributions reproduces the qualitative features of the general
property of Chamberlin (1974). We established above that the first-stage Nash
equilibrium of this example reduces to a special case of Chamberlin's symmetric Nash
equilibrium when the number of hospitals becomes large enough to make all rationing
constraints slack at equilibrium.
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opportunity set now reads A0
M(ω)={{(z,vz,t)∈R+

3n: Σi∈Nti≤Σi∈Nzi;
zi≤gz(ti, viz, vix+vi

y+vi
z) and zi≤ωi for all i}, while itsmonitoring budget

B0
M now covers the wages of supervisors in addition to the other costs of

transplant provision. Similarly, the hospitals'monitored opportunity sets
are defined as: AiM(viz,ti)={(xi, yi, vix, viy)∈R+

4 : xi≤gx(ti, vix, vix+vi
y+vi

z);
yi≤gy(ti, viy, vix+vi

y+vi
z), and vi

x+vi
y≤B}.

The public good externality between hospitals vanishes in this
new specification of the transplant system, since it followed from
their individual choice of a level of graft production, which now is
essentially endorsed by the agency. The transplant agency is the
natural principal of the game in this setup. It moves first, choosing
transfers and hospitals' graft production levels. This is done knowing
that at the second stage of the game, each hospital i, having observed
(zi, viz, ti), chooses a final production (xi, yi) that maximizes its utility in
its monitored opportunity set Ai

M(viz, ti). Subgame-perfect equilibrium
is specified, accordingly, as follows. Hospitals play second, each one
solvingmax {u(xi, yi):(xi, yi, vix, viy)∈Ai

M(viz, ti)} with respect to (xi, yi, vix,
vi
y) for any given (viz, ti). We denote by φi

M hospital i's monitored
reaction correspondence at this stage (solving program above for any
(viz, ti)), and let φM denote the associate product correspondence
defined by φM(vz, t)={(x, y, vx, vy):(xi, yi, vix, viy)∈φi

M(viz, ti) for all i}.
The transplant agency plays in the first stage, solving max {W(u(x1,
y1),…, u(xn, yn)):(x, y, vx, vy)∈φM(vz, t) and (z, vz, t)∈A0

M(ω)} with
respect to (z, vz, t). An equilibrium of the game is a state (x, y, z, v, t)
that solves the latter program. We refer to this third notion of
equilibrium as the monitored equilibrium.

We establish below that monitored equilibrium and production
optimum coincide, provided that socially efficient production can be
achieved by hospitals endowed with equal budgets B (Appendix A7).
This optimality property implies, in particular, in view of Theorem 1,
that a monitored equilibrium exists, and that the corresponding
socially optimal production of final care services is unique.

Theorem 4. Suppose that, for any production optimum (x, y, z, v, t),
there exists a combination of general inputs ṽ such that ṽi

x+ṽi
y=B and

(xi, yi, zi)=g(ti, ṽi) for all i. Then, the monitored equilibrium is a
production optimum.

Theorem 4 implies a clear advantage of monitored equilibrium,
relative to clear-sighted equilibrium, in terms of the production of
final care services of the medical care system. Optimizing the
distribution of transplants does not suffice, in other words, for
achieving socially efficient production. The latter supposes that some
control be exerted also on graft production. This implies in turn some
additional monitoring costs, captured in the simple model above
through the (positive) difference B0

M−B0 between the agency's
budgets in the monitored and clear-sighted games. A complete
comparative evaluation of the two modes of regulation of the
transplant care system supposes that their differences in terms of
socially efficient production be balanced against their differences in
terms of budgetary costs. The data collected in Section 2 suggest that
monitoring costs are actually low, relative to their remarkable impact
on graft production. In other words, the Spanish experience displays a
high productivity of monitoring expenses.

5. Conclusion

The economic organization of the transplant care system was
characterized as a production economy of the non-market sector
operating on the background of incomplete markets of inputs. The
collection and circulation of transplants by the transplant agency
induce public good interactions between hospitals. A socially optimal
distribution policy of the agency cannot achieve alone the coordina-
tion of hospitals' production decisions at equilibrium and cannot in
general attain alone the production optimum when graft resources
are scarce, that is, equivalently, when the rationing constraints on the
production of transplant inputs are binding at production optimum.
Production optimum is attained by eliminating the public good
interactions between hospitals through the optimal control of both
the distribution and the production of transplant inputs by the agency.
The data suggest that more than one half of Spain's donor rate
differential with other countries proceeds from an adequate manage-
ment of this public good problem by its national transplant
organization. Improving the coordination of hospitals' production of
transplants seems the principal and most efficient way for improving
national donor rates. The other major way consists of lowering
donation refusal rates through adequate exhortation policies and an
adequate management of donation interviews.
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Appendix A

A1. Hospitals' production possibility frontier

Lemma 1. There exists a function F such that, for any (zi,ti)∈ [0,ωi]×R++,
the set of technically accessible output combinations of hospital i is:
{(xi,yi,zi)∈R+

3 : xi=gx (ti, B,B+(gB
z)−1(zi)), yi=F(xi,zi,ti) and zi≤ωi},

where (gB
z)−1 denotes the inverse of increasingpartial function vi

z→gz(ti, vi
z,

B+vi
z). Function F is defined over sets {(xi,yi,zi)∈R+

2 ×R++: xi≤gx (ti,
B,B+zi

v); zi=gz(ti, vi
z,B+vi

z); vi
z≥0}, andC2 in the (non-empty) intersection

of these convex domainswithR++
3 . It is decreasing and strictly concave in xi,

decreasing in zi and increasing in ti. Its partial derivatives read:

∂1F = −∂2gy
∂2gx, ∂2F = 1

∂2gz + ∂3gz
∂3gx
∂2gx ∂2g

y + ∂3gy
� �

, and ∂3F = ∂1gx
∂2gx ∂2g

y

where the partial derivatives of F, gx, gy and gz are respectively evaluated
at (xi, zi, ti), (ti, vi

x, s), (ti, B−vi
x, s) and (ti, (gB

z)−1(zi), s) such that s=B+

(gB
z)−1(zi) and xi=gx(ti, vi

x, s).

Proof. LetGr:(ti, vir, zi)→gr(ti, vir, B+(gBz)−1(zi)), r∈{x, y}. FunctionGx,
being increasing in vi

x in R++
2 ×R+ (see Assumption 1), then admits a

partial inverse relative to this variable, that is, there exists a function hx

such that gx(ti, hx(xi, zi, ti), B+(gBz)−1(zi))=xi for all (xi,zi,ti)∈{(xi,zi,
ti)∈R++×R+×R+: xi=gx(ti, B,B+zi

v); zi=gz(ti, viz,B+zi
v); zi

v≥0}.
This domain of hx is convex and has a non-empty intersection with
R++
3 by Assumption 1. The implicit function theorem moreover

implies that hx is C2 in the intersection of its domain with R++
3 , with:

∂1hx=1/∂2gx, ∂2hx=−∂3gx/(∂2gx(∂2gz+∂3gz)) and ∂3hx=−∂1gx/
∂2gx, where the partial derivatives of hx, gx and gz are respectively
evaluated at (xi, zi, ti), (ti, hx(xi, zi, ti), B+(gBz)−1(zi)) and (ti, (gBz)−1

(zi), B+(gBz)−1(zi)). And hx is: increasing and strictly convex in xi
as inverse of increasing strictly concave partial functions vix→gx(ti, vix,
B+(gBz)−1(zi)); increasing in zi and decreasing in ti by the derivatives
calculated above and Assumption 1. Wemay let F be defined by: F(xi,
zi, ti)=Gy(ti, B−hx(xi, zi, ti), zi) if xiN0; F(xi, zi, ti)=Gy(ti, B, zi) if xi=0.
One verifies immediately that F is strictly concave in xi, decreasing in
xi and in zi, increasing in ti. Its restriction to R++

3 is C2, and
∂1F = −∂2gy

∂2gx, ∂2F = 1
∂2gz + ∂3gz

∂3gx
∂2gx ∂2g

y + ∂3gy
� �

, and ∂3F = ∂1gx
∂2gx ∂2g

y

where the partial derivatives of F, gx and gy are respectively evaluated
at (xi, zi, ti), (ti, hx(xi, zi, ti), B+(gBz)−1(zi)) and (ti, B−hx(xi, zi, ti), B+
(gBz)−1(zi)). □
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A2. Production optimum

Theorem 1. There exist production optima (x⁎, y⁎, z⁎, v⁎, t⁎), which are
≫0, with a unique optimal production of final care services (x⁎, y⁎), and
verify the following system of necessary and sufficient first-order
conditions, where partial derivatives are evaluated at the optimum: (i)
∑i∈Nti⁎=∑i∈Nzi⁎; (ii) ∑i∈Nvi

x⁎+vi
y⁎=nB; (iii) for all i, (xi⁎, yi⁎, zi⁎)=g

(ti⁎, vi⁎) and
∂1u
∂2u = ∂2gy

∂2gx; (iv) z
⁎≤ω and there exists (λ,δ)∈R++×R+

n such
that∂iW·∂1u·∂1gx=λ, δi = λ + ∂iW

∂2gz + ∂3gz ⋅ ∂1u⋅∂3gx + ∂2u⋅∂3gyð Þbλ,
and δi.(ωi=zi⁎)=0 for all i, where λ and δi are the marginal social utilities
of aggregate hospitals' contribution and hospital i's graft resources
respectively. The graft resources of hospital i are scarce at production
optimum if and only if δi is N0.

Proof. The social opportunity set {(x,y,z,v,t)∈R+
7n: Σi∈Nti≤Σi∈Nzi;

z≤ω;∑i∈Nvi
x+vi

y≤nB; and (xi, yi, zi)≤g(ti, vi) for all i} is non-empty
(it contains 0), compact (by continuity of g) and strictly convex (by
the concavity assumptions on g). It has a non-empty intersection with
R++
7n by our assumptions relative to the productivity of hospital's

technology (see Assumption 1, notably parts (iv), (v) and (vi)). The
continuity of social utility function (x, y)→W(u(x1, y1),…, u(xn, yn))
therefore implies the existence of a social optimum(x⁎, y⁎, z⁎, v⁎, t⁎),
which must be ≫0 by Assumption 1 and the boundary conditions of
Assumptions 2 and 3. The optimal production of final care services (x⁎,
y⁎) is unique by the strict convexity of the social opportunity set. The
Kuhn and Tucker first-order conditions are necessary and sufficient at
a≫0 solution of convex programmax {W(u(x1, y1),…, u(xn, yn)):(x, y,
z, v, t)≥0; ∑i∈Nti≤∑i∈Nzi; z≤ω′; ∑i∈Nvi

x+vi
y≤nB; and (xi, yi,

zi)≤g(ti, vi) for all i} by Arrow and Enthoven (1961: Theorems 1
and 2). Strictly increasing utility and production functions in the
positive orthant readily imply that constraints ∑i∈Nti≤∑i∈Nzi and
(xi, yi, zi)≤g(ti, vi) are binding, with positive associate multipliers, in
the f.o.c. Strictly increasing utility and Assumption 1(vi) moreover
imply that aggregate budget constraint ∑i∈Nvi

x+vi
y≤nB is also

binding, with a positive associate multiplier, at social optimum. These
remarks and some calculations yield the following system of character-
izing f.o.c., where partial derivatives are evaluated at the optimum:
(i)∑i∈Nti⁎=∑i∈Nzi⁎; (ii)∑i∈Nvi

x⁎+vi
y⁎=nB; (iii) for all i, (xi⁎, yi⁎, zi⁎)=

g(ti⁎, vi⁎) and ∂1u
∂2u = ∂2gy

∂2gx; (iv) and there exists (λ,δ)∈R++×R+
n such that

∂iW·∂1u·∂1gx=λ, δi = λ + ∂iW
∂2gz + ∂3gz ⋅ ∂1u⋅∂3gx + ∂2u⋅∂3gyð Þbλ, and

δi·(ωi−zi⁎)=0 for all i, where λ is the multiplier associated with
constraint ∑i∈Nti≤∑i∈Nzi. Finally, the characterization of scarcity in
the last part of Theorem 1 is a simple consequence of definitions and the
characterizing f.o.c. above. □

A3. Agents' behaviour at clear-sighted equilibrium

Lemma 2. Agency's transfer policy

The agency's transfer correspondence at the second stage of the clear-
sighted game identifies with a continuous function φ0: {z∈Rn:
0≤z≤ω}→R+

3 such that φ0(0)=0 and φ0(z)≫0 for all zN0. Its
restriction to {z∈Rn: 0≤z≤ω} solves, for any given z, the following
system of first-order conditions in (x, t): (i)∑i∈Nti=∑i∈Nzi; (ii) for all
i, ∂1u xi ;F xi ;zi ;tið Þð Þ

∂2u xi ;F xi ;zi ;tið Þð Þ = −∂1F xi; zi; tið Þ; (iii) and there exists λ∈R++ such that,
for all i, ∂iW(u(x1, F(x1, z1, t1)),…, u(xn, F(xn, zn, tn)))·∂2u(xi,F(xi,zi,
ti))·∂3F(xi,zi,ti)=λ.

Proof. Sets of alternatives Ai(ti, ωi) and A0(z) being non-empty,
compact and convex for all non-negative (t, z) such that z≤ω, and
the agency's utility function being continuous, programmax {W(u(x1,
y1),…, u(xn, yn)):(xi, yi, zi, vi)∈Ai(ti, ωi) for all i, and t∈A0(z)} has one
solution (x, y, t) at least, for any fixed non-negative z≤ω. That is,
correspondence φ0: {z∈Rn: 0≤z≤ω}→R+

n is well-defined (i.e. has
non-empty values over its domain). Its values are compact by conti-
nuity of u, and convex by convexity of {(x, y):(xi, yi, zi, vi)∈Ai(ti, ωi)
for all i, and t∈A0(z)} and quasi-concavity of u.

A0(0)={0} by definitions, and Ai(0, ωi)={(0,yi,zi,vi)∈R+
6 : yi≤gy

(0, viy, vix+vi
y+vi

z), zi≤gz(0, viz, vix+vi
y+vi

z), zi≤ωi and vi
x+vi

y≤B} for
all i by definitions and Assumption 1(iii). These facts and Assumptions
1 and 2 imply that the set of solutions of the agency's program when
z=0 coincides with the corresponding set of alternatives of the
agency's program, that is, with set {(x, y, t):x= t=0 and 0≤yi≤gy(0,
B, B) for all i}, the agency's and hospitals' utilities being then =W(0)
over this whole set. In particular: φ0(0)={0}.

Suppose from now on that 0bz≤ω.
A0(z)∩R++

n is non-empty whenever zN0, that is, it is always
possible for the agency to make positive transplant transfers to all
hospitals whenever some N0 quantity of transplant is available. The
agency's set of alternatives {(x,y,z,v,t)∈R+

7n: (xi,yi,zi,vi)∈Ai(ti,ωi) for
all i, and t∈A0(z)} is convex for all z, by the concavity of production
functions gr, r∈{x, y, z} (see Assumption 1). The boundary conditions
of Assumptions 2 and 3 relative to utility functions and Assumption 1
then readily imply that the solutions of the agency's program are ≫0
vectors (x, y, v, t), whichmoreover imply a unique optimal production
of final care services (x, y), whenever zN0. From Lemma 1 and strictly
increasing hospitals' utility, such interior solutions can be character-
ized, equivalently, as interior solutions to max {W(u(x1, F(x1, z1, t1)),
…, u(xn, F(xn, zn, tn))):0≤xi≤gx(ti, B, B+(gBz)−1(zi)), and t∈A0(z)},
where “interior” now means either that (x, y, t)≫0 or, equivalently,
that t≫0 and 0bxibgx(ti, B, B+(gBz)−1(zi)) for all i. The necessary
first-order conditions (f.o.c.) for the latter C2 program read as follows
(e.g., Mas-Colell, 1985: D.3.3): (i) ∑i∈Nti≤∑i∈Nzi; (ii) for all i,
∂1u xi ;F xi ;zi ;tið Þð Þ
∂2u xi ;F xi ;zi ;tið Þð Þ = −∂1F xi; zi; tið Þ; (iii) and there exists a ≥0 real number
λ such that ∂iW(u(x1, F(x1, z1, t1)),…, u(xn, F(xn, zn, tn)))·∂2u(xi, F(xi, zi,
ti))·∂3F(xi, zi, ti)=λ and λ(∑i∈Nzi−∑i∈Nti)=0 for all i.

Utility functions being strictly increasing in the positive orthant
(see Assumptions 2 and 3) and function F being strictly increasing
relative to tiN0 inR++

3 (see Lemma1), the third part of the f.o.c. readily
implies that λN0 and∑i∈Nti=∑i∈Nzi, that is, the agency's marginal
utility of aggregate graft provision is N0 and aggregate graft production
is entirely transferred to hospitals at the agency's optimum.

The non-convex program max {W(u(x1, F(x1, z1, t1)),…, u(xn, F(xn,
zn, tn))):0≤xi≤gx(ti, B, B+(gBz)−1(zi)), and t∈A0(z)} being equivalent
to the convex programmax {W(u(x1, y1),…, u(xn, yn)):(xi, yi, zi, vi)∈Ai

(ti, ωi) for all i, and t∈A0(z)}, the necessary f.o.c. above are also
necessary first-order conditions for the latter. And the f.o.c. of
program max {W(u(x1, y1),…, u(xn, yn)):(xi, yi, zi, vi)∈Ai(ti, ωi) for
all i, and t∈A0(z)} are also sufficient conditions for an interior solution
of the latter by Arrow and Enthoven (1961: Theorem 1). They
characterize, therefore, the solutions whenever zN0.

Let us prove, to finishwith, that φ0 is single-valued and continuous
over {z∈R+

n : z≤ω}.
We already proved that φ0(0)={0}. Let zN0 and (x⁎, y⁎, t⁎) solve

max {W(u(x1, F(x1, z1, t1)),…, u(xn, F(xn, zn, tn))):0≤xi≤gx(ti, B, B+
(gBz)−1(zi)); t∈A0(z)}.We established above that optimal (x, y) is unique,
=(x⁎, y⁎), and that t⁎≫0. Function F being increasing in transfer, ti⁎ is
necessarily unique for all i, as unique solutionof equation in ti: yi⁎=F(xi⁎, zi,
ti). Therefore,φ0 is single-valuedover {z∈R+

n : z≤ω}. It identifies, in other
words, with a function {z∈R+

n : z≤ω}→R+
3 over this domain.

Let sequence zqð Þq∈ℕ of elements of {z∈R+
n : z≤ω} converge to z⁎.

Suppose first that z⁎N0. Then φ0(z⁎)≫0 and there exists q0∈N such
that zqN0 and φ0(zq)≫0 for all q≥q0. Therefore, z⁎ and all zq such that
q≥q0 verify the system of C1 f.o.c. above. (φ0(zq))q≥q0, being a sequence
of elements of compact set {t∈R+

n : Σi∈Nti≤1}, has at least one limit
point t⁎ in that set. t⁎ verifies the f.o.c. at z⁎ by continuity of the latter.
Therefore t⁎=φ0(z⁎), andcontinuity in {z∈R+

n : 0≤z≤ω} is established.
Suppose, finally, that z⁎=0. By definition ofφ0,φ0(zq) is≥0 and verifies

inequalities 0≤∑i∈Nφi
0(zq)≤∑i∈Nzi

q for all q. Therefore lim
zq→0;zq≥0

φ0ðzqÞ
is well-defined, =0=φ0(0), and continuity at 0 is established. □



25 These characteristics of F are obtained easily from Assumption 1 by letting
functions gr, r∈ {x, y, z}, be linear whenever (xi, yi, zi)≥(ε, ε, ε)≫0. A suitable choice of
coefficients in the linear representations of functions gr yields a linear graph of F, with
F(xi, zi, ti)≥ε and unit MRC, for (xi, zi, ti)≥(ε, ε, ε). As should be clear from footnote 28
below, transferable transplants neither implies, nor is implied by, transferable utility.
26 Let zi= ti and (xi, yi)=(xi⁎, yi⁎)=(x⁎, y⁎) for all i in the f.o.c., and recall that the
anonymity property of the social utility function implies that marginal social utilities
of hospitals' utilities are equal whenever hospitals' utilities are equal.
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Lemma 3. Hospital's behaviour

Hospital i's reaction correspondence at the first stage of the clear-
sighted game is a well-defined, upper hemi-continuous correspondence
φi
C: z∈ {z∈R+

n : z≤ω}→R+
6 such that: φi

C(z)⊂R++
6 whenever zn/i=0;

φi
C(z)⊂R++

2 ×R+×R+
2 ×R+ whenever zn/i≠0. Let z ̃∈ {z∈R+

n − 1:
z≤ω} be fixed, (xi⁎, yi⁎, zi

v, vi⁎)∈φi
C(z ̃) be such that zi⁎N0, and suppose

that zi→φi
0((z̃n/i, zi)) is C

1 in some interval open in (0, ωi] containing zi⁎.
Then, (xi⁎, yi⁎, zi⁎, vi⁎) verifies the following system of first-order conditions:
(i) yi⁎=F(xi⁎, zi⁎, φi

0((z̃n/i, zi⁎))); (ii) (xi⁎, yi⁎, zi⁎)=g(φi
0((z̃n/i, zi⁎)), vi⁎);

(iii)
∂1u x i

⁎;y i
⁎ð Þ

∂2u x i
⁎;y i

⁎ð Þ = −∂1F xi
⁎; zi⁎;φ

0
i z̃n= i; zi⁎
� �� �� �

; (iv) and there exists

δi∈R+ such that ∂2u(xi⁎,yi⁎)·(∂2F(xi⁎,zi⁎,φi
0((z ̃n/i, zi⁎)))+∂3F(xi⁎,zi⁎,φi

0

((z̃n/i, zi⁎)))·∂iφi
0((z̃n/i, zi⁎)))=δi and δi(ωi−zi⁎)=0. If function (xi,

zi)→u(xi,F(xi,zi,φi
0((z̃n/i, zi)))) is, moreover, quasi-concave over {(xi,

zi)∈R+
2 : 0bzi≤ωi}, then, the first-order conditions above characterize

the ≫0 elements of φi
C(z̃), that is, (xi⁎,yi⁎,zi⁎,vi⁎)∈φi

C(z̃) and is ≫0 if and
only if (xi⁎, yi⁎, zi⁎, vi⁎) verifies the f.o.c. and is ≫0.

Proof. Note first that set Ai(φi
0(z), ωi) being non-empty and compact

for all (z,ωi)≥0 and utility function u being continuous, programmax
{u(xi, yi):(xi, yi, zi, vi)∈Ai(φi

0(z), ωi)} has one solution at least for any
fixed (z, ωi)≥0. Therefore, correspondence φi

C: R+
n+1→R+

6 is well-
defined.

Let zn/i=0. We established in Lemma 2 that φ0(0)=0 and φ0

(z)≫0 whenever zN0. And we supposed in Assumption 1 that gx(0,
vi)=0 for all vi. Therefore, hospital i's optimal graft production zi is
positive, for then and only then is a Nu(0) utility level accessible for
hospital i by Assumption 2. In other words, if other hospitals
contribute nothing, hospital i is willing to contribute something, in
order to receive some positive transfer from the agency that allows for
a ≫0 final production (xi, yi) and Nu(0) utility.

Let zn/i∈{zn/i∈R+
n −1: zn/i≤ωn/i} be fixed from there on. φ0((zn/i,

zi⁎))≫0 for any optimal graft production zi⁎ of φi
C(z) by the paragraph

above, so that program max {u(xi, yi):(xi, yi, zi, vi)∈Ai(φi
0((zn/i, zi)),

ωi)} can be rewritten equivalently as max {u(xi, F(xi, zi, φi
0((zn/i,

zi)))):0≤xi≤gx(φi
0((zn/i, zi)), B, B+(gBz)−1(zi)), and 0≤zi≤ωi} by

Lemma 1. Solutions in (xi, yi) are “interior”, that is, (xi, F(xi, zi⁎, φi
0((zn/i,

zi⁎))))≫0, by the boundary condition of Assumption 2. But we may
have a corner solution in zi, that is, an optimal graft production zi⁎

equal to either 0 or ωi (zi⁎=0 only if zn/iN0).
Suppose that optimal graft production zi⁎ is positive, and that

zi→φi
0((zn/i, zi)) is C1 in an interval open in (0, ωi] containing zi⁎. The

necessary first-order conditions for solution (xi, zi⁎) of the reduced
program above then read as follows (e.g., Mas-Colell, 1985: D.1):

(i)
∂1u xi ;F xi ;zi⁎;φ

0
i zn = i ;zi⁎ð Þð Þð Þð Þ

∂2u xi ;F xi ;zi⁎;φ
0
i zn = i ;zi⁎ð Þð Þð Þð Þ = −∂1F xi; zi⁎;φ

0
i zn= i; zi⁎
� �� �� �

; (ii) and there

exists δi∈R+ such that ∂2u(xi, yi)·(∂2F(xi, zi⁎,φi
0((zn/i, zi⁎)))+∂3F(xi, zi⁎,

φi
0((zn/i, zi⁎)))·∂iφi

0((zn/i, zi⁎)))=δi and δi(ωi−zi⁎)=0. Conversely, if
(xi, zi)→u(xi, F(xi, zi, φi

0((zn/i, zi)))) is quasi-concave over {(xi,
zi)∈R+

2 :0bzi≤ωi}, if zi→φi
0((zn/i, zi)) is C1 in an interval open in (0,

ωi] containing zi⁎N0, and if (xi, zi⁎)≫0 verifies the f.o.c. above, then (xi⁎,
zi⁎) solves reduced programmax {u(xi, F(xi, zi,φi

0((zn/i, zi)))):zi≤ωi}, by
Arrow and Enthoven (1961: Theorem 1). Let us establish, finally, that
φi
C is upper hemi-continuous (u.h.c.) in {z∈R+

n : z≤ω} for all i.
Let zqð Þq∈ℕ be a sequence of elements of {z∈R+

n : z≤ω} converging
to z⁎, and sequence xqi ; y

q
i ; z

q
i ; v

q
i

� �� �
q∈ℕ be such that (xiq, yiq,z̄iq, viq)∈φi

C

(zq) for all q and converge to (xi⁎, yi⁎,z̄i⁎, vi⁎). We want to prove that (xi⁎,
yi⁎,z̄i⁎, vi⁎)∈φi

C(z⁎). Note that (xi⁎, yi⁎,z̄i⁎, vi⁎)∈Ai(φi
0(z⁎), ωi)={(xi, yi,zi,

vi)∈R+
6 : (xi, yi,zi)≤g(φi

0(z⁎), vi), zi≤ωi, and vi
x+vi

y≤B} by continuity
of g and φi

0. Let (x̃i, ỹi, z̃i, ṽi) be any element of Ai(φi
0(z⁎), ωi).

If x̃i or ỹi is =0, then u(xi⁎, yi⁎)≥u(x ̃i, ỹi)=u(0) by Assumption 2.
Suppose that (xi⁎, yi⁎)≫0. Note that, then, φi

0(z⁎)N0 and xi⁎bg
x(φi

0

(z⁎), B,B+(gBz)−1(z ̃i)) by the definition of Ai(φi
0(z⁎), ωi) and

Assumption 1. We construct a sequence x̃qi ; ỹ
q
i ; z̃

q
i ; ṽ

q
i

� �� �
q∈ℕ that

converges to (x̃i, ỹi, z̃i, ṽi) and is such that (x̃iq, ỹiq, z̃iq, ṽiq)∈Ai(φi
0(zq),
ωi) for all q. There exists q0∈N such thatφi
0(zq)N0 and x̃ibg

x(φi
0(zq), B,

B+(gBz)−1(z̃iq)) for all q≥q0, by continuity of gx, φi
0 and (gBz)−1. If ỹibF

(x̃i, zĩ, φi
0(z⁎)), then, by construction of F (see the proof of Lemma 1),

either ṽi
x+ ṽi

y=B and ỹibg
y(φi

0(z⁎), ṽi
y, ṽi

x+ ṽi
y+ ṽi

z) or ṽi
x+ ṽi

ybB;
therefore, by continuity of F, φi

0 and g, there exists q1∈N such that, for
all q≥q1: ỹibF(x̃ i, z ̃i, φi

0(zq)), and either there exists vī
x,qb ṽi

x+ ṽi
y

solving gx(φi
0(zq), v̄ix,q, ṽix+ ṽi

y+ ṽi
z)=gx(φi

0(z⁎), ṽix, ṽix+ ṽi
y+ ṽi

z) such
that gy(φi

0(zq), ṽix+ ṽi
y− ṽi

x,q, ṽix+ ṽi
y+ṽi

z)Nỹi, if ṽix+ ṽi
y=B, or there

exists v ̄ix,q solving gx(φi
0(zq), v̄ix,q, ṽix+ ṽi

y+ ṽi
z)=gx(φi

0(z⁎), ṽix, ṽix+ ṽi
y+

ṽi
z) and v̄i

y,q solving gy(φi
0(zq), v ̄iy,q, ṽix+ ṽi

y+ ṽi
z)=gx(φi

0(z⁎), ṽiy, ṽix+
ṽi
y+ ṽi

z) such that ṽix,q+ ṽi
y,qbB, if ṽix+ ṽi

ybB. We let then: (x̃iq, ỹiq, z̃iq)=
(x̃i, ỹi,z̃i), ṽix,q= v̄i

x,q, ṽiy,q be either= ṽi
x+ ṽi

y− ṽi
x,q (if ṽix+ ṽi

y=B) or= v̄i
y,q

(if ṽix+ṽi
ybB), and ṽi

z,q= ṽi
z, for all q≥max {q0, q1}; (x̃iq, ỹiq, z̃iq, ṽiq) be an

arbitrary element of Ai(φi
0(zq),ωi) for all qbmax {q0, q1}. If ỹibF(x̃i, z̃i, φi

0

(z⁎)), we have then ṽi
x+ ṽi

y=B, ṽiz=(gBz)−1(z̃ i) and (x̃i, ỹi,z̃i)=g(φi
0(z⁎),

ṽi) by construction of F (see Lemma 1), and we let: ṽiq=ṽi, z̃iq= z̃i, ỹiq=
F(x̃i, z̃i, φi

0(zq)), ṽix,q solve x̃i=gx(φi
0(zq), ṽix,q, B+(gBz)−1(z̃i)), ṽiy,q solve

ỹi
q=gy(φi

0(zq), ṽiy,q, B+(gBz)−1(z̃i)), and ṽi
z,q=(gBz)−1(z̃i)= ṽi

z for all
q≥q0; (x̃iq, ỹiq, z̃iq, ṽiq) be an arbitrary element of Ai(φi

0(zq), ωi) for all
qbq0. One verifies immediately that the sequence converges to (x̃i, ỹi,
z̃i, ṽi). We have u(xiq, yiq,)≥u(x̃iq, ỹiq) for all q by construction, so that u
(xi⁎, yi⁎)≥u(x̃i, ỹi) by continuity of u. Therefore (xi⁎, yi⁎,z̄i⁎, vi⁎)∈φi

C(z⁎),
and the upper hemi-continuity of φi

C is established. □
A4. Example 2: Linear transferable transplant technology

In this example, we consider the case of convex medical care
systems with constant unitary MRC. We label this special case the
transferable transplant case, by analogy with transferable utility
(Bergstrom and Cornes, 1983, Bergstrom and Varian, 1985a,b and
Bergstrom, 1989).25 We further restrict attention, for calculation
purposes, to linear hospital technology. Linear technology being
inconsistent with the boundary conditions of Assumption 1, we
suppose, more precisely, that there exists a positive real number
ε≤ inf{ωi:i∈N}, which may be taken arbitrarily close to 0, such that F
(xi, zi, ti)=−axi−bzi+bti+c, (a,b,c)∈R++

3 , whenever (xi, zi, ti, F(xi,
zi, ti))≥(ε, ε, ε, ε) (see Fig. 3A and 3B). We also suppose that the
hospital's utility function is strictly quasi-concave in R++

2 .
Let (xi⁎, yi⁎) denote a local maximum of u in {(xi, yi)∈R+

2 :
yi≤−axi+c}. Note that such a point: necessarily exists by continuity
of u; is≫0 by the boundary condition of Assumption 2, and therefore
is the unique global maximum of u in {(xi, yi)∈R+

2 : yi≤−axi+c}
by the strict quasi-concavity of utility in R++

2 ; is such that y i
⁎=

−ax i⁎+c (u being strictly increasing in R++
2 ); and verifies first-order

condition
∂1u xi⁎;yi⁎ð Þ
∂2u xi⁎;yi⁎ð Þ = a.We suppose in the following that (xi⁎, yi⁎)≫(ε, ε)

(see Fig. 3C).
The first-order conditions of Lemma 2 (Appendix A3) apply to this

example. They readily imply that the agency's optimal distribution
policy at the second stage of clear-sighted equilibrium is to transfer to
each hospital its own contributionwhen all hospitals contribute at least
ε, that is, formally: the restriction of φ0 to {z∈R+

n : ε·en≤z≤ω} is the
identity z→z.26 The first-order conditions of Lemma 3 (Appendix A3)
then imply, in turn, that all hospitals have essentially the same set of
optimal production combinations at the first stage of clear-sighted
equilibrium, precisely: all elements of set {(xi⁎, yi⁎, zi)∈R+

3 : ε≤zi≤ωi},
where (xi⁎, yi⁎) is the same for all i (but where, of course, ωi may vary
with i), solve hospital i's first-stage program for all zn/i≥ε·en−1. In



27 From the corollary of Theorem 1: δi = ∂iW⋅∂2u⋅∂3F⋅ 1 + ∂2F
∂3F

� �
= 0, while λ=

∂iW·∂2u·∂3F=∂iW·∂2u·cN0, for all i.

Fig. 3.
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other words, if all hospitals contribute at least ε, the agency's transfer
policy makes each hospital's decision independent of others'
decisions, and also makes hospital's final production of transplant
and other care services independent of its own intermediary
production of grafts for the agency; so that all hospitals end up
choosing the same output combination for their final care services,
and also end up indifferent to their intermediary graft production over
range [ε, ωi].

Let (xi⁎, yi⁎)=(x⁎, y⁎). It clearly follows from definitions and
paragraph above that any (x⁎·en, y⁎·en, z) such that ε·en≤z≤ω is a
clear-sighted equilibrium production of the medical care system, and
that t=z is the corresponding vector of equilibrium transfers. Note,
finally, that: other equilibria might exist; (x⁎·en, y⁎·en) is the unique
socially efficient final production combination of the medical care
system, as a simple consequence of the first-order conditions of
Theorem 1 and Corollary 1; and zbω for all equilibria above except
(x⁎·en, y⁎·en, ω). In particular, the marginal social utility of the graft
resources of all hospitals is null in this example (while the marginal
social utility of hospitals' aggregate contribution ∑i∈Nzi is posi-
tive).27 More precisely, some fraction of aggregate transplant
resources does have a positive marginal social utility since hospitals
and the agency have u(0) and W(u(0),…, u(0)) utility levels if
∑i∈Nωi=0, but any ω≥ε·en suffices for sustaining the equilibria
above. That is: transferable transplants technology applies if aggre-
gate resources exceed threshold nε (technology being linear only for
(xi, yi, zi, ti)≥(ε, ε, ε, ε)); and this particular technology then makes
any amount of aggregate transplant resources in excess of this
threshold (any positive difference −nε+∑i∈Nωi) socially useless.

A5. Existence of clear-sighted equilibrium

The existence of a clear-sighted equilibrium is not warranted, in
general, under Assumptions 1, 2 and 3. The appropriate tool for
establishing existence is Debreu's (1952) social equilibrium existence
theorem, applied to the Nash non-cooperative equilibrium of the first
stage of the clear-sighted game. The general condition for existence,
implied by this theorem, which may fail to hold in the case of clear-
sighted equilibrium is convex-valued reaction correspondences of
hospitals. We show below that an equilibrium exists in an acceptable
subset of the wider class of medical care systems considered in this
article.

Lemma 4. If (W, u, g, ω) is convex, then φi
C is convex-valued for all i.

Proof. We established in the proof of Lemma 3 that hospital i's first-
stage program max {u(xi, yi):(xi, yi, zi, vi)∈Ai(φi

0((zn/i, zi)), ωi)} was
equivalent to program max {u(xi, F(xi, zi, φi

0((zn/i, zi)))):0≤zi≤ωi} for
any fixed zn/i∈{z ̃n/i∈R+

n −1: zn/i≤ωn/i}, and yielded positive optimal
graft production of hospital i whenever zn/i=0. The convexity
assumption of Definition 5 is therefore exactly sufficient for the
convexity of φi

C(z) for all i and all z∈{z∈R+
n : z≤ω}. □

Lemma 5. Let the medical care system (W, u, g, ω) be such that φi
C is

convex-valued for all i. Then there exists a clear-sighted equilibrium of
(W, u, g, ω).

Proof. φ0 is a continuous function {z∈R+
n : z≤ω}→R+

n by Lemma 2,
and φi

C is an upper hemi-continuous correspondence {z∈R+
n :

z≤ω}→R+
6 for all i by Lemma 3. Let the canonical projection (xi, yi,

zi, vi)→zi be denoted by pr3. ΦC:z→(pr3(φ1
C(z)),…, pr3(φn

C(z))) is an
upper hemi-continuous, convex-valued correspondence {z∈R+

n :
z≤ω}→{z∈R+

n : z≤ω}. Set {z∈R+
n : z≤ω} being non-empty compact

and convex,ΦC has a fixed point in {z∈R+
n : z≤ω} by Kakutani's fixed

point theorem, that is, there exists z⁎∈ {z∈R+
n : z≤ω} such that

z⁎∈ΦC(z⁎). There exists, therefore, a state (x⁎, y⁎, z⁎, v⁎, t⁎) such that
t⁎=φi

0(z⁎) and (xi⁎, yi⁎, zi⁎, vi⁎)∈φi
C(z⁎) for all i. (x⁎, y⁎, z⁎, v⁎, t⁎) is an

equilibrium of the clear-sighted game by construction. □

The medical care systems of Examples 1 and 2 are convex.
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A6. Rotten kids and abundance

The public good externalities of first-stage equilibrium pre-exist to
transfer policy in the game of Cornes and Silva. This and the neutrality
property of transfers allow the principal to use transfer policy as a
pure coordination device in their setup: in the absence of any trade off
between allocation and distribution objectives (due to neutrality), the
principal's optimal transfer policy achieves production optimum by
equating individual marginal valuations of the public and private
goods at first-stage equilibrium with their marginal valuations at
social optimum. The public good externalities of the first-stage
equilibrium of the transplant care game, if any, are, by contrast,
generated by the principal's transfer policy (as in Becker's and
Bergstrom's games); moreover, transfer policy induces public good
externalities if and only if it is not of the status quo type, that is, if and
only if it does not merely consist of returning each agent its
contribution. Only if status quo is the agency's optimal transfer policy
can the mechanism of Cornes and Silva be successfully replicated in
the context of the transplant care game, that is, using transfer policy as
a pure coordination device for achieving production optimum.
Theorem 3(iii) gives the sufficient, and in general necessary, condition
for status quo transfer policy to be the agency's second-stage optimal
policy.

Bergstrom (1989) states that the rotten kid theorem applies if, and,
in general, only if, agents' utilities are conditionally transferable.
Bergstrom's general property, like Becker's original theorem, do not
apply to the transplant care game if rationing constraints are binding
at production optimum. Becker's theorem applies in the context of
competitive market exchange, essentially because (perfect) compet-
itive exchange automatically achieves allocation efficiency for any
distribution of money income, thereby allowing the principal to
optimize the sole distribution of income, by means of lump-sum
endowment (or numeraire) transfers (see Hick's composite theorem
in Bergstrom (1989), and also Example 2 of Mercier Ythier (2009)).
The rotten kid property still obtains outside competitive market
exchange if the allocation efficiency frontier is invariant to redistribu-
tion and if the principal can freely redistribute aggregate money
incomebetween self-centred agents (Bergstrom, 1989: Proposition 1).
None of the latter conditions apply to the transplant care game, except
in the special case where rationing constraints are non-binding at
equilibrium (see the argument of footnote 28 and the proof of
Theorem 3(iii) below28). Moreover, transplant shortage follows from
28 In this footnote, it is proved that binding rationing constraints make the rotten kid
theorem fail, even if hospitals' utility is transferable. Transferable utility translates as
follows into our framework: The preference relation underlying hospitals' (identical)
reduced form utility functions u(xi, F(xi, zi, ti)) admits a utility representation of the
type A·ti+C(xi, zi), where A is a N0 real number and C is a real-valued function
decreasing in zi. Suppose for simplicity (without significant loss of generality by Mas-
Colell, 1985: 2.3.11) that u(xi, F(xi, zi, ti))=A·ti+C(xi, zi) for all i. This implies ∂2F/
∂3F=(∂2u·∂2F) / (∂2u·∂3F)=∂2C/A, where the points of evaluation of partial
derivatives are omitted to alleviate notations. Denoting by ui a utility level of hospital
i, the utility possibility set conditional on the system of agents' actions (x, z) is the
simplex {(u1, …, un)≥(C(x1, z1), …, C(xn, zn)): ∑i∈Nui≤A·∑i∈Nzi+∑i∈NC(xi, zi)}.
The rotten kid theorem implies the maximization of “social income” A·∑i∈Nzi
+∑i∈NC(xi, zi) relative to socially accessible agents' actions (x, z) at equilibrium. The
f.o.c. for a maximum of A·∑i∈Nzi+∑i∈NC(xi,zi) such that x≫0 subject to rationing
constraints z≤ω read: ∂1C(xi, zi)=0, 1 + ∂2C

A ≥0 and 1 + ∂2C
A

� �
⋅ ωi−zið Þ = 0 for all i,

and therefore coincide with the f.o.c. for the solutions of max {u(xi, F(xi, zi, zi)):zi≤ωi}
with positive xi. Supposing an anonymous utility function of the principal, this set of
conditions characterizes a socially optimal clear-sighted equilibrium, with status quo
second-stage optimal transfer policy φ0:z→z, if and only if programs max {u(xi, F(xi, zi,
zi)):zi≤ωi} have a same solution, that is, if and only if rationing constraints are either
non-binding in all these programs or identical in all of them (the latter implying identical
hospitals' endowments). In particular, Proposition 1 of Bergstrom (1989) does not
apply if distinct rationing constraints are binding in at least two of these programs. The
assumption of Bergstrom's proposition that fails to hold in the latter case is that the
principal can choose any vector of transfers in set {t∈R+

n : Σi∈Nti≤Σi∈Nzi}, implying
that the principal's transfers are not limited by rationing constraints in the cases
covered by the proposition. □
the ban on markets of transplant inputs, which interprets as a case of
market incompleteness caused by basic normative reasons. The
virtuous rotten kids of Becker's theorem are, so to speak, daughters
and sons of abundance.

Proof of Theorem 3. Part (i) of the Theorem is a simple consequence
of Lemmas 4 and 5 (existence) and of Lemmas 2 and 3 (positivity).
The qualitative aspects of parts (ii) and (iii) are supported by
Examples 1 and 2 and the discussion above. Part (iii) is complemented
by the following clear-cut statements, established below: If all
programs {u(xi, F(xi, zi, zi)):zi≤ωi} have a same solution (x⁎, z⁎), then:
rationing constraints are either all identical and binding or all non-
binding at (x⁎, z⁎) in programs {u(xi, F(xi, zi, zi)):zi≤ωi}; (x⁎·en, F(x⁎,
z⁎, z⁎)·en, z⁎·en) is a clear-sighted equilibrium production combination,
and the agency's corresponding equilibrium transfer is φ0(z⁎·en)
=z⁎·en; ∂φ0(z⁎) is =en if rationing constraints are all non-binding in
programs {u(xi, F(xi, zi, zi)):zi≤ωi}, and ≪en otherwise.

Let (x⁎, z⁎) be a solution of {u(xi, F(xi, zi, zi)):zi≤ωi}, the same for all
i, and let F(x⁎, z⁎, z⁎) be denoted by y⁎. The boundary condition of
Assumption 2 implies that production combination (x⁎, y⁎, z⁎) is≫0.
The characterizing first-order conditions for this maximum read:
∂1u
∂2u = −∂1F , −∂2F

∂3F ≤1, and 1 + ∂2F
∂3F

� �
⋅ ωi−z*ð Þ = 0 for all i, where

partial derivatives are evaluated at the optimum.
Identical (x⁎, y⁎) imply that marginal social utilities ∂iW(u(x⁎,

y⁎),…, u(x⁎, y⁎)) are identical for all i by the anonymity property
of Assumption 3. Identical (x⁎, z⁎) imply that hospitals have same
∂F3(x⁎, z⁎, z⁎). The f.o.c. of Corollary 1 then imply that (x⁎·en, y⁎·en,
z⁎·en) is a socially optimal production combination of (W, u, F, ω).

If some rationing constraint is binding at (x⁎, z⁎) in programs
above, that is, if −∂2F x* ;z*ð Þ

∂3F x* ;z*ð Þb1 and z⁎=ωi for some i, then, clearly, all
rationing constraints are binding and identical, so that, in particular,
all hospitals have the same endowment, =z⁎. In other words,
rationing constraints are either all identical and binding or all non-
binding at (x⁎,z⁎) in programs {u(xi, F(xi, zi, zi)):zi≤ωi}.

Function F being C2 wherever it is defined in R++
3 , and then such

that ∂3FN0, the implicit function theorem implies the existence of
open neighbourhoods U and V of z⁎ in R++ and of a C1 function ψ:
U→V such that ψ(z⁎)=z⁎, and, for all s∈U, y⁎=F(x⁎, s, ψ(s)) and
∂ψ(s)=−(∂F2(x⁎, s, ψ(s))/∂F3(x⁎, s, ψ(s))). The f.o.c. of Lemma 2 then
imply that the agency's second-stage optimal transfer policy identifies
with function (z1,…, zn)→(ψ(z1),…, ψ(zn)) over {z∈Un: z≤ω; ∃
α∈R++ such that z=α·en} (since all hospitals have same ∂F3(xi⁎, zi,
ψ(zi)) for all z in the latter set). In particular: φ0(z⁎)=z⁎; and ∂φ0(z⁎)
is =en if rationing constraints are all non-binding in programs {u(xi, F
(xi, zi, zi)):zi≤ωi}, and ≪en otherwise, that is, if rationing constraints
are all binding and identical in these programs. The f.o.c. of Lemma 3
and the quasi-concavity properties of (xi, zi)→u(xi, F(xi, zi, φ0(zn/i⁎,
zi))) (implied by the convexity of (W, u, F, ω)) then imply that (x⁎, z⁎)
solves max {u(xi, F(xi, zi, φi

0((zn/i⁎, zi)))):zi≤ωi} for all i (see Lemma 3),
and therefore that (x⁎·en, y⁎·en, z⁎·en) is a clear-sighted equilibrium
production combination of (W, u, F, ω)), and that z⁎·en is the
corresponding optimal transfer of the agency. □

A7. Monitored equilibrium

Proof of Theorem 4. Let (x⁎, y⁎, z⁎, v⁎, t⁎) be a monitored
equilibrium. Assumptions 1, 2 and 3 and the definition of monitored
equilibrium clearly imply that (x⁎, y⁎, z⁎, v⁎, t⁎)≫0. Monitored
opportunity set Ai

M(viz, ti⁎)={(xi, yi, xix, yiy)∈R+
4 : xi≤gx(ti⁎, vix, vix+vi

y+
vi
z), yi≤gx(ti⁎, viy, vix+vi

y+vi
z), vix+vi

y≤B} is compact, convex, and has a
non-empty intersection with R++

4 . The Kuhn and Tucker first-order
conditions are therefore necessary and sufficient for convex program
max {u(xi, yi):(xi, yi, vix, viy)∈Ai

M(viz, ti)} at interior equilibrium solution
(xi⁎, yi⁎, vix⁎, viy⁎) by Arrow and Enthoven (1961: Theorems 1 and 2).
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They read: (i) vi
x⁎+vi

y⁎=B; (ii) (xi⁎, yi⁎, zi⁎)=g(ti⁎, vi⁎); and (iii)
∂1u x i

⁎;y i
⁎ð Þ

∂2u xi⁎;yi⁎ð Þ =
∂2gy t i⁎;v

y
i
⁎;vx

i
⁎ + vy

i
⁎ + vzi⁎ð Þ

∂2gx t i⁎;v
x
i
⁎;vxi ⁎ + vy

i
⁎ + vzi⁎ð Þ . Or equivalently, by Lemma 1: (i)

vi
x⁎+vi

y⁎=B; (ii) y i
⁎=F(xi⁎, z i⁎, t i⁎); and (iii)

∂1u xi⁎;yi⁎ð Þ
∂2u xi⁎;yi⁎ð Þ = ∂1F x*i ; z

*
i ; t

*
i

� �
.

Suppose that (x⁎, y⁎, z⁎, v⁎, t⁎) is not a production optimum and let
us derive a contradiction. There exists then, by Theorem 1, a
production optimum (x, y, z, v, t) such that W(u(x1, y1),…, u(xn,
yn))NW(u(x1⁎, y1⁎),…, u(xn⁎, yn⁎)). But then (x, y, vx, vy)∈φM(vz, t) if vix+
vi
y=B for all i, by the characterizing f.o.c. of Theorem 1 and of

paragraph above. This may be supposed without loss of generality for
(x, y, z, v, t) by the hypothesis of Theorem 4. But (z, vz, t)∈A0

M(ω), as an
immediate consequence of the definition of a production optimum.
Therefore (x⁎, y⁎, z⁎, v⁎, t⁎) is not a monitored equilibrium, the
contradiction we were looking for. □
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